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SUMMARY

The PD-1 pathway, consisting of the co-inhibitory receptor PD-1 on T cells and its ligand (PD-L1) 

on antigen-presenting cells (APCs), is a major mechanism of tumor immune evasion. PD-1 and 

PD-L1 blockade antibodies have produced remarkable clinical activities against a subset of 

cancers. Binding between T cell-intrinsic PD-1 and APC-intrinsic PD-L1 triggers inhibitory 

signaling to attenuate the T cell response. Here, we report that PD-1 is co-expressed with PD-L1 

on tumor cells and tumor-infiltrating APCs. Using reconstitution and cell culture assays, we 

demonstrate that the co-expressed PD-1 binds to PD-L1 in cis. Such interaction inhibits the ability 

of PD-L1 to bind T cell-intrinsic PD-1 in trans and, in turn, represses canonical PD-L1/PD-1 

inhibitory signaling. Selective blockade of tumor-intrinsic PD-1 frees up tumor-intrinsic PD-L1 to 

inhibit T cell signaling and cytotoxicity. Our study uncovers another dimension of PD-1 

regulation, with important therapeutic implications.
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Zhao et al. show that the T cell inhibitory receptor PD-1 expressed on tumor cells and tumor-

infiltrating APCs neutralizes its ligand, PD-L1, in cis to inhibit canonical PD-1 signaling. 

Selective blockade of tumor-intrinsic PD-1 frees up tumor PD-L1 for T cell suppression.

INTRODUCTION

Recent years have seen the exciting progress in harnessing the immune system to combat 

human cancer. A highly successful modality is to reactivate the immune system that is 

aberrantly repressed by cancers. A key cancer immunotherapy target is programmed cell 

death protein-1 (PD-1), best known as a T cell co-inhibitory receptor. The interaction 

between PD-1 on T cells and its ligand PD-L1, which is highly expressed on several types of 

human tumor cells and tumor infiltrating immune cells, restrains the activity of effector T 

cells against human cancers and chronic virus infections (Baitsch et al., 2011; Chen and 

Mellman, 2013; Pardoll, 2012; Pauken and Wherry, 2015; Sharma and Allison, 2015; Zou et 

al., 2016). Antibodies that block PD-L1/ PD-1 interactions have produced durable clinical 

benefit in several cancer indications in a small subset of patients.

To date, mechanistic studies of PD-1 have been largely focused on its role on T cells. Absent 

on naive T cells, PD-1 is inducibly expressed on T cells by T cell antigen receptor (TCR) 

signal and then acts as a molecular brake to prevent uncontrolled T cell activity. Upon 

binding to its ligand PD-L1 on the antigen-presenting cell (APC), a pair of tyrosines within 

the cytoplasmic tail of PD-1 becomes phosphorylated and recruits the protein tyrosine 

phosphatases SHP2 and SHP1, which dephosphorylate both the TCR and co-stimulatory 

signaling components (Hui et al., 2017; Parry et al., 2005; Sheppard et al., 2004; Yokosuka 

et al., 2012). These biochemical events ultimately lead to the attenuation of T cell 

proliferation, cytokine production, and cytolytic activities (Keir et al., 2008).

Despite the widely accepted notion that PD-1 primarily functions as a T cell inhibitory 

receptor, PD-1 has also been found to be expressed on other types of immune and non-
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immune cells, including B cells, macrophages, dendritic cells (DCs), and even some tumor 

cells (Keir et al., 2008; Kleffel et al., 2015). Mounting recent evidence indicates important 

roles of PD-1 on non-T cells in regulating the survival of DCs, the phagocytosis of 

macrophages, and the glycolysis of tumor cells (Gordon et al., 2017; Kleffel et al., 2015; 

Park et al., 2014). Similarly, PD-L1, the PD-1 ligand well known to be expressed on tumor 

cells and professional APCs (e.g., B cells, macrophages, and DCs), is also expressed on 

activated T cells at low levels (Keir et al., 2008). Hence, PD-L1 and PD-1 might be co-

expressed on multiple cell types, raising the questions of whether they can interact with each 

other in cis and how this putative cis interaction might regulate immune responses.

In stark contrast to the intensively studied PD-L1/PD-1 trans interaction, the existence and 

functional consequence of the cis interaction are unknown. Challenges for this effort include 

the co-expression of PD-L1 and PD-1 on both APCs and T cells, signaling in both 

directions, and the potential crosstalk with other signaling axes.

In this work, we investigated whether PD-1 and PD-L1 interact in cis and how the potential 

cis interaction regulates classical PD-1 signaling outputs using well-defined in vitro 
reconstitution, cellular reconstitution, and cell culture assays. In both HEK293T cells and 

liposomes reconstituted with both PD-1 and PD-L1, we determined their molecular 

proximity using Förster resonance energy transfer (FRET). We next asked whether the 

presence of cis-PD-1 impacts the ability of PD-L1 to engage PD-1 in trans, using a 

liposome–bilayer conjugation assay, a cell-bilayer assay, and APC-T cells assays with 

multiple signaling readouts. Finally, we determined how antibody blockade of cis-PD-1 

affects T cell signaling and cytotoxicity.

RESULTS

PD-1 and PD-L1 Are Co-expressed on a Subset of Tumor Cells and Tumor-Infiltrating APCs

We first analyzed PD-1 and PD-L1 co-expression on multiple cell types in the context of 

tumors using flow cytometry. In one non-small cell lung cancer (NSCLC) human patient, 

PD-1 and PD-L1 are co-expressed on a subset of tumor cells and tumor infiltrating 

professional APCs, including DCs, macrophages, and myeloid derived suppressor cells 

(MDSCs) (Figure 1). Interestingly, in another NSCLC patient, PD-1 and PD-L1 co-

expression was detected on tumor-infiltrating professional APCs, but not on tumor cells 

(Figure S1). Little to no PD-1/PD-L1 double-positive cells were found on peripheral blood 

mononuclear cells (PBMCs) from either patients or healthy individual controls. We also 

found that PD-1 and PD-L1 are co-expressed on 99.8% of EL4 mouse lymphoma cells 

(Figure S2). Using fluorescent beads as standards, we then quantitated the expression levels 

of both PD-1 and PD-L1 (STAR Methods) and found that PD-1 is generally expressed at a 

higher level than PD-L1 on PD-1/PD-L1 double-positive cells isolated from NSCLC tumor 

sites (Table S1).

PD-1 and PD-L1 Bind to Each Other in cis

Co-expression of PD-1 and PD-L1 raises the possibility that they might bind in cis on cell 

membranes. We tested this idea using FRET analysis with confocal microscopy. To this end, 
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we co-transfected CLIP-tagged PD-L1 and SNAP-tagged PD-1 into HEK293T cells and 

labeled them orthogonally with an energy donor (Dy547) and acceptor (Alexa Fluor 647 

[AF647]), respectively. Using flow cytometry and fluorescent beads, we found that PD-1 

and PD-L1 are expressed at 72 and 91 molecules/µm2 respectively, which is comparable to 

their levels in NSCLC tumor sites (Table S1). Using confocal microscopy, we found that 

photobleaching of PD-1-conjugated AF647 substantially increases the fluorescence of PD-

L1 conjugated Dy547 (Figure 2A). The recovery of donor fluorescence after acceptor 

photobleaching suggests molecular proximity of PD-1 and PD-L1. Similar levels of FRET 

signal were also detected between PD-1 and PD-L2, a second ligand of PD-1 (Figure 2B). 

Replacement of PD-1 with a mutant version (K78A) with defective PD-L1 binding (Lázár-

Molnár et al., 2008) or with B7.2, a structurally related APC surface protein with no 

reported PD-L1 binding activity, significantly decreased the FRET efficiency (p < 0.001). 

These data suggest that PD-1 interacts in cis with both PD-L1 and PD-L2 on cell 

membranes.

Due to the complex environment of a cell membrane, it remains possible that the molecular 

proximity between PD-1 and its ligands is mediated by other proteins or is driven by lipid 

microdomains such as rafts. To rule out these possibilities, we next assessed the molecular 

nearness of PD-L1 and PD-1 in a cell-free membrane reconstitution system using purified 

recombinant proteins (Figure 3A). We pre-attached nickel chelating lipid (DGS-NTA-Ni) 

containing large unilamellar vesicles (LUVs) with a purified His10-tagged extracellular 

domain of PD-L1 labeled with an energy donor (SNAP-Cell-505) (SC505*PD-L1EX-His). 

Subsequent addition of PD-1EX-His, labeled with an energy acceptor (SNAP-Cell-TMR 

[tetramethylrhodamine]) (TMR*PD-1EX-His) triggered a rapid and robust quenching of the 

PD-L1 fluorescence (Figure 3B, black trace). By contrast, the addition of TMR-labeled 

PD-1(K78A)EX mutant or B7.2EX elicited a much weaker quenching of the PD-L1 

fluorescence (Figure 3B, orange and gray traces). As expected, similar levels of PD-1-

mediated quenching were observed when the LUVs were pre-attached with the donor-

labeled, His10-tagged extracellular domain of PD-L2 (SC505*PD-L2EX-His) (Figure 3C).

