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Bipolar disorder (BD) is a debilitating mental disorder that cannot be diagnosed by objective
laboratory-based modalities. Our previous studies have independently used nuclear magnetic resonance
(NMR)-based and gas chromatography-mass spectrometry (GC-MS)-based metabonomic methods to
characterize the urinary metabolic profiles of BD subjects and healthy controls (HC). However, the
combined application of NMR spectroscopy and GC-MS may identify a more comprehensive metabolite
panel than any single metabonomic platform alone. Therefore, here we applied a dual platform (NMR
spectroscopy and GC-MS) that generated a panel of five metabolite biomarkers for BD-four GC-MS-derived
metabolites and one NMR-derived metabolite. This composite biomarker panel could effectively
discriminate BD subjects from HC, achieving an area under receiver operating characteristic curve (AUC)
values of 0.974 in a training set and 0.964 in a test set. Moreover, the diagnostic performance of this panel
was significantly superior to the previous single platform-derived metabolite panels. Thus, the urinary
biomarker panel identified here shows promise as an effective diagnostic tool for BD. These findings also
demonstrate the complementary nature of NMR spectroscopy and GC-MS for metabonomic analysis,
suggesting that the combination of NMR spectroscopy and GC-MS can identify a more comprehensive
metabolite panel than applying each platform in isolation.

B
ipolar disorder (BD) is one of the top ten most disabling disorders in working age adults and affects up to 1%
of the general population1,2. Due to the lack of objective diagnostic modalities, the diagnosis of BD still relies
on the subjective identification of symptomatic clusters3. However, the clinical symptoms of BD are

considerably complex and diverse3, resulting in a high rate of underdiagnosis and misdiagnosis that contributes
to increased suicide risk and poorer prognosis4. Given these facts, there is an urgent need to identify objective
laboratory-based diagnostic biomarkers for BD.

Metabonomics – the comprehensive analysis of low-molecular-weight endogenous metabolites in a biological
sample – has been widely applied to capture the metabolic changes in various disease states5. Currently, there are
three major analytical techniques that are suited for non-targeted metabonomic mapping: nuclear magnetic
resonance (NMR) spectroscopy, gas chromatography-mass spectroscopy (GC-MS), and liquid chromatography-
mass spectroscopy (LC-MS)6–8. Each of these analytical techniques has its advocates and possess their own unique
features. An increasing number of researchers have applied these techniques to identify diagnostic biomarkers for
neuropsychiatric disorders, including stroke, multiple sclerosis, schizophrenia, and autism9–13. Using NMR and
GC-MS, our group has successfully identified several potential metabolite biomarkers in the plasma and urine of
major depressive disorder (MDD) patients, which could effectively distinguish depressed subjects from healthy
controls14–16.

With regards to BD, previous metabonomic studies have used a NMR metabonomic platform to identify
differential metabolites in post-mortem brain tissue and plasma17–18. Meanwhile, in our group, Zheng et al.
employed NMR to identify four potential urinary metabolite biomarkers, and Xu et al. employed GC-MS to
identify 2,4-dihydroxypyrimidine as a potential urinary metabolite biomarker for diagnosing BD19–20. These
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previous metabonomic studies have been helpful in developing
objective laboratory-based testing for BD while providing valuable
data on the physiopathologic mechanism(s) of BD. However, one
limitation shared by all these studies was that the researchers only
used one metabonomic platform. Irrespective of the unique advan-
tages of any particular methodology, no single metabonomic
platform can provide adequate coverage of the entire human meta-
bonome in any given biological sample21. Previous studies have
demonstrated that the use of multiple metabolomics platforms and
technologies allowed us to identify several previously unknown urine
metabolites and to substantially enhance the level of metabolome
coverage22–24. Therefore, the combined application of NMR spectro-
scopy and GC-MS may identify a more comprehensive metabolite
panel than any single metabonomic platform alone.

