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Aim. This study used machine learning methods to develop a prediction model for knee pain in middle-aged and elderly
individuals. Methods. A total of 5386 individuals above 45 years old were obtained from the National Health and Nutrition
Examination Survey. Participants were randomly divided into a training set and a test set at a 7 : 3 ratio. The training set was
used to create a prediction model, whereas the test set was used to validate the proposed model. We constructed multiple
predictive models based on three machine learning methods: logistic regression, random forest, and Extreme Gradient
Boosting. The model performance was evaluated by areas under the receiver (AUC), sensitivity, specificity, positive predictive
value, and negative predictive value. Additionally, we created a simplified nomogram based on logistic regression for better
clinical application. Results. About 31.4% (1690) individuals were with self-reported knee pain. The logistic regression showed
that female gender (odds ratio ½OR� = 1:28), pain elsewhere (OR = 4:64), and body mass index (OR = 1:05) were significantly
associated with increased risk of knee pain. In the test set, the logistic regression (AUC = 0:71) showed similar but slightly
higher accuracy than the random forest (AUC = 0:70), while the performance of the Extreme Gradient Boosting model was
less reliable (AUC = 0:59). Based on mean decrease accuracy, the most important first five predictions were pain elsewhere,
waist circumference, body mass index, age, and gender. Additionally, the most important first five predictions with the highest
mean decrease Gini index were pain elsewhere, body mass index, waist circumference, triglycerides, and age. The nomogram
model showed good discrimination ability with an AUC of 0.75 (0.73-0.77), a sensitivity of 0.72, specificity of 0.71, a positive
predictive value of 0.45, and a negative predictive value of 0.88. Conclusion. This study proposed a convenient nomogram tool
to evaluate the risk of knee pain for the middle-aged and elderly US population in primary care. All the input variables can be
easily obtained in a clinical setting, and no additional radiologic assessments were required.

1. Introduction

Knee pain is estimated to affect about 35% of men and 62%
of women over 40 years old, constituting a significant health
threat worldwide [1]. Patients with knee pain usually experi-
ence reduced physical ability and poor life quality [2–4]. The
disease burden of knee pain is increasing due to the aging
population and limited preventive strategies. For middle-
aged and elderly, knee osteoarthritis is the primary cause
of knee pain [5]. Importantly, most knee joint diseases usu-
ally progress slowly but would eventually result in joint fail-
ure with pain and disability.

However, there lacks a close association between radio-
logical alteration and the occurrence of pain, and it remains
unclear at which stage the disease would cause knee pain [6].
Considering the significant individual and socioeconomic
burden, attention has been paid to the early detection and
prevention of knee pain [7]. Many studies have revealed risk
factors for knee pain, such as elder age, female gender, and
obesity. A better understanding of the risk factor could pro-
vide an insightful and cost-effective tool for identifying those
with an increased risk of knee pain [8]. When high-risk indi-
viduals are identified, clinicians can offer them preventive
strategies and change their lifestyles [9].
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Although previous studies have proposed prediction
models for joint pain or osteoarthritis [10–12], the small
sample size and the clinical inapplicability make it difficult
to apply to clinical practice. Therefore, this study sought to
develop a risk prediction model for knee pain based on easily
obtained demographics and laboratory biomarkers. Multiple
machine learning methods (logistic regression, random for-
est, and Extreme Gradient Boosting) were applied, and we
visualized the logistic regression model using a nomogram.

2. Methods

2.1. Study Population. The National Health and Nutrition
Examination Survey (NHANES) is a program survey for
the health and nutritional status of the US population. We
analyzed two continuous NHANES surveys, including the
2001-2002 and the 2003-2004 surveys. Participants with
demographic, anthropometry, and laboratory records were
included in this study. We excluded those below 45 years
old or without records of joint pain (N = 4366). A total of
5386 individuals were analyzed in this study.