It is possible that PD-1EX-His competes with PD-L1EX-His for binding sites on the LUVs, 

causing a fluorescence change. However, we ruled out this possibility by using unlabeled 

PD-1EX-His, which failed to alter PD-L1 fluorescence (Figure S3, black). Indeed, the DGS-

NTA-Ni concentration (16.6 µM) was 500-fold higher than the total protein concentration 

(33.3 nM), which is more than enough to bind both proteins without competition. The 

energy transfer depends on the membrane localization of PD-1, because removing the His 

tag from PD-1 abolished the quenching (Figure S3, gray). This result indicates that binding 

between LUV-attached PD-L1 and solution PD-1 was minimal. Indeed, the bulk 

concentration of PD-1 (25 nM) was two orders of magnitude lower than the reported 

dissociation constant (770–7,800 nM; Butte et al., 2007; Cheng et al., 2013; Lázár-Molnár et 

al., 2017; Maute et al., 2015) of the PD-L1/PD-1 interaction. Finally, PD-L1 and PD-1 

binding in trans via LUV conjugation led to a much slower and smaller decrease of PD-L1 

fluorescence (Figure S3, orange), indicating that the rapid, robust PD-L1 quenching 

observed with TMR*PD-1EX addition was due to direct cis interaction with PD-1 from the 

same membrane.
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Next, we determined the affinity of the PD-L1/PD-1 cis interaction. To this end, we fixed the 

concentration of LUV-bound SC505*PD-L1EX-His at 8.3 nM and measured its percent 

quenching as a function of the level of TMR*PD-1EX-His (Figure S4). Equal concentrations 

of TMR*B7.2EX-His were run in parallel to reflect quenching due to crowding effect (Figure 

S4). Plotting the percent quenching (calculated by subtracting the PD-1 signals from the 

corresponding B7.2 signals, see STAR Methods) against PD-1 concentration yielded a 

dissociation constant (KD) of 18 ± 1 nM, which is much lower than the solution KD reported 

previously. These data suggest that confinement of PD-1 and PD-L1 on the same membrane 

can facilitate their interaction in cis. The curve fitting also revealed a Hill coefficient of 2.4 

± 0.2 (Figure S4), indicating a weak cooperativity of the PD-1/PD-L1 cis interaction.

PD-L1/PD-1 cis Interaction Inhibits the Ability of PD-L1 to Bind PD-1 in trans

Having demonstrated that PD-L1 directly binds to PD-1 in cis, we next determined whether 

the cis interaction affects the ability of PD-L1 to engage PD-1 from a different membrane 

(i.e., trans interaction). Accordingly, we developed a microscopy assay to measure 

membrane apposition driven by the PD-1/PD-L1 trans interaction. In this assay, two forms 

of lipid bilayers, LUVs (containing Bodipy-PE as the probe) and a supported lipid bilayer 

(SLB), were reconstituted with PD-L1EX-His and AF647-labeled PD-1EX-His, respectively 

(STAR Methods). Notably, after a 5-min incubation with the PD-L1EX-coupled LUVs and 

extensive washes, the SLB captured a number of PD-L1EX-coupled LUVs, each registered 

as a bright green dot in the total internal reflection fluorescence (TIRF) field, owing to the 

Bodipy fluorescence (Figure 4A, Bodipy channel). In addition, AF647-labeled PD-1EX-His 

was clearly enriched under the PD-L1EX-coupled LUVs (Figure 4A, AF647 channel and 

merged), suggesting that the SLB-LUV association was mediated by the PD-1/PD-L1 trans 
interaction. We confirmed this notion by using B7.2EX -coupled LUVs, which barely bound 

to PD-1EX functionalized SLB (Figures 4B and 4F). Importantly, an equivalent 

concentration of LUVs attached with both PD-L1EX and PD-1EX exhibited a substantially 

weaker SLB binding (Figures 4C and 4F), indicating that the PD-1/PD-L1 cis interaction 

inhibits the ability of PD-L1 to bind PD-1 in trans. Moreover, replacement of wild-type 

(WT) PD-1 with an equal concentration of either PD-1(K78A)EX or B7.2EX on the LUVs 

restored LUV-bilayer conjugation (Figures 4D–4F). By titrating the level of cis-PD-1, we 

found that an ~3-fold excess of PD-1 is sufficient to block the PD-1/PD-L1 trans interaction 

(Figure S5).

Cis-PD-1 Neutralizes the Ability of PD-L1 to Trigger PD-1 Microclusters in T Cells

We next determined how the PD-L1/PD-1 cis interaction affects the ability of PD-L1 to 

trigger PD-1 signaling in living T cells. A hallmark event of PD-1 activation is the formation 

of PD-1 microclusters, as revealed by microscopy studies using SLB as an artificial APC 

(Groves and Dustin, 2003; Hui et al., 2017; Yokosuka et al., 2012). Here, we used this T 

cell/SLB system to determine how the PD-L1/PD-1 cis interaction affects PD-1 microcluster 

formation in OT-I CD8+ cytotoxic T cells. We functionalized DGS-NTA-Ni containing SLB 

with peptide (SIINFEKL) linked major histocompatibility complex class I (MHC-I) H2Kb 

(abbreviated as pMHC, for TCR activation), PD-L1EX-His (for PD-1 activation), and 

B7.2EX-His as the filler molecule. Using TIRF microscopy, we found that the pMHC/PD-

L1EX/B7.2EX SLB elicited plasma membrane microclusters of both TCR and PD-1 (Figures 
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5A and 5D). The TCR and PD-1 microclusters appeared to be partially colocalized, in 

agreement with our recent report (Hui et al., 2017). Strikingly, replacement of B7.2EX-His 

by equal concentrations of PD-1EX-His (three-fold the concentration of PD-L1EX) on SLB 

largely abolished PD-1 clusters, while leaving TCR clusters intact (Figures 5B and 5D). This 

result indicates that PD-L1/PD-1 cis interaction prevents PD-L1 from engaging PD-1 on T 

cells. In support of this model, treatment of SLB PD-1 with a PD-1 blockade antibody J43 

partially recovered the PD-1 microclusters (Figures 5C and 5D).

Co-expression of PD-1 with PD-L1 on APCs Blunts PD-1 Signaling in T Cells

We next turned to an APC-T cell co-culture system to further investigate the roles of PD-1 

on APCs using superantigen-loaded Raji B cells as the APCs for Jurkat T cells (Tian et al., 

2015). Because neither Raji nor Jurkat cells express PD-1 or PD-L1, the Raji-Jurkat system 

offers a clean platform for dissecting the roles of cis and trans PD-L1/PD-1 interactions. 

Recently, we showed that trans interaction between virally transduced PD-L1 on Raji cells 

and virally transduced PD-1 on Jurkat cells causes the suppression of TCR/CD28 signaling 

and interleukin-2 (IL-2) production (Hui et al., 2017). Here, we examined how co-

expression of PD-L1 with PD-1 (cis) on Raji cells affects the ability of PD-L1 to activate 

PD-1 (trans) on Jurkat cells. Specifically, we created two types of Raji cells via lentiviral 

transduction and fluorescence activated cell sorting (FACS): PD-L1-positive PD-1-negative 

Raji cells (PD-L1+) and PD-L1/PD-1 double-positive Raji cells (PD-L1+/PD-1+) (Figure 

6A). We then stimulated PD-1-transduced Jurkat cells with either type of Raji cells 

preloaded with superantigen and measured classical PD-1 signaling readouts in Jurkat cells. 

Antigen-loaded parental Raji cells, which lack both PD-L1 and PD-1, were used as controls. 

First, using confocal microscopy, we found that PD-1–mGFP transduced Jurkat cells form a 

conjugate with parental Raji cells, with no enrichment of PD-1–mGFP to the Jurkat-Raji 

interface (Figures 6B and 6E). As expected, PD-1–mGFP became strongly enriched to the 

conjugate interface when PD-L1–mCherry was expressed on Raji cells (Figures 6C and 6E), 

owing to PD-L1/PD-1 trans interaction. Remarkably, when PD-1 was co-expressed with PD-

L1–mCherry on Raji cells, the interface enrichment of PD-1–mGFP significantly decreased 

(Figures 6D and 6E), consistent with the results in the T cell-SLB assay (Figure 5). On the 

Raji APC side, PD-1 appeared to co-cluster with PD-L1 on the cell membrane, with no 

interface enrichment (Figure S6). The basis for PD-1/PD-L1 co-clustering is unclear, but it 

might be due to intracellular signaling events initiated by the cis interaction. We also found 

that the PD-1/PD-L1 cis interaction also appears to occur on T cells, because co-expressing 

PD-L1 on PD-1+ Jurkat cells inhibited the synaptic enrichment of PD-1 (Figure S7).

Next, we assayed for membrane-proximal intracellular signaling events associated with 

PD-1 activation, including the dephosphorylation of ZAP70 and CD28, key targets of PD-1 

bound phosphatases. In agreement with our recent report (Hui et al., 2017), ZAP70 

phosphorylation (measured by an anti-pY493 antibody) and CD28 phosphorylation 

(measured by co-immunoprecipitated p85) were both induced by Raji-Jurkat contact, 

becoming detectable at 2 min and increased at 5 min (Figure 6F–6H, Raji parental cells). 