Here, in order to investigate the complementary nature of NMR
spectroscopy and GC-MS for metabonomic analysis, a novel urinary
metabolite panel for diagnosing BD was constructed using a dual
platform approach (NMR spectroscopy and GC-MS). The diagnostic
performance of the current composite biomarker panel was then
comparatively assessed against the previous single platform-derived
metabolite panels.

Results
Univariate analysis. Prior to analysis, data was scaled to unit
variance. We did univariate analysis using all subjects to find
metabolites that would be worthy of further analysis (p , 0.10),
which identified 67 different metabolites (18 NMR-derived and 49

GC-MS-derived metabolites) from 94 metabolites. These 94 diffe-
rential metabolites including the four metabolites biomarkers
(choline, N-methylnicotinamide,a-hydroxybutyrate, isobutyrate)
identified by NMR and one metabolite (2,4-dihydroxypyrimidine)
identified by GC/MS were included in this study19,20. The 94 meta-
bolites were described in supplementary Table S1. And a typical
NMR and GC-MS spectrum was described in supplementary
figure S1.

OPLS-DA model. OPLS-DA analysis was carried out to explore the
metabolic differences between BD subjects and healthy controls. The
67 differential metabolites were used to perform OPLS-DA analysis.
In the training set, the score plots of the OPLS-DA model showed
that the BD subjects were obviously separated from healthy controls
with little overlap (R2X cum 5 0.36, R2Y cum 5 0.66, Q2 5 0.57;
Figure 1a). The values of those parameters quantifying OPLS-DA
model were positive, demonstrating a robust metabolic difference
between BD subjects and healthy controls. Furthermore, the permu-
tation test showed the constructed OPLS-DA model was positive and
valid (Figure 1b).

In the test set, 28 BD subjects and 48 healthy controls were used to
independently validate the diagnostic performance of the OPLS-DA
model. Consequently, samples were correctly predicted by the OPLS-
DA model, yielding a predictive accuracy of 96.1% (Figure 1c, d).

Differential metabolites. The coefficient loading plots of the OPLS-
DA model identified 33 differential metabolites (jrj . 0.301)

Figure 1 | Metabonomic analysis of urine samples. (a) Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots showing a clear

discrimination between BD subjects (red box) and healthy controls (black box) in the training set. (b) Permutation test showing the original R2 and Q2

values (top right) as significantly higher than the corresponding permuted values (bottom left), demonstrating the OPLS-DA model’s robustness.

(c) OPLS-DA model was used to predict the healthy controls (green box) from the test set. (d) OPLS-DA model was used to predict the BD subjects (blue

box) from the test set.
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responsible for distinguishing BD subjects from healthy controls.
Meanwhile, the corresponding OPLS-DA loading plots identified
27 differential metabolites (VIP . 1.0) responsible for discrimi-
nating the two groups. Finally, we identified 26 differential meta-
bolites with a VIP . 1.0 and jrj. 0.301 (Table 1). These metabolites
included three previously identified biomarkers (a-hydroxybutyrate,
N-methylnicotinamide, and 2,4-dihydroxypyrimidine)19,20.

Logistical regression model. In order to identify a simplified meta-
bolite biomarker panel for BD diagnosis, the 26 differential metabo-
lites were used to perform forward stepwise regression analysis. The
AIC rule was applied for model selection. The results demonstrated
that the most significant deviations between BD subjects and healthy
controls could be described by the combination of four GC-MS-
derived metabolites (b-alanine, 2,4-dihydroxypyrimidine, azelaic
acid, and pseudouridine) and one NMR-derived metabolite
(a-hydroxybutyrate) (Figure 2). b-alanine, azelaic acid, and a-

hydroxybutyrate were increased, while pseudouridine and 2,4-
dihydroxypyrimidine, were decreased in BD subjects. The model
yielded an average accuracy of 90.1% in the training set and a
predictive accuracy of 82.3% in the test set. In the whole set, the
model yielded an average accuracy of 88.3%.