2.2. Knee Pain Assessment. In the continuous NHANES sur-
vey, self-reported knee pain was obtained by questionnaires
(detailed descriptions were provided at: http://wwwn.cdc
.gov/Nchs/Nhanes/2001-2002/MPQ_B.htm). Participants
were first asked the screening question: “Joint pain/aching/
stiffness in past year?”. For those who answered ‘Yes’, they
would be subsequently asked the following questions:
‘Right/left shoulder affected?’, ‘Right/left elbow affected?’,
‘Right/left hip affected?’, ‘Right/left wrist affected?’, ‘Right/
left knee affected?’, ‘Right/left ankle affected?’, ‘Right toes
affected?’, and ‘Right fingers/thumb affected?’. Based on the
questionnaires, we identified patients with joint pain and
the affected joints. We defined patients with knee pain as
those who responded ‘Yes’ to ‘Right/left knee affected?’.
Additionally, pain in other areas (shoulder, elbow, hip, wrist,
ankle, toes, or fingers) was defined as pain elsewhere.

2.3. Predictive Biomarkers. This study selected multiple pre-
dictive biomarkers associated with knee pain based on liter-
ature review and expert recommendations [13, 14]. All
selected biomarkers can be easily obtained by inquiry, body

Table 1: The characteristics of the study population.

Knee pain No knee pain P

N 1690 3696

Age 64.0 (54.0, 74.0) 64.0 (53.0, 74.0) 0.202

Gender (female), n (%) 962 (56.9%) 1758 (47.6%) < 0.001

Race, n (%) 0.383

Non-Hispanic white 977 (57.8%) 2150 (58.2%)

Non-Hispanic black 320 (18.9%) 643 (17.4%)

Mexican American 296 (17.5%) 658 (17.8%)

Others 97 (5.7%) 245 (6.6%)

Education, n (%) 0.029

Below high school 591 (35.0%) 1223 (33.1%)

High school 424 (25.1%) 855 (23.1%)

Above high school 675 (39.9%) 1618 (43.8%)

Hypertension (yes), n (%) 917 (54.3%) 1648 (44.6%) < 0.001

Diabetes (yes), n (%) 305 (18.0%) 549 (14.9%) 0.003

Pain elsewhere (yes), n (%) 1192 (70.5%) 1247 (33.7%) < 0.001

Moderate activity (yes), n (%) 683 (40.4%) 1663 (45.0%) 0.002

Vigorous activity (yes), n (%) 255 (15.1%) 734 (19.9%) < 0.001

Smoking (yes), n (%) 920 (54.4%) 2014 (54.5%) 0.994

Drinking (yes), n (%) 315 (18.6%) 638 (17.3%) 0.234

BMI (kg/m2) 29.1 (25.8, 33.3) 27.1 (24.1, 30.6) < 0.001

Waist circumference (cm) 102.5 (93.5, 111.8) 98.2 (89.4, 107.3) < 0.001

Albumin (g/L) 42.0 (40.0, 44.0) 42.0 (40.0, 44.0) 0.002

Phosphorus (mg/dL) 3.7 (3.4, 4.1) 3.7 (3.4, 4.0) 0.075

Total calcium (mg/dL) 9.5 (9.2, 9.7) 9.5 (9.2, 9.7) 0.590

Triglycerides (mg/dL) 128.0 (89.0, 184.8) 123.0 (85.0, 179.0) 0.018

Cholesterol (mg/dL) 205.0 (179.0, 234.8) 205.0 (180.0, 233.0) 0.608

Vitamin D (nmol/L) 55.7 (39.7, 70.6) 58.1 (43.4, 72.9) < 0.001

eGFR (ml/min/1:73m2) 77.9 (20.6) 78.4 (20.6) 0.410

BMI: body mass index; eGFR: estimated glomerular filtration rate.
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measure, and blood test. Age (years), gender (male or
female), race (Non-Hispanic White, Non-Hispanic Black,
Mexican American, and others), education (Below high
school, high school, and above high school), hypertension
(yes or no), diabetes (yes or no), pain elsewhere (shoulder,
elbow, hip, wrist, ankle, toes, or fingers/thumb), moderate
activity (yes or no), vigorous activity (yes or no), smoking
(yes or no), and drinking (yes or no) were collected by ques-
tionnaires. Body mass index (BMI) and waist circumference
were obtained by body measure. Plasm levels of albumin (g/
L), phosphorus (mg/dL), total calcium (mg/dL), triglycerides
(mg/dL), cholesterol (mg/dL), and vitamin D (nmol/L), were
also examined. Additionally, we calculated the estimated
glomerular filtration rate (eGFR) by the Chronic Kidney
Disease Epidemiology Collaboration equation [15].