Replacement of the parental Raji cells with Raji (PD-L1+) cells substantially decreased the 

phosphorylation of ZAP70 and CD28 at 2 min [Figures 6F–6H, Raji (PD-L1+) cells]. 

Notably, when equal numbers of Raji (PD-L1+/ PD-1+) cells were used as the APCs, 
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phosphorylation of ZAP70 and CD28 were largely recovered [Figures 6F–6H, Raji (PD-

L1+/PD-1+)]. Consistent with these membrane-proximal signaling outputs, IL-2) secretion, 

a distal output of TCR/CD28 signaling, also recovered significantly when PD-1 was co-

expressed with PD-L1 on Raji APCs (Figure 6I). Collectively, these data demonstrate that 

APC-intrinsic PD-1 inhibits the ability of PD-L1 to trigger PD-1 signaling in T cells.

Selective Blockade of APC-Intrinsic PD-1 Inhibits T Cell Signaling

Conceivably, PD-1 blockade antibodies might act on both T cell-intrinsic PD-1 and APC-

intrinsic PD-1 in vivo. We next sought to decouple these two blockade actions and to 

determine their respective effects on the T cell response. First, we asked in the Raji-Jurkat 

conjugation assay how blockade of Raji PD-1 or Jurkat PD-1 affects the synaptic enrichment 

of Jurkat PD-1. To this end, we began with the condition used in Figure 6D, in which co-

expression of PD-1 with PD-L1 on Raji cells inhibits the synaptic enrichment of PD-1 from 

Jurkat cells (Figures 7A and 7E). Remarkably, preincubation of the PD-1 blockade antibody 

pembrolizumab with PD-1+/PD-L1+ Raji significantly enhanced the synaptic enrichment of 

Jurkat PD-1 and Raji PD-L1 (Figures 7B and 7E), suggesting that blockade of APC-intrinsic 

PD-1 frees up PD-L1 for engaging T cell intrinsic PD-1. By contrast, preincubation of 

pembrolizumab with only Jurkat cells, or with both Raji and Jurkat cells, eliminated the 

interface enrichment of Jurkat PD-1 and Raji PD-L1 (Figures 7C–7E), confirming that the 

synaptic enrichment is a consequence of PD-L1/PD-1 trans interaction.

Finally, we determined the functional significance of APC-intrinsic PD-1 and antibody 

blockade effects in a T cell-mediated tumor lysis assay. For this purpose, we analyzed the 

cytotoxicity of murine OT-I CD8+ T cells using EL4 lymphoma cells, a well-established OT-

I target (Figure 7F). Unlike Jurkat or Raij cells, WT EL4 cells co-express PD-1 and PD-L1 

(Figure S2). In the absence of PD-1 blockade antibodies, co-culturing OT-I with peptide-

loaded EL4 led to lysis of EL4 (Figure 7G, black; STAR Methods). Strikingly, preincubation 

of EL4 with a murine PD-1 blockade antibody (J43) significantly decreased the cytotoxicity 

of OT-I (Figure 7G, white), suggesting EL4-intrinsic PD-1 promotes T cell cytotoxicity. This 

positive role of PD-1 contrasts the conventional view of PD-1 as a negative regulator for T 

cell signaling. Moreover, the effect of EL4-specific PD-1 blockade depends on the presence 

of T cell-intrinsic PD-1, because preincubation of J43 with both OT-I and EL4 eliminated 

the effect of EL4 PD-1 blockade (Figure 7G, dark gray). Of note, preincubation of J43 with 

OT-I alone also failed to affect OT-I cytotoxicity compared to the no-treatment condition 

(Figure 7G, light gray versus black), suggesting that PD-L1 on EL4 was completely 

quenched by PD-1 in cis. Indeed, using fluorescent beads as standards, we found that PD-1 

(2,975 molecules/µm2) is much more highly expressed than PD-L1 (137 molecules/µm2) on 

EL4 cells (Table S1). Finally, we confirmed the antibody blockade effects using PD-1 

knockout (KO) EL4 cells (Figures 7H and S2). Collectively, these data demonstrate that 

tumor-intrinsic PD-1 quenches PD-L1 in cis to promote T cell cytotoxicity.

DISCUSSION

The data presented here demonstrate that PD-1 and PD-L1 interact directly in cis with high 

affinity on cell membranes and that this cis interaction competes with their trans interaction 

Zhao et al. Page 7

Cell Rep. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to inhibit canonical PD-1 signaling. Our study suggests that the availability of APC-intrinsic 

PD-L1 for triggering the PD-1 pathway in T cells is negatively regulated by PD-1 on APCs. 

Through quantitative measurements, we show that a 3-fold molar excess of cis PD-1 is 

sufficient to neutralize PD-L1, suggesting that the cis interaction is a strong regulatory 

mechanism for the PD-L1/PD-1 pathway.

Previous work has established the bidirectional signaling of the PD-L1/PD-1 axis across the 

immunological synapse. On one hand, PD-L1 on APCs activates PD-1 on T cells to 

negatively regulate the T cell response (Dong et al., 1999; Freeman et al., 2000; Mazanet 

and Hughes, 2002). This also represents the best-understood mechanism of the signaling 

axis. On the other hand, the PD-L1 on T cells might activate PD-1 on APCs to impact the 

function of APCs, including inhibiting the survival of DCs (Park et al., 2014), suppressing 

the phagocytic activity of macrophages (Gordon et al., 2017), and enhancing the metabolism 

of tumor cells (Kleffel et al., 2015).

Our work has uncovered a positive role of APC-intrinsic PD-1 and another dimension of 

regulation of the PD-1 pathway. Our data with lentivirally transduced Jurkat cells also show 

that the PD-L1/PD-1 cis interaction can occur on T cells (Figure S7). However, due to the 

low expression of PD-L1 on naturally occurring T cells (Keir et al., 2008) (Figures 1 and 

S1), we speculate that the PD-L1/PD-1 cis interaction on T cells has little impact on the 

effective level of PD-1. However, we cannot rule out the possibility that PD-L1 is expressed 

on T cells at a higher level under certain circumstances. It is also possible that the PD-L1/

PD-1 cis interaction can trigger productive signaling (Figure S6) in the absence of trans 
ligands or receptors, and this topic warrants further investigation. The net outcome of the 

PD-L1/PD-1 pathway likely depends on their expression levels on both APCs and T cells.

PD-L1 expression on APCs (tumors and immune cells) has been used as a predictive and 

prognostic marker (Herbst et al., 2014; Patel and Kurzrock, 2015; Ribas and Hu-Lieskovan, 

2016), but little to no correlation between PD-L1 expression and therapeutic response was 

observed under several scenarios (Kim et al., 2016; Maleki Vareki et al., 2017; Mu et al., 

2011; Song et al., 2013). Of note, high expression of PD-1 and PD-L1 in tumor tissues was 

found to be associated with better prognosis in breast cancer, colorectal cancer, human 

papillomavirus (HPV)-associated head and neck cancer, and follicular lymphoma patients 

(Badoual et al., 2013; Carreras et al., 2009; Li et al., 2016; Sabatier et al., 2015). In 

particular, high levels of both PD-1 and PD-L1 on ovarian cancer cells correlate with 

favorable prognosis (Darb-Esfahani et al., 2016). In line with these findings, our work shows 

that PD-1 expressed on tumor cells or professional APCs would effectively quench PD-L1 to 

disrupt PD-L1/PD-1 signaling to T cells. This finding suggests that the PD-L1 level alone is 

insufficient to predict whether the PD-1 pathway contributes to tumor immune evasion. Co-

expressed PD-1 and other potential cis regulators need to be co-measured.

Our study has shown that both cis and trans PD-1/PD-L1 interactions are susceptible to 

antibody blockade. Selective blockade of the APC intrinsic PD-1 and T cell intrinsic PD-1 

produced the opposite effects on the interface recruitment of PD-1 (Figure 7E). The net 

effect of PD-1 blockade antibody in vivo would thus depend on the relative expression levels 
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of cis and trans PD-1. In the future, it might be possible to develop agents to selectively 

block the PD-L1/PD-1 trans interaction for a better therapeutic response.

Finally, we also speculate that PD-L1 might be regulated by other membrane proteins in cis. 

These cis interactions might apply to other ligand-receptor pairs that are co-expressed on 

immune cells and could represent a general mechanism to regulate immune response. 

Indeed, cis interactions have been described (or suggested) with several other signaling 

receptors and their ligands, including Notch/Delta in cell fate decisions (Sprinzak et al., 

2010), Eph/Ephrin and Plexin-A4/Sema6A in neuron guidance (Haklai-Topper et al., 2010; 

Kao and Kania, 2011), and MHC-I/Ly49, SLAMF6/SLAMF6, and HVEM/BTLA in 

threshold modulation of immune cells activation (Cheung et al., 2009; Held and Mariuzza, 

2008; Wu et al., 2016). In these cases, the magnitude of trans-activated receptor signaling is 

downregulated by cis interactions to determine the cellular responses to environmental cues. 