ROC curve analysis. Receiver-operating characteristic (ROC) curve
analysis was further performed to quantify the diagnostic
performance of this model in the training set, test set, and whole
set. The area under the curve (AUC) was 0.974 in the training set,
0.964 in the test set, and 0.960 in the whole set (Figure 2). The cut-off
value of training set, test set and whole set was 0.508, 0.537, and
0.525, respectively. The sensitivity of training set, test set and
whole set was 0.860, 0.964, and 0.833, respectively. The specificity
of training set, test set and whole set was 0.923, 0.875, and 0.913,
respectively. The diagnostic performance of this model constructed
with only five differential metabolites is similar to the OPLS-DA

Table 1 | Key metabolites responsible for discriminating BD subjects from HC

No Metabolite Platform P-valuea VIPb Rc Fold changed

1 a-hydroxybutyrate NMR 3.64 3 1028 1.52 0.72 1.48
2 Propionate NMR 9.28 3 1027 1.08 0.75 1.19
3 N-methylnicotinamide NMR 1.96 3 1029 1.27 20.54 21.89
4 (R*,S*)2,3-dihydroxybutanoicacid GC-MS 3.09 3 1027 1.26 20.47 20.74
5 2,4-dihydroxypyrimidine GC-MS 3.85 3 1028 1.02 20.78 21.06
6 3-hydroxyisobutyric acid GC-MS 8.73 3 1024 1.02 0.53 0.65
7 5-hydroxyhexanoic acid GC-MS 4.86 3 1025 1.27 0.55 0.56
8 Adipic acid GC-MS 6.66 3 1029 1.55 0.68 1.25
9 Aminoethanol GC-MS 2.23 3 1028 1.25 20.38 20.50
10 Arabitol GC-MS 4.22 3 1026 1.40 0.71 0.54
11 Azelaic acid GC-MS 7.29 3 1029 1.52 0.68 2.63
12 Fructose GC-MS 4.27 3 10211 1.43 0.74 0.98
13 Glycine GC-MS 4.09 3 1028 1.56 0.69 0.83
14 Hypoxanthine GC-MS 7.20 3 1029 1.26 20.39 21.75
15 Indoxyl sulphate GC-MS 8.74 3 1027 1.33 20.56 20.77
16 Lactic acid GC-MS 3.20 3 1025 1.39 0.52 0.52
17 Methylmalonic acid GC-MS 6.99 3 1024 1.05 0.42 0.47
18 Phenylalanine GC-MS 1.29 3 1027 1.29 20.42 20.44
19 Pseudouridine GC-MS 4.80 3 10210 1.40 20.40 20.61
20 Pyroglutamic acid GC-MS 3.74 3 1027 1.18 20.30 20.32
21 Ribose GC-MS 4.11 3 1026 1.01 0.57 0.85
22 Sorbitol GC-MS 5.93 3 1025 1.06 0.54 1.44
23 Sucrose GC-MS 2.31 3 1027 1.30 0.61 1.48
24 Tyrosine GC-MS 2.04 3 10210 1.38 20.37 21.08
25 a-hydroxyisobutyric acid GC-MS 1.32 3 1025 1.18 20.46 20.42
26 b-alanine GC-MS 8.89 3 1025 1.37 0.66 0.96

Abbreviations: NMR, nuclear magnetic resonance; GC-MS, gas chromatography-mass spectrometry.
aP-values were derived from two-tailed Student’s t test.
bVariable importance in the projection (VIP) was obtained from OPLS-DA with a threshold of 1.0.
cCorrelation coefficient was obtained from OPLS-DA with a threshold of 3.01.
dPositive values indicate higher levels in BD subjects, and negative values indicate lower levels in BD subjects.