This in turn helps cell pattern formation during development, the navigation of neurons to 

their targets, and homeostasis of immune cells. These established examples, together with 

our findings here, suggest that multidimension regulation is a common mechanism by which 

various signaling systems fine-tune cellular responses.
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• QUANTIFICATION AND STATISTICAL ANALYSIS

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Enfu Hui (enfuhui@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Cultures—HEK293T cells and Raji B cells were obtained from Dr. Ronald Vale 

(University of California San Francisco), and Jurkat T cells from Dr. Arthur Weiss 

(University of California San Francisco). HEK293F cells were a generous gift from Dr. 

Andrew Ward (Scripps Research Institute). HEK293T cells were maintained in DMEM 

medium (DMEM supplemented with 10% fetal bovine serum, 100 U/mL of Penicillin, and 

100 µg/mL of Streptomycin) at 37°C / 5% CO2. Jurkat T cells and Raji B cells were 

maintained in RPMI medium (RPMI 1640 supplemented with 10% fetal bovine serum, 100 

U/mL of Penicillin, and 100 µg/mL of Streptomycin) at 37°C / 5% CO2. HEK293F cells 

were maintained in FreeStyle 293 Expression Medium at 37°C / 8% CO2. OT-I splenocytes 

were harvested from C57BL/6-Tg (TcraTcrb) 1100Mjb/J (OT-I) mice (Jackson Laboratory) 

and maintained in OT-I culture medium (RPMI 1640 supplemented with 10% fetal bovine 

serum, 1 mM Sodium Pyruvate, 50 µM β-mecaptoethanol, 100 U/mL of Penicillin, and 100 

µg/mL of Streptomycin) at 37°C / 5% CO2. EL4 cells were maintained in EL4 culture 

medium (RPMI 1640 supplemented with 10% fetal bovine serum, 50 µM β-mecaptoethanol, 

100 U/mL of Penicillin, and 100 µg/mL of Streptomycin) at 37°C / 5% CO2.

Human Lung Cancer Samples—Peripheral blood and tumor tissues were obtained from 

de-identified human NSCLC patients. Study with these samples was reviewed and approved 

by the Institutional Review Board (IRB) of the University of Chicago.

METHOD DETAILS

Flow Cytometry Based Profiling and Quantification—For data shown in Figure 1 

and Figure S1, flow cytometry was used to determine the expressions of PD-1 and PD-L1 of 

healthy and cancer samples. To this end, PBMCs from de-identified NSCLC patients or 

healthy donors were isolated with Ficoll (Sigma-Aldrich) gradient separation. Tumor tissues 

were cut into small pieces and grinded into single-cell suspension. PBMCs and tumor cell 

suspension were stored in liquid nitrogen tank until use. Prior to flow cytometry, frozen 

PBMCs and tumor tissue cells were thawed in 37°C water bath, washed, and re-suspended in 

FACS buffer (PBS with 1% BSA and 0.1% NaN3), and pre-incubated with Human TruStain 

FcX (BioLegend, Cat # 422301) to prevent non-specific labeling by Fc receptor-antibody 

binding. Cells were then incubated with an antibody mixture containing PE-labeled anti-PD-

L1 (or isotype) (BioLegend, Cat # 329705; Cat # 400313), APC-labeled anti-PD-1 (or 

isotype) (BioLegend, Cat # 329907; Cat # 400119), BV421-labeled anti-CD45 (BioLegend, 

Cat # 368521), Alexa700-labeled anti-CD11b (BioLegend, Cat # 101222), PE/Cy5-labeled 

anti-CD11c (BioLegend, Cat # 301609), Alexa488-labeled anti-CD3 (BioLegend, Cat # 

300319), and aqua live/dead cell stain (Thermo Fisher Scientific, Cat # L34966). Stained 
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cells were analyzed on an LSRFortessa cell analyzer (BD Biosciences) and gated as shown 

in Figure 1A. Cell surface expression of PD-1 and PD-L1 on double positive cells were 

quantified using the Quantum APC MESF kit and Quantum R-PE MESF kit respectively 

(Bangs Laboratories Inc), following manufacturer’s instructions. Briefly, fluorescence beads 

standards and antibody stained cells were run in parallel using identical setting and the data 

were analyzed by FlowJo software (BD Biosciences). To quantify the surface expression 

levels of PD-1 and PD-L1 on EL4 cells and transfected HEK293T as shown in Table S1, 

cells were stained with either PE-labeled anti-PD-1 (BioLegend, Cat # 109103 and Thermo 

Fisher Scientific, Cat # 12-9969-41), or PE-labeled anti-PD-L1 (BioLegend, Cat # 124307 

and Thermo Fisher Scientific, Cat # 12-5983-41), and the expression levels were quantified 

using the Quantum R-PE MESF kit. Molecular densities were calculated assuming the 

following diameters: 13 µm for HEK293T (Zimmermann et al., 2006), 8 µm for EL4 (Nath 

et al., 2016), 10.5 µm for lung cancer cells (Sikdar et al., 2014; Yan et al., 2013), 7 µm for 

human T and B cells (Dimeloe et al., 2016), 12.5 µm for DCs (Dumortier et al., 2005), and 

14.5 µm for Macs & MDSCs (Fernandez et al., 2016). For data shown in Figure 6, parental 

and lentivirally transduced Jurkat T and Raji B cell lines were stained with Pacific Blue 

labeled anti-PD-1 (or isotype) (BioLegend, Cat # 329915; Cat # 400151) and PE-Cy7 

labeled anti-PD-L1 (or isotype) (BioLegend, Cat # 329717; Cat # 400302) according to 

manufacturer instructions. For data shown in Figure 7, parental and PD-1 KO EL4 cells were 

stained with APC labeled anti-PD-1 (or isotype) (BioLegend, Cat # 109111; Cat # 400611) 

and PE labeled anti-PD-L1 (or isotype) (BioLegend, Cat # 124307; Cat # 400607) according 

to manufacturer’s instructions. Flow cytometry data were acquired with an LSRFortessa cell 

analyzer and analyzed with FlowJo software (BD Biosciences).

FRET Assay with Confocal Microscopy—For data shown in Figure 2, pHR plasmid 

encoding CLIP tagged full-length PD-L1 (CLIP–PD-L1) or PD-L2 (CLIP–PD-L2) was co-

transfected with pHR encoding either SNAP-tagged full-length PD-1 (SNAP–PD-1), 

PD-1(K78A) [SNAP–PD-1(K78A)], or B7.2 (SNAP–B7.2) into HEK293T cells using 

polyethylenimine, following protocols as described (Tanenbaum et al., 2014). Plasmids and 

related primers are listed in Tables S2 and S3. 72-hour after transfection, cells were 

trypsinized and seeded on Poly-D-lysine (Sigma) treated 96-wells plate with glass bottom 

(Dot Scientific, Cat # MGB096-1-2-LG-L). 24 hr later, cells were labeled with CLIP-

Surface 547 (NEB) and SNAP-Surface Alexa Fluor 647 (NEB) at 37°C / 5% CO2 for 30 

min, and washed 3 times with 1 × phosphate buffered saline (PBS, pH 7.4). Labeled cells 

were then fixed with 4% paraformaldehyde (PFA) and used for the FRET assay. Images 

were acquired with an FV1000 confocal microscope (Olympus) by exciting CLIP-Surface 

547 (energy donor) at 543 nm and SNAP-Surface Alexa Fluor 647 (energy acceptor) at 635 

nm. Donor images before and after acceptor bleaching were acquired for FRET analysis 

using ImageJ (Fiji) with the AccPbFRET plugin, as previously described (Roszik et al., 

2008).

Recombinant Proteins—pPPI4 plasmid encoding the extracellular portion of either 

human PD-1 (aa 21–170, designated as PD-1EX), human PD-1 (K78A) (aa 21–170, K78A, 

designated as PD-1 (K78A)EX), human PD-L1 (aa 19–239, designated as PD-L1EX), human 

PD-L2 (aa 20–220, designated as PD-L2EX), or human B7.2 (aa 24–247, designated as 
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B7.2EX) was transfected to HEK293F cell using polyethylenimine, as described previously 

(Murin et al., 2014). Plasmids and related primers are listed in Tables S2 and S3. The N 

terminus of each extracellular segment was fused with the signal peptide of HIV envelope 

glycoprotein gp120 followed by a twinstrep tag (amino acids sequence: 

WSHPQFEKGGGSGGGSGGSAWSHPQFEK) and a SNAP-tag. The C terminus of each 

extracellular segment was fused with a decahistidine (His10) tag. Under some conditions 

when His-tag free PD-1 was desired, the His-tag coding sequence was removed from the 

expression construct. Six days after transfection, the His10-tagged protein was purified from 

the cell culture medium using HisTrap Excel column (GE Healthcare) and eluted with 0.5 M 

imidazole. His10-tag free PD-1 extracellular domain was purified with a StrepTrap HP 

column (GE Healthcare) in 100 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, pH 8.0 and 

eluted with the same buffer containing 2.5 mM desthiobiotin. The extracellular domain of 

mouse MHC-I molecule H2Kb was produced as a disulfide stabilized single chain trimer 

with a covalently linked ovalbumin (OVA) peptide SIINFEKL (Mitaksov et al., 2007), and a 

C-terminal His10 tag, using the Bac-to-Bac baculovirus expression system, as previously 

described (Hui et al., 2017). For OT-I/SLB microscopy described in Figure 5, His10-tagged 

extracellular domains of recombinant murine PD-1, PD-L1, B7.2, and ICAM were 

purchased from Sino Biologicals. All affinity-purified proteins were size-exclusion-purified 

using a Superdex 200 Increase 10/300 GL column (GE Healthcare) in HEPES buffered 

saline (50mMHEPES-NaOH, pH 7.5, 150mMNaCl, 10% glycerol). Gel filtered proteins 

were labeled with either SNAP-Cell 505 (NEB), SNAP-Cell TMR (NEB) or SNAP-Cell 647 

(NEB) following manufacturer’s instructions. Free dyes were then removed using a PD-10 

desalting column (GE Healthcare). All proteins were quantified by SDS-PAGE and 

Coomassie blue staining, using bovine serum albumin (BSA) as a standard.

LUVs Reconstitution and FRET Assays—To prepare LUVs for experiments in Figure 

3, phospholipids (80% POPC + 20% DGS-NTA-Ni) were mixed in chloroform, dried under 

a stream of nitrogen, desiccated for 1 hr in a vacuum container and then resuspended in PBS. 

LUVs were generated by extrusion 20 times through a pair of polycarbonate filters 

containing pores of 200 nm diameter, as described previously (Hui and Vale, 2014). 8.3 nM 

SNAP-Cell-505-labeled PD-L1EX-His (SC505*PD-L1EX-His) or SNAP-Cell-505-labeled 

PD-L2EX-His (SC505*PD-L2EX-His) was mixed with 0.23 nM LUVs harboring DGS-NTA-

Ni in PBS containing 1.5 mg/mL BSA and 1mM TCEP, and incubated at room temperature 

in a 96-well solid white microplate (Greiner Bio-One Catalog # 655075), during which the 

SNAP-Cell-505 fluorescence was monitored in real time using a plate reader (Tecan 

Spark20) with 504-nm excitation and 540-nm emission. Following 90 min incubation, the 

fluorescence reading was paused and the second protein component (25 nM unlabeled 

PD-1EX-His, SNAP-Cell-TMR-labeled PD-1EX-His (TMR*PD-1EX-His), SNAP-Cell-TMR-

labeled PD-1(K78A)EX (TMR*PD-1(K78A)EX-His), SNAP-Cell-TMR-labeled B7.2EX 

(TMR*B7.2EX-His), or SNAP-Cell-TMR-labeled PD-1EX without His tag) was injected and 

the fluorescence was further monitored for another 80 min. For the trans-interaction control, 

the second component was equal amounts of SNAP-Cell-TMR-labeled PD-1EX pre-bound to 

LUVs (via 90-minute incubation), so that PD-L1EX could only interact with PD-1EX in 

trans. For PD-1 titration FRET assay, SNAP-Cell-TMR PD-1EX with a range of 

concentrations (5–100 nM) was mixed with LUVs pre-bound with 8.3 nM SNAP-Cell-505 
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PD-L1EX, and SNAP-Cell-505 fluorescence was monitored as above. SNAP-Cell-TMR 

B7.2EX with the same concentration of PD-1EX was used as control to correct the 

fluorescence quenching due to a molecular crowding effect on LUVs. TMR*B7.2EX-His 

mediated quenching of SC505*PD-L1EX-His was subtracted from the TMR*PD-1EX-His 

signal to get the corrected quenching signal. The titration curve was calculated with the 

average of last ten fluorescence intensity values of each concentration and fitted with 

GraphPad Prism 5.0 using the “Specific binding with Hill Slope,” yielding the dissociation 

constant (Kd) and Hill coefficient (nH) of the PD-1/PD-L1 cis-interaction.

LUVs–SLB Conjugation Assays—SLBs were formed in Hellmanex and hydroxide 

washed 96-well glass-bottomed plates as described previously (Taylor et al., 2017) with 

modifications. Briefly, the plate was incubated with 5% Hellmanex III (Hëlma Analytics) 

overnight on a 50°C heatpad, thoroughly rinsed with ddH2O and sealed with Nunc sealing 

tape (Thermo Fisher Scientific, Cat # 232698). The desired wells were washed twice with 5 

M NaOH (each 30 min), and three times with 500 µL ddH2O followed by equilibration with 

PBS. Freshly prepared small unilamellar vesicles (SUVs; lipid composition: 97.5% POPC, 

2% DGS-NTA-Ni and 0.5% PEG5000 PE) were added to the cleaned wells containing 200 

µL 1× PBS, and incubated for 90 min at 50°C to induce SLB formation. The SLBs were 

then rinsed thoroughly with PBS to remove excess SUVs, and blocked with 1 mg/mL BSA 

in PBS for 30 min at 37°C. 200 µL 1.5 nM SNAP-Cell-647-labeled PD-1EX-His 

(SC647*PD-1EX) was overlaid onto SLBs. After 1-hour incubation at 37°C, the unbound 

proteins were washed away with excess PBS containing 1 mg/mL BSA. The plate was 

incubated at 37°C for another 30 min and washed again with PBS containing 1 mg/mL BSA 

to remove dissociated SC647*PD-1EX, leaving the bilayer with stably bound 

SC647*PD-1EX (Nye and Groves, 2008).

LUVs containing both DGS-NTA-Ni and Bodipy-PE (89.7% POPC + 10% DGS-NTA-Ni 

+ 0.3% Bodipy-PE) were prepared by the aforementioned extrusion method. 0.23 nM LUVs 

with Bodipy-PE were incubated with PD-L1EX-His alone (8.3 nM), B7.2EX-His alone (8.3 

nM), PD-L1EX-His / PD-1EX-His mixture (8.3 nM and 25 nM, respectively), PD-L1EX-His /

PD-1(K78A)EX -His mixture (8.3 nM and 25 nM, respectively), or PD-L1EX-His/B7.2EX-

His mixture (8.3 nM and 25 nM, respectively), for 90-minute in the presence of 1 mg/mL 

BSA and 1mMTCEP at room temperature. For titration assay shown in Figure S5, 0.23 nM 

LUVs with Bodipy-PE were incubated with PD-L1EX-His (4.2 nM or 8.3 nM) as well as 

increasing concentration of PD-1EX-His. B7.2EX-His was used as a filler to keep the total 

His-tag protein concentration constant, thereby avoiding artifact due to potential competition 

of binding sites. The high DGS-NTA-Ni content (10%) in conjunction with the 90-minute 

incubation ensured that all His10-tagged molecules bind to the LUVs in a kinetically stable 

manner. The protein-bound LUVs were then added onto SC647*PD-1EX-His functionalized 

SLBs. After 5-minute incubation, unbound LUVs were washed away with excess PBS and 

the SLB-captured LUVs visualized and recorded by a Nikon Eclipse Ti TIRF microscope 

equipped with a 100× Apo TIRF 1.49 NA objective, controlled by the Micro-Manager 

software (Edelstein et al., 2014). The molecular densities of PD-1 and PD-L1 were 

computed as described previously (Hui and Vale, 2014). The fluorescence intensity of LUVs 
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from the Bodipy (488 nm) channel in the TIRF field was calculated using the ImageJ 

software.

Virus Production and Transduction—Lentiviral transduction was used to introduce 

PD-L1–mCherry, PD-1–mGFP, or PD-1–SNAP into Raji B cells, and PD-L1–SNAP or 

PD-1–mGFP into Jurkat T cells, essentially as described (Hui et al., 2017). Plasmids and 

related primers are listed in Tables S2 and S3. To produce lentiviruses, cDNA encoding the 

gene of interest was cloned into the pHR vector, and co-transfected with the envelope 

plasmid pMD2.G and the packaging plasmid psPAX2 into HEK293T cells using 

polyethylenimine in DMEM medium. 18-hour after transfection, the medium was replaced 

with complete RPMI medium and the virus supernatants harvested after another 54 hr. To 

transduce Jurkat T cells, 0.5 million cells were pelleted at 600 × g for four minutes and 

resuspended in 1 mL of fresh virus supernatant, and incubated overnight at 37°C / 5% CO2 

before adding another 9 mL of complete RPMI medium. To transduce Raji B cells, 0.5 

million cells were pelleted at 600 × g for four minutes and resuspended in 1 mL of fresh 

virus supernatant containing 8 µg/mL Lipofectamine in a 24-well plate. The virus–cell 

mixture was centrifuged at 35°C, 1000 × g for 60 min, and incubated at 37°C / 5% CO2 

overnight before transferred into a T25 flask containing 9 mL fresh complete RPMI 

medium. The transduced cells were sorted out via FACS at least one week after the lentiviral 

transduction.