Figure 2 | Identification and validation of urinary metabolite panel. Akaike information criterion (AIC) of each model was presented. The current

model constructed with five urinary metabolites (2,4-dihydroxypyrimidine, azelaic acid, b-alanine, pseudouridine, and a-hydroxybutyrate) showed the

highest predictive ability. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of this five-

biomarker panel. Area under the curve (AUC) values of the training set, test set, and whole set were 0.974, 0.964, and 0.960, respectively.
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model constructed with all 67 differential metabolites, demon-
strating the efficacy of this simplified urinary metabolite panel in
diagnosing BD.

Combined platform panel versus single platform panel. All BD
subjects were used to compare the diagnostic efficacy of the panel
found by the combined analytical platforms with the panels found by
each single analytical platform. The two cut-off values were from our
previous studies19,20. Finally, we obtained the following results: (i) 22
and 19 samples were wrongly predicted by NMR-derived panel and
GC-MS-derived panel, respectively; (ii) 12 samples were wrongly
predicted by the combined panel; (iii) 10/13 and 9/10 samples
were wrongly predicted by the NMR-derived panel and the GC-
MS-derived panel, respectively, but were correctly predicted by the
combined panel; (iv) 6/9 samples were wrongly predicted both by the
NMR-derived panel and the GC-MS-derived panel were also
wrongly predicted by the combined panel; and (v) 37/39 samples
were correctly predicted by the NMR-derived panel and the GC-
MS-derived panel were also correctly predicted by the combined
panel.

We also compared the panel derived in this work (b-alanine,
2,4-dihydroxypyrimidine, azelaic acid, pseudouridine, and a-
hydroxybutyrate) with a composite panel directly generated by the
five biomarkers identified in our previous studies19,20. The specificity
of the two panels were comparable (current panel 91.3% versus pre-
vious panel 90.5%), but the sensitivity of the current panel was higher
(current panel 83.1% versus previous panel 71.8%).

Discussion
BD is a common and debilitating mental disorder. However, there is
still no empirical laboratory-based test for BD to facilitate its dia-
gnosis. Over the past few years, our research group has focused on
addressing this issue. Zheng et al. has found four potential metabolite
biomarkers by a NMR-based analytical platform, and Xu et al. has
found one metabolite biomarker by a GC-MS-based analytical plat-
form. However, due to the diverse physicochemical properties and
wide concentration ranges of metabolites21, a single analytical tech-
nology cannot provide complete coverage of the human metabo-
nome. Therefore, here we applied a dual platform that generated a
panel of five potential metabolite biomarkers (one from NMR, four
from GC-MS). The model yielded an average accuracy of 90.1% in
the training set and a predictive accuracy of 82.3% in the test set. In
the whole set, the model yielded an average accuracy of 88.3%. After
comparing the current panel (b-alanine, 2,4-dihydroxypyrimidine,
azelaic acid, pseudouridine, and a-hydroxybutyrate) with a compos-
ite panel generated by the five biomarkers identified in our previous
studies (2,4-dihydroxypyrimidine, N-methylnicotinamide, choline,
isobutyrate, and a-hydroxybutyrate), the specificity of the two panels
were comparable (current panel 91.3% versus previous panel 90.5%),
but the sensitivity of the current panel was higher (current panel
83.1% versus previous panel 71.8%). Additionally, among the thir-
teen BD samples wrongly predicted by NMR but correctly predicted
by GC-MS, ten samples were correctly predicted by the current
panel, and among the ten BD samples wrongly predicted by GC-
MS but correctly predicted by NMR, nine samples were correctly
predicted by the current panel. These results demonstrate the com-
plementary nature of NMR spectroscopy and GC-MS for metabo-
nomic analysis and indicate that the combined application of NMR
and GC-MS platforms should provide a better strategy for identify-
ing meaningful biomarkers than relying on any single technique in
isolation.

Among the five metabolite biomarkers identified here, a-
hydroxybutyrate and 2,4-dihydroxypyrimidine were also identified
in our previous studies19,20. a-hydroxybutyrate was increased in BD
patients. Zheng et al. reported that higher urinarya-hydroxybutyrate
suggests increased oxidative stress in BD patients19, and Andreazza

et al. reported that increased oxidative stress is associated with the
pathophysiology of BD25. 2,4-dihydroxypyrimidine was decreased in
BD patients. Due to its involvement in glutamine formation26, the
significantly decreased level of 2,4-dihydroxypyrimidine implies that
disturbance of glutamine was involved in the onset of BD20. In agree-
ment with this speculation, many previous metabonomic analyses of
post-mortem brain tissue and plasma obtained from BD patients
have also observed significant alterations in glutamine levels17,18.

Additionally, b-alanine, azelaic acid, and pseudouridine were
identified as metabolite biomarker here. Xu et al. reported that
only azelaic acid and pseudouridine, but not b-alanine, were dif-
ferential metabolites between BD subjects and healthy controls20.
Meanwhile, Zheng et al. identified choline, isobutyrate and N-
methylnicotinamide19, none of which were identified in the cur-
rent work. Considering the higher accuracy of the current panel,
these results show the advantage of a dual platform approach in
detecting the sometimes subtle metabolic differences between
experimental groups. Therefore, the combined use of these two
techniques is recommended for future metabonomic studies to
better enable the discovery of novel diagnostic biomarkers.

When we only used the GC/MS metabolites to identify potential
metabolite biomarker panel, seven metabolites (24dihydroxypyrimi-
dine, aminoethanol, arabitol, RS23dihydroxybutanoicacid, phenyla-
lanine azelaic acid, b-alanine) were included into the potential
diagnostic model. And the discrimination power of this model was
comparable to the model consisting of the four GC/MS metabolites
(b-alanine, 2,4-dihydroxypyrimidine, azelaic acid, and pseudouri-
dine) in the current biomarker panel. Meanwhile, the sensitivity,
specificity and AUC of the four GC/MS metabolites were all lower
than that of the current biomarker panel. These results suggested that
the combined application of NMR- and GC-MS-Based metabo-
nomics could identify the most typical and representative metabo-
lites panel than applying each platform in isolation.

To analyze the biological functions of these identified potential
metabolite biomarkers, the pathway analysis was performed by
online software MetaboAnalyst27. These metabolites were mainly
involved in four metabolic pathways (Supplementary Table S2).
About these metabolic pathways, previous study has found that gen-
etically determined aberrations in pyrimidine metabolism were
associated clinically with various degrees of mental retardation
and/or unexpected and often devastating neurological dysfunction28.
Pantothenate and CoA biosynthesis was found to be unique to major
depression in a study exploring thalamic transcriptome screening in
three psychiatric states29, but, in the current work, the results indi-
cated that it might be affected in patients with BD. Beta-alanine
appeared to act via glycine and GABA (A) receptors (both inhibitory
neurotransmitters) with comparable efficacy to glycine and GABA
themselves30. And, expression of GABA (A) receptors was altered
significantly in the lateral cerebellum of subjects with BD31. In a study
listing potential targets for novel therapeutics for BD, one of the
suggested targets was a glutamate propionic acid receptor32, which
is part of the propanoate metabolism pathway.