For OT-I/SLB imaging assays shown in Figure 4, full-length murine PD-1–mCherry was 

introduced into OT-I cells via retrovirus transduction. The retrovirus was produced as 

described previously (Hui et al., 2017). Freshly purified OT-I splenocytes were stimulated 

with 10 nM SIINFEKL peptide in OT-I culture medium supplemented with 100 U/ml mouse 

recombinant IL-2 at 37°C / 5% CO2 incubator. 36 hr later, cells were resuspended in 

retrovirus supernatants containing 8 µg/ml Lipofectamine and 100 U/ml mouse recombinant 

IL-2, spin-infected at 35°C, 1000 × g for 120 min, and incubated at 37°C / 5% CO2 

overnight. The virus supernatant was replaced with fresh OT-I culture medium supplemented 

with 10 nM SIINFEKL peptide and 100 U/ml mouse recombinant IL-2 the second day and 

cells incubated for another 48–96 hr before microscopy.

OT-I–SLB TIRF microscopy assay—SLBs were prepared as described above and 

incubated for 1 hr at 37°C with a mixture of 5 nM pMHC-I-His, 2 nM mouse ICAMEX-His, 

3 nM mouse PD-L1EX-His and 9 nM mouse PD-1EX-His, or with a mixture of 5 nM pMHC-

I-His, 2 nM mouse ICAMEX-His, 3 nM mouse PD-L1EX-His, and 9 nM mouse B7.2EX-His. 

For blockade antibody treatment, 170 ng mouse PD-1EX was pre-incubated with 6 µg J43 at 

room temperature for 30 min. Then 9 nM of J43-treated PD-1EX was mixed with 5 nM 

mouse pMHC-I-His, 2 nM ICAMEX-His, and 3 nM PD-L1EX-His for bilayer 

functionalization. After 1-hour incubation at 37°C, excess unbound proteins were removed 

by extensive washes with PBS. PD-1–mCherry transduced OT-I cells were harvested via 

centrifugation at 200 × g for 4 min, incubated with 10 µg/ml AF647 labeled mouse TCRβ 
antibody (H57-597) for 30 min on in ice, washed three times with imaging buffer (Hui et al., 

2017), and then plated onto functionalized SLBs. TIRF microscopy images were acquired at 

37°C on a Nikon Eclipse Ti microscope equipped with a 100× Apo TIRF 1.49 NA objective, 
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controlled by the Micro-Manager software and analyzed with ImageJ. Clustering index was 

calculated by dividing the fluorescence intensity of PD-1 or TCR microclusters with the 

total fluorescence intensity of PD-1 or TCR of the entire cell.

Jurkat–Raji Conjugation Assay—For cell conjugation assay shown in Figure 6B, 

Jurkat cells expressing PD-1–mGFP were mixed with Raji parental cells, Raji cells 

expressing either PD-L1–mCherry alone or Raji cells expressing both PD-L1–mCherry and 

PD-1–SNAP (unlabeled). The latter Raji cell line was generated by lentivirally transducing 

PD-1–SNAP into PD-L1–mCherry expressing Raji B cells. For cell conjugation assay shown 

in Figure S6, PD-1–SNAP expressing Jurkat cells were lentivirally transduced with PD-1–

SNAP (unlabeled) to generate PD-1+ Jurkat cells, and PD-1+/PD-L1+ RajiB cells were 

generated by by lentivirally transducing PD-1–mGFP into PD-L1–mCherry expressing Raji 

B cells. For cell conjugation assay shown in Figure S7, PD-1–mGFP expressing Jurkat cells 

were lentivirally transduced with PD-L1–SNAP (unlabeled) to generate PD-1+/PD-L1+ 

Jurkat cells, which were then mixed with PD-L1–mCherry expressing Raji cells. Jurkat cells 

expressing only PD-1–mGFP were used as a control. Prior to the conjugation assay, Raji B 

cells were pre-incubated with 30 ng/mL staphylococcal enterotoxin E (SEE) superantigen 

(Toxin Technology) in RPMI medium for 30 min at 37°C. For blockade treatment in Figure 

7, both SEE-loaded Raji and Jurkat cells were treated with 2 µg of either Pembrolizumab or 

isotype antibody per million cells on ice for 45 min before mixing them together. 0.55 

million antigen-loaded Raji B cells and 0.75 million Jurkat T cells were precooled on ice 

and mixed in a 96-well plate. The plate was centrifuged at 290× g for one minute at 4°C to 

initiate cell–cell contact, and immediately transferred to a 37°C water bath. Two minutes 

later, cells were resuspended and fixed with 1% PFA and loaded into a 96-well glass-bottom 

plates for confocal microscopy assays. Images were acquired with FV1000 confocal 

microscope and processed, and quantified using ImageJ. Interface enrichment index of PD-1 

on Jurkat cells were computed by dividing the fluorescence density at the interface divided 

with fluorescence density of the cell membrane excluding the interface. Fluorescence 

density was calculated as fluorescence intensity divided by area. The interface was defined 

as the conjugated area between Jurkat and Raji cells based on the DIC images.

Phosphorylation Assay and IL-2 Secretion Assay—For assaying the 

phosphorylation states of ZAP70 and CD28, PD-1–mGFP expressing Jurkat T cells were 

stimulated with either SEE-loaded Raji parental cells, Raji cells expressing PD-L1–mCherry, 

or Raji cells expressing both PD-1–mGFP and PD-L1–mCherry, following procedures 

described previously (Hui et al., 2017). Briefly, Raji B cells were pre-incubated with 30 

ng/mL SEE in serum free RPMI medium for 30 min at 37°C. Jurkat cells were starved in 

serum free RPMI medium at 37°C for 3 hr to reduce the phosphorylation background. 5.5 

million SEE-loaded Raji B cells and 7.5 million serum starved Jurkat T cells were precooled 

on ice and then mixed in a 96-well plate, followed by centrifugation at 290× g for one 

minute at 4°C to initiate the cell–cell contact. Immediately after centrifugation, the cell 

mixture plate was transferred to a 37°C water bath. The reactions were terminated with 

NP40 lysis buffer (125 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% NP40, 1 mM EDTA, 5% 

glycerol, 1 mM PMSF, supplemented with Roche PhosSTOP phosphatase inhibitor cocktail) 

at indicated time points and the lysates were subjected to co-immunoprecipitation assay with 
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anti-CD28 antibody (Thermo Fisher Scientific, Cat # 16-0289-85). Equal fractions of the 

immunoprecipitates were subjected to SDS-PAGE and blotted with PI3 Kinase p85 antibody 

(Cell Signaling Technology, Cat # 4292). The whole cell lysates were blotted with anti-

ZAP70-pY493 antibody (Cell Signaling Technology, Cat # 2704S). The optical density 

corresponding to p85α and ZAP70-pY493 bands were quantified by ImageJ, and normalized 

to the conditions in which parental Raji cells were used as the APCs.

For IL-2 secretion assays, Raji B cells were pre-loaded with 30 ng/mL SEE for 30 min at 

37°C. 0.2 million serum starved Jurkat T cells were co-cultured with 0.05 million antigen-

loaded Raji B cells in a 96-well plate in triplicate wells and the supernatants were collected 

after 24 hr. IL-2 was quantified by ELISA using Human IL-2 ELISA MAX Deluxe kit 

(BioLegend).

OT-I Cytotoxicity Assay—OT-I splenocytes were harvested from C57BL/6-Tg 

(TcraTcrb) 1100Mjb/J (OT-I) mice (Jackson Laboratory) and stimulated with 10 nM 

SIINFEKL peptide in the presence of 100 U/ml IL-2. 60 to 72 hr later, 1 million OT-I cells 

were incubated with either 1 µg of J43 antibody or isotype at 37°C / 5% CO2 for 1 hr, and 

washed twice with 10 mL culture medium. Similarly, 1 million EL4 cells were incubated 

with 1 nM SIINFEKL peptide at 37°C / 5% CO2 for 1 hr together with 2 µg of either J43 

antibody or isotype, and washed twice with 10 mL culture medium. Immediately after the 

wash, OT-I cells were mixed with EL4 cells at ratio of 12.5:1 and incubate at 37°C / 5% CO2 

for 4 hr. Cytotoxicity was measured using the CytoTox 96 Non-Radioactive Cytotoxicity 

Assay kit (Promega, Cat # G1780), following manufacturer’s instructions.

Knockout PD-1 from EL4 cells—To generate PD-1 knockout EL4, two reported mouse 

PD-1 single guide (sgRNA) (Seki and Rutz, 2018) were each inserted into a modified PX330 

plasmid containing a GFP coding sequence, and electroporated into EL4 cells using the Cell 

Line Nucleofector Kit L (LONZA, Cat # VACA-1005). The electroporated cells were 

recovered in culture medium at 37°C / 5% CO2 for two days, after which GFP-positive cells 

were enriched by FACS and maintained in culture medium at 37°C / 5% CO2. One week 

later, PD-1 knockout cells were sorted by staining cells with mouse PD-1 PE (BioLegend, 

Cat # 109103).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were shown as mean ± SEM, and number of replicates were indicated in figure 

legends. Curve fitting and normalization were performed in GraphPad Prism 5. Statistical 

significance was evaluated by two-tailed Student’s t test (*, p < 0.05; **, p < 0.01; ***, p < 

0.001) in GraphPad Prism 5. Data with p < 0.05 are considered statistically significant.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A subset of tumor cells and infiltrating APCs in NSCLC co-express PD-1 and 

PD-L1

• PD-1 and PD-L1 on the same cell bind in cis with high affinity

• PD-1/PD-L1 cis interaction on APCs prevents PD-L1 from triggering T cell 

PD-1

• Selective blockade of tumor intrinsic PD-1 frees up PD-L1 for T cell 

inhibition
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Figure 1. Co-expression of PD-1 and PD-L1 in a Lung Cancer Patient
(A) Gating strategy for analyzing PD-1 and PD-L1 expression in human patient samples 

where CD45+/CD3+ cells were classified as T cells, CD45+/CD3− cells as B cells, 

CD45+CD11c+ cells as DCs, CD45+CD11b+ cells as macrophages (Macs) and MDSCs, and 

CD45− cells within the tumor site as tumor cells.

(B) Expression of PD-1 and PD-L1 on the indicated cell types derived from PBMCs from a 

healthy human individual, a lung cancer patient, and the tumor site of the same patient.

See also Figures S1 and S2 and Table S1.
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Figure 2. PD-1 Associates with PD-L1 and PD-L2 in cis on Cell Membranes
(A) An acceptor-photobleaching FRET assay showing the molecular nearness of PD-1 and 

PD-L1 on the same cell membrane. Shown are confocal microscopy images of a HEK293T 

cell co-transduced with PD-L1 (labeled with Dy547, the energy donor, indicated by green) 

and either PD-1, PD-1(K78A) or B7.2 (labeled with AF647, the energy acceptor, indicated 

by red). Shown from left to right are excited donor (Dy547*PD-L1) images before 

bleaching, excited acceptor (AF647*PD-1, AF647*PD-1 (K78A) or AF647*B7.2) images 

before bleaching, excited donor images after bleaching, excited acceptor images after 

bleaching, calculated FRET efficiency images (pseudo-color, with red to blue color spectrum 

represents strong to weak FRET efficiency), and differential interference contrast (DIC) 

images (STAR Methods). A bar graph on the right summarizes the FRET efficiencies as 

mean ± SEM from at least 25 cells from three independent experiments.

(B) An acceptor-photobleaching FRET assay showing the molecular nearness of PD-1 and 

PD-L2 on the same cell membrane. Experiments were performed in the same manner as in 

(A), except PD-L1 was replaced with PD-L2.

Scale bars, 10 µm.
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Figure 3. PD-1 Directly Interacts with PD-L1 and PD-L2 in cis on Reconstituted LUV 
Membranes
(A) Cartoon depicting the experiment scheme of a kinetic FRET assay. DGS-NTA-Ni 

containing LUVs were pre-attached with SC505 (energy donor)-labeled PD-L1EX-His 

(SC505*PD-L1EX-His). Subsequently, TMR (energy acceptor)-labeled PD-1EX-His 

(TMR*PD-1EX-His) was added and bound to the LUVs, causing SC505*PD-L1EX and 

TMR*PD-1EX to co-exist on the same LUVs. The donor (SC505) fluorescence was 

monitored throughout the process (STAR Methods).

(B) Representative time course of SC505*PD-L1 EX-His fluorescence intensity (black trace) 

showing a robust quenching induced by TMR*PD-1EX-His addition. Orange trace is the 
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same as the black trace condition, except TMR*PD-1EX-His was replaced with 

TMR*PD-1(K78A)EX -His. Gray trace is the same as the black trace condition, except 

TMR*PD-1EX-His was replaced with TMR*B7.2EX-His. Shown is one representative result 

from three independent replicates. Data were normalized as described in STAR Methods.

(C) Same as (B), except SC505*PD-L1EX-His-attached LUVs were replaced with 

SC505*PD-L2EX-His-attached LUVs.

See also Figures S3 and S4.
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Figure 4. PD-L1/PD-1 cis Interaction Prevents PD-L1 from Binding to PD-1 in trans
(A–E) Left: cartoons depicting a SC647*PD-1EX-coupled SLB overlaid with Bodipy/DGS-

NTA-Ni LUVs pre-attached with PD-L1EX (A), B7.2EX (B), PD-L1EX/PD-1EX combined 

(1:3 molar ratio) (C), PD-L1EX/PD-1(K78A)EX combined (1:3 molar ratio) (D), or PD-

L1EX/B7.2EX combined (1:3 molar ratio) (E). Right: representative TIRF images of the 

SC647*PD-1EX-coupled SLB after incubation with the designed LUVs and a wash (STAR 

Methods) in the Bodipy channel (showing LUVs bound to the SLB), the AF647 channel 

(showing SC647*PD-1EX on the SLB), and the two channels combined.

(F) A bar graph summarizing the fluorescence intensity (F.I.) of the Bodipy channel under 

each condition (A–E), normalized to the intensity in (A). Data are shown as mean ± SEM 

from 10 independent TIRF fields.

Scale bars, 5 µm. See also Figure S5.
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Figure 5. Cis-PD-1 Inhibits the Ability of PD-L1 to Trigger PD-1 Microclusters in CD8+ T Cells
(A) A cell-bilayer assay showing that ligand-functionalized SLB triggers TCR and PD-1 

clusters in OT-I CD8+ cells. PD-1–mCherry transduced OT-I cells, labeled with TCR-β 
antibody (H57-597*AF647), were plated on an SLB attached with peptide (SIINFEKL)-

linked MHC-I H2Kb (pMHC), B7.2EX, and PD-L1EX (see cartoon on the left and STAR 

Methods for details). Shown on the right are representative TIRF images of PD-1–mCherry 

(rendered in green) and H57-597*AF647 (rendered in purple, indicating TCR distribution) 

30 s after the cell-bilayer contact.
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(B) Same as (A), except B7.2EX was replaced with equivalent concentrations of PD-1EX on 

the SLB. The pMHC/PD-L1EX/PD-1EX reconstituted SLB was plated with PD-1–mCherry 

transduced OT-I (see cartoons on the left). Representative TIRF images of PD-1–mCherry 

and H57-597*AF647 are shown on the right.

(C) Same as (B), except PD-1EX was preincubated with blockade antibody J43 (see cartoons 

on the left). Representative TIRF images of PD-1–mCherry and H57-597*AF647 are shown 

on the right.

(D) Bar graphs showing the clustering index of PD-1 and TCR in each condition (A–C). 

Data are the means ± SEM of at least 20 cells from three independent replicates.

Scale bars, 5 µm.
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Figure 6. Co-expression of PD-1 with PD-L1 on APCs Inhibits PD-1 Signaling in T Cells
(A) Left: cartoon showing a cell culture assay in which PD-1 transduced Jurkat cells were 

stimulated with three types of antigen-loaded Raji B cells: (1) parental Raji cells that express 

neither PD-L1 nor PD-1, (2) Raji cells transduced with only PD-L1 (PD-L1+), and (3) Raji 

transduced with both PD-L1 and PD-1 (PD-L1+/PD-1+). On the right are FACS histograms 

showing PD-1 and PD-L1 surface expression of parental Jurkat cells, PD-1–mGFP 

transduced Jurkat (PD-1+) cells, parental Raji cells, PD-L1–mCherry transduced Raji (PD-

L1+) cells, and Raji cells co-transduced with both PD-1–mGFP and PD-L1–mCherry (PD-

L1+/PD-1+). a.u., arbitrary units.

(B–D) Jurkat cells expressing PD-1–mGFP (PD-1+) were conjugated with Raji B cells 

(parental) (B), Raji cells transduced with only PD-L1–mCherry (PD-L1+) (C), or Raji cells 

co-transduced with PD-L1–mCherry and unlabeled PD-1 (PD-L1+/PD-1+) (D), as 

illustrated in the cartoon on the left (CD28 and B7 are omitted in this cartoon for simplicity). 

Shown on the right are confocal images of the cell conjugate acquired 2 min after cell-cell 

Zhao et al. Page 29

Cell Rep. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contact. mGFP and mCherry signals are shown as green and magenta, respectively. Scale 

bars, 10 µm.

(E) Bar graph summarizing the interface enrichment indices (calculated as described in 

STAR Methods) of the three conditions shown in (B). Data are shown as mean ± SEM; n = 

35 cells from three independent experiments. See also Figures S6 and S7.

(F) A representative western blot showing the levels ZAP70-Y493 phosphorylation and p85 

(PI3K regulatory subunit) co-immunoprecipitated (IP) with CD28 from the lysates of the 

indicated Jurkat-Raji co-culture. Jurkat cells expressing PD-1–mGFP (PD-1+) were 

stimulated with Raji cells (parental), Raji transduced with PD-L1–mCherry (PD-L1+), or 

Raji cells co-transduced with PD-L1–mCherry and PD-1–mGFP (PD-L1+/PD-1+); the times 

at which the co-culture was lysed are indicated (STAR Methods). WCL, whole cell lysate.

(G and H) Bar graphs summarizing immunoblots in (F), including pY493-ZAP70 

immunoblot (G) and CD28 coIP p85 immunoblot (H). The optical density corresponding to 

each band was quantified by ImageJ and normalized to the conditions in which parental Raji 

cells were used as the APCs. Data are presented as mean ± SEM from three independent 

replicates.