A few limitations of this study should be addressed here. First, a
relatively small sample size of non-medicated BD subjects was
recruited. Larger samples are needed to determine the influences of
drugs upon these identified biomarkers. Second, these biomarkers
were confirmed solely by comparing BD patients with healthy con-
trols. Therefore, it was unknown whether or not there biomarkers
can be effectively used to discriminate BD from other psychiatric
disorders that can present in a similar fashion, such as depression
and schizophrenia. Third, future studies should collect cerebrospinal
fluid (CSF) from BD patients to ensure that these urinary biomarkers
are physiologically relevant to disease pathogenesis. Finally, although
a dual platform approach was used here, these biomarkers still
require verification through additional metabonomic methods such
as LC-MS.
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In conclusion, using a dual platform metabonomic approach, a
novel composite urinary metabolite biomarker panel for diagnosing
BD was identified. This panel, consisting of one metabolite detected
by NMR (a-hydroxybutyrate) and four metabolites detected by GC-
MS (2, 4-dihydroxypyrimidine, azelaic acid, b-alanine, and pseu-
douridine), could differentiate BD subjects from healthy controls
with a higher accuracy than our previous single platform-derived
metabolite biomarker panels. Thus, the urinary biomarker panel
identified here shows promise as an effective diagnostic tool for
BD. These findings also demonstrate the complementary nature of
NMR spectroscopy and GC-MS for metabonomic analysis, suggest-
ing that the combination of NMR spectroscopy and GC-MS can
identify a more comprehensive metabolite panel than applying each
platform in isolation.

Methods
Subjects & sample collection. Prior to sample collection, written informed consents
were obtained from all recruited subjects. The protocols of this study were reviewed
and approved by the Ethical Committee of Chongqing Medical University. The
methods were carried out in accordance with the approved guidelines and
regulations. BD subjects were recruited from the psychiatric center of the First
Affiliated Hospital at Chongqing Medical University (Chongqing, China). The
candidates had to meet the following inclusion criteria: (i) a diagnosis of BD

according to the Structured Clinical Interview from the DSM-IV-TR; (ii) no pre-
existing physical or other mental disorders or illicit drug use; and (iii) provision of
written informed consent. In total, 71 BD subjects presenting with manic, euthymic,
or depressed states were recruited. Among those subjects, 61 subjects were currently
undergoing treatment with anti-psychotic medications.

Meanwhile, healthy control (HC) candidates were recruited from the medical
examination center of the First Affiliated Hospital at Chongqing Medical University.
The inclusion criteria of healthy controls were: (i) no DSM-IV Axis I/Axis II disorder;
(ii) no current or previous lifetime history of neurological disease; (iii) no systemic
medical illness; and (iv) provision of written informed consents. In total, 126 healthy
controls were recruited. Demographic and clinical characteristics of BD subjects and
controls were described in table 2.

Prior to moving forward with the use of potential biomarkers identified in clinical
studies, the use of independent samples to validate the biomarkers is essential33.
Therefore, the 71 BD subjects and demographically-matched 126 healthy controls
were segregated into a training set (,60%) and a test set (,40%). The training set,
including 43 BD subjects and 78 demographically-matched healthy controls, was
used to identify potential urinary biomarkers, and the remaining samples in the test
set were used to independently validate the diagnostic performance of these
biomarkers.

After overnight fasting, morning urine samples were collected in a sterile cup and
transferred into a sterile tube. Urine samples were then centrifuged at 1500 g for
10 min. The resulting supernatant was immediately divided into equal aliquots and
stored at 280uC.

NMR acquisition. Prior to NMR analysis, urine samples were thawed and
centrifuged at 1500 g for 10 min to remove precipitation. To ensure stabilization of
urinary pH, 500 ml of urine was mixed with 100 ml of phosphate buffer (90% D2O,
1 mM 3-trimethylsilyl-1-[2, 2, 3, 3-2H4] propionate (TSP), and 3 mM sodium azide;
pH 7.4). After centrifugation at 12000 rpm for 10 min, 500 ml samples of supernatant
were transferred into 5 mm NMR tubes. The proton spectra of the urine samples were
collected on a Bruker Avance 600 spectrometer operating at a 600.13 MHz 1H
frequency with a standard 1-dimensional (1D) pulse sequence. Typically, 64
transients were collected into 16 K data points with a spectral width of 8000 Hz, an
acquisition time of 0.945 s, and a relaxation delay of 2 s. Prior to Fourier
transformation, the free induction decay (FID) was zero-filled and multiplied by an
exponential function corresponding to a line-broadening factor of 0.3 Hz in the
frequency domain. Urine resonance assignments were performed according to
previous literature and NMR databases13,14,34.