(I) Bar graph summarizing IL-2 levels in the medium of the indicated Jurkat-Raji co-culture, 

as described in (B)–(D), 24 hr after cell-cell contact. Data are presented as mean ± SEM 

from three independent measurements, with each run performed in triplicate.
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Figure 7. Blockade of APC-Intrinsic PD-1 Enhances the Synaptic Enrichment of T Cell-Intrinsic 
PD-1 and Inhibits T Cell-Mediated Cytotoxicity
(A) Left: cartoon showing a Jurkat cell expressing PD-1–mGFP (shown as PD-1 in green) 

conjugated with a Raji cell co-transduced with PD-L1–mCherry and unlabeled PD-1. Right: 

representative confocal images of the conjugate at the indicated channel acquired 2 min after 

cell-cell contact. Scale bars, 10 µm.

(B–D) Same as (A), except that Raji (PD-L1+/PD-1+) cells (B), Jurkat (PD-1–mGFP) cells 

(C), or both (D) were preincubated with pembrolizumab and washed extensively prior to 

conjugation. Scale bars, 10 µm.

(E) Bar graph comparing the interface enrichment indices (calculated as described in STAR 

Methods) of the four conditions shown in (A)–(D). Data are expressed as mean ± SEM; n = 

40 cells from three independent experiments.

(F) Cartoon illustrating the cytotoxicity assay, in which EL4 cells were used as the target for 

OT-I cytotoxic T cells.

(G) Bar graph summarizing the OT-I cytotoxicity under indicated conditions, with PD-1 

blockade antibody J43 or isotype antibody (Iso) preincubated with neither cell, only EL4, 

only OT-I, or both cell types. See STAR Methods for details. Cytotoxicity was normalized to 

the no blockade antibody condition (i.e., EL4 and OT-I preincubated with the isotype 

control). n.s., not significantly different. Data are presented as mean ± SEM from three 

independent replicates.

(H) Left: FACS histograms showing PD-1 and PD-L1 surface expression in parental EL4 

(EL4 WT), PD-1 knockout EL4 (EL4 PD-1 KO). Right: bar graph summarizing the OT-I 
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cytotoxicity under indicated conditions. OT-I cells preincubated with either PD-1 blockade 

antibody J43 or its isotype was co-cultured with parental EL4 (EL4 WT) and PD-1 knockout 

EL4 (EL4 KO), as described in STAR Methods. Cytotoxicity was normalized to the 

condition containing isotype-treated OT-I and WT EL4 (i.e., OT-I [Iso] + EL4 [WT]. n.s., 

not significant. Data are presented as mean ± SEM from three independent replicates.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD28 antibody Thermo Fisher Scientific Cat # 16-0289-85; RRID: AB_468927

PI3 Kinase p85 antibody Cell Signaling Technology Cat # 4292; RRID: AB_329869

Alexa Fluor 647 CD3ε antibody BioLegend Cat # 317312; RRID: AB_571883

Pacific Blue PD-1 antibody BioLegend Cat # 329915; RRID: AB_1877194

PE/Cy7 PD-L1 antibody BioLegend Cat # 329717; RRID: AB_2561686

ZAP70 pY493 antibody Cell Signaling Technology Cat # 2704S; RRID: AB_2217457

PE mouse PD-1 antibody BioLegend Cat # 109103; RRID: AB_313420

APC mouse PD-1 antibody BioLegend Cat # 109111; RRID: AB_10613470

PE mouse PD-L1 antibody BioLegend Cat # 124307; RRID: AB_2073557

PE mouse isotype antibody BioLegend Cat # 400607; RRID: N/A

APC mouse isotype antibody BioLegend Cat # 400611; RRID: N/A

Pacific Blue PD-1 antibody BioLegend Cat # 329915; RRID: AB_1877194

PE-Cy7 PD-L1 antibody BioLegend Cat # 329717; RRID: AB_2561686

Pacific Blue isotype antibody BioLegend Cat # 400151; RRID: N/A

PE-Cy7 isotype antibody BioLegend Cat # 400302; RRID: N/A

TruStain FcX BioLegend Cat # 422301; RRID: N/A

PE PD-1 antibody Thermo Fisher Scientific Cat # 12-9969-41; RRID: AB_10733013

PE PD-L1 antibody Thermo Fisher Scientific Cat # 12-5983-41; RRID: AB_11042721

BV421 CD45 antibody BioLegend Cat # 368521; RRID: AB_2687374

Alexa700 CD11b antibody BioLegend Cat # 101222; RRID: AB_493705

PE/Cy5 CD11c antibody BioLegend Cat # 301609; RRID: AB_493579

Alexa488 CD3 antibody BioLegend Cat # 300319; RRID: AB_493690

PE PD-L1 antibody BioLegend Cat # 329705; RRID: AB_940366

APC PD-1 antibody BioLegend Cat # 329907; RRID: AB_940473

PE isotype antibody BioLegend Cat # 400313; RRID: N/A

APC isotype antibody BioLegend Cat # 400119; RRID: N/A

AF647 mouse TCRβ antibody BioLegend Cat # 109217; RRID: AB_493347

Mouse PD-1 blockade antibody (J43) Thermo Fisher Scientific Cat # 16-9985-82; RRID: AB_469307

Isotype antibody for J43 Thermo Fisher Scientific Cat # 16-4888-81; RRID: AB_470171

Human PD-1 blockade antibody (Pembrolizumab) BioVison Inc Cat # A1306; RRID: N/A

Isotype antibody for Pembrolizumab BioLegend Cat # 403701; RRID: N/A

Chemicals, Peptides, and Recombinant Proteins

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) Avanti Polar Lipids Cat # 850457C

1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl) 
iminodiacetic acid) succinyl] (nickel salt, DGS-NTA-Ni)

Avanti Polar Lipids Cat # 790404C

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N- 
(lissamine Rhodamine B sulfonyl) (ammonium salt, 
Rhodamine-PE)

Avanti Polar Lipids Cat # 810158C
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REAGENT or RESOURCE SOURCE IDENTIFIER

N-(4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-
Indacene-3-Propionyl)-1,2-Dihexadecanoyl-sn-Glycero-3-
Phosphoethanolamine (Triethylammonium Salt, BODIPY-
PE)

Thermo Fisher Scientific Cat # D3800

Poly-D-Lysine Sigma-Aldrich Cat # P6407

CLIP-Surface 547 New England Biolabs Cat # S9233S

SNAP-Surface Alexa Fluor 647 New England Biolabs Cat # S9136S

SNAP-Cell 505-Star New England Biolabs Cat # S9103S

SNAP-Cell TMR-Star New England Biolabs Cat # S9105S

SNAP-Cell 647-SiR New England Biolabs Cat # S9102S

SEE super antigen Toxin Technology Cat # ET404

Strep-SNAP-PD-1EX-His10 This study N/A

Strep-SNAP-PD-1EX This study N/A

Strep-SNAP-PD-1(K78A)EX -His10 This study N/A

Strep-SNAP-PD-L1EX-His10 This study N/A

Strep-SNAP-PD-L2EX-His10 This study N/A

Strep-SNAP-B7.2EX-His10 This study N/A

Mouse MHC-I H2Kb Enfu Hui N/A

Mouse PD-1EX-His Sino Biological Cat # 50124-m08h

Mouse PD-L1EX-His Sino Biological Cat # 50010-m08h

Mouse B7.2EX-His Sino Biological Cat # 50068-m08h

Mouse ICAMEX-His Sino Biological Cat # 50440-m08h

SIINFEKL peptide Anaspec Cat # AS-60193-1

Live/Dead Aqua Thermo Fisher Scientific Cat # L34966

Critical Commercial Assays

Human IL-2 ELISA MAX Deluxe BioLegend Cat # 431804

CytoTox 96 Non-Radioactive Cytotoxicity Assay kit Promega Cat # G1780

Cell Line Nucleofector Kit L LONZA Cat # VACA-1005

Quantum R-PE MESF Bangs Laboratories Inc Cat # 827

Quantum APC MESF Bangs Laboratories Inc Cat # 823

Experimental Models: Cell Lines

HEK293T Ronald Vale N/A

Jurkat E6.1 T cells Arthur Weiss N/A

Raji B cells Ronald Vale N/A

HEK293F Andrew Ward N/A

Jurkat T cells with PD-1-mGFP Enfu Hui N/A

Raji B cells with PD-L1-mCherry Enfu Hui N/A

OT-I Ananda Goldrath N/A

EL4 Ira Mellman N/A

Oligonucleotides
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REAGENT or RESOURCE SOURCE IDENTIFIER

See Table S2 for the list of Oligos N/A N/A

Recombinant DNA

See Table S3 for the list of recombinant DNA N/A N/A

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij/

Micro-Manager Open Imaging https://micro-manager.org/

AccPbFRET (Roszik et al., 2008) http://biophys.med.unideb.hu/accpbfret/

GraphPad Prism 5 GraphPad Software https://www.graphpad.com/scientific-software/prism/

FlowJo FlowJo, LLC https://www.flowjo.com/
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