GC-MS acquisition. The procedure for GC-MS preparation was performed
according to our previous study (15). Briefly, a 15 ml aliquot of urine was vortexed
after adding 10 ml internal standard solution (L-leucine-13C6, 0.02 mg/ml). Then,
15 ml urease was added into this mixed solution. The urea was degraded for 60 min at
37uC. The mixture was extracted with 240 ml of ice-cold methanol and then 80 ml of
ice-cold methanol. After vortexing for 30 s, the mixture was centrifuged at
14000 rpm for 5 min at 4uC. The 224 ul supernatant was transferred to a glass vial
and vacuum-dried at room temperature. The dried metabolic extract was derivatized
with 30 ml of methoxyamine (20 mg/ml) for 1.5 h at 37uC. Subsequently, 30 ml of
BSTFA with 1% TCMS was added into the mixture and heated for 1 h at 70uC,
forming trimethylsilyl (TMS) derivatives. After derivatization and cooling to room
temperature, 1.0 ml of this derivative was injected into the GC/MS for analysis. GC/
MS analysis was carried out according to this group’s previously published work35.

Data analysis. The overall workflow of identifying a simplified set of urinary
metabolite biomarkers for BD is summarized in Figure 3. SIMCA-P 1 12.0 and SPSS
19.0 were used for all analysis. Spectral data from NMR and GC-MS was collected and
unit variance scaled. The data resulting in a p-value less than 0.10 in univariate
analysis were then used to perform a multivariate analysis25. Orthogonal partial least-
squares discriminant analysis (OPLS-DA) was applied to the unit variance-scaled
spectral data to visualize discrimination between BD subjects and healthy controls37.
Three parameters (R2X, R2Y and Q2Y), calculated by the default leave-one-out (LOO)

Table 2 | Demographic and clinical characteristics of BD subjects and HCa

Training set Test set

HC BD P-valueb HC BD P-valueb

Sample Size 78 43 – 48 28 –
Sex (M/F) 49/29 22/21 0.25 29/19 15/13 0.63
Age (years)c 33.2 6 11.2 29.7 6 11.8 0.12 31.5 6 8.9 28.4 6 10.9 0.21
BMIc 21.1 6 2.3 21.6 6 2.4 0.27 22.0 6 2.8 21.8 6 2.5 0.75
Depressed BD – 33 – – 22 –
Euthenics BD – 8 – – 5 –
Manic BD – 2 – – 1 –
aAbbreviations: HC: healthy controls; BD: bipolar disorder; M/F: male/female; BMI: Body Mass Index
bTwo-tailed student t-test for continuous variables (age/BMI); Chi-square analyses for categorical variables (sex).
cValues expressed as means 6 SDs.

Figure 3 | Overview of experimental workflow.
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procedure, were used to describe the quality of OPLS-DA model38. A 99-iteration
permutation test was performed to rule out non-randomness of separation between
groups. The metabolites with variable importance (VIP) values of no less than 1
(equivalent to a p-value of less than 0.5) and a correlation coefficient of jrj . 0.301
(equivalent to a p-value of less than 0.5) were identified as the differential metabolites
responsible for sample differentiation39,40 and then entered into a multivariate
logistic-regression model. A forward selection method was used to obtain a model in
which all data had a p-value of less than 0.01. In order to make the clinical practice be
more feasible and convenient, a step-wise optimization algorithm based on Akaike’s
information criterion (AIC) was employed to optimize the metabolite biomarker
combination41. A receiver-operating characteristic (ROC) curve analysis was used to
further evaluate the diagnostic performance of this simplified set of BD biomarkers in
the training and test sets. Given the biological reproducibility observed in the
independent training and test sets, we repeated the ROC analysis using all subjects to
increase the statistical power.
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