2.4. Development and Validation of Prediction Model. Partic-
ipants were randomly divided into a training set and a test
set at a 7 : 3 ratio. The training set was used to create a pre-
diction model, whereas the test set was used to validate the
proposed model. Patients’ characteristics in the training
and testing set are shown in Table S1. The upmentioned var-
iables were used as inputs, and we set the prevalence of knee

pain as the outcome. We constructed multiple predictive
models based on multiple machine learning methods,
including logistic regression, random forest, and Extreme
Gradient Boosting (XGBoost). Random forest is an ensem-
ble learning method for data regression and classification
based on a multitude of decision trees [16], whereas
XGBoost is a scalable end-to-end tree boosting system. We
showed the model performance by receiver operating char-
acteristic curve and calculated the areas under the receiver
(AUC) of the three models. Sensitivity, specificity, positive
predictive value, and negative predictive value were also
provided.

Moreover, we used gender, age, hypertension, diabetes,
vitamin D, pain elsewhere, total calcium, waist circumfer-
ence, and BMI to create a logistic regression-based predic-
tion model. The prediction model was then visualized by a
nomogram, which is more practical for clinical application.
Each variable of the nomogram was assigned a preliminary
score, and the total score could be accordingly calculated.
Eventually, the total score would be converted to the proba-
bility of knee pain (0-100%).

2.5. Statistical Analysis. The missing variables were filled by
the multivariate multiple imputation method. Continuous
variables were presented as median (Q1, Q3) and compared
by the Kruskal-Wallis test between groups, whereas the cat-
egorical variables were presented as percentages and com-
pared by the chi-square test. We performed multivariate
regression to investigate the association between the bio-
markers and knee pain. Analyses were performed by R soft-
ware (version 3.6.1). P < 0:05 as considered statistically
significant.

3. Results

3.1. Study Population. Table 1 describes the characteristics of
the study population. Among the 5386 individuals, 1690
(about 31.4%) had self-reported knee pain. Compared with
the normal group, knee pain patients were more with gender
sex, lower education, hypertension, diabetes, pain elsewhere,
moderate activity, and vigorous activity. Also, knee pain
patients showed higher BMI, waist circumference, and tri-
glycerides but low vitamin D levels.

3.2. Multivariable Logistic Regression. We performed logistic
regression on the included biomarkers. The results showed
that female gender (OR = 1:28, 95% CI = 1:06 − 1:55), pain
elsewhere (OR = 4:64, 95% CI = 3:98 − 5:43), and BMI
(OR = 1:05, 95% CI = 1:02 − 1:08) were significantly associ-
ated with increased risk of knee pain (Table 2).

3.3. Performance of the Prediction Models.We used age, gen-
der, race, education, hypertension, diabetes, pain elsewhere,
moderate activity, vigorous activity, smoking, drinking,
BMI, waist circumference, albumin, phosphorus, total cal-
cium, triglycerides, cholesterol, vitamin D, and eGFR as
input variables. Three different models based on logistic
regression, random forest, and XGBoost were created using
the training set, respectively. Among the three models, logis-
tic regression (AUC = 0:71, 95% CI = 0:68 − 0:74) showed

Table 2: Multivariable logistic regression.

Odds ratio 95% CI P

Age 1.01 1.00-1.02 0.105

Gender (female) 1.28 1.06-1.55 0.011

Race

Non-Hispanic white Ref

Non-Hispanic black 1.15 0.91-1.45 0.249

Mexican American 1.02 0.81-1.28 0.889

Others 0.91 0.65-1.26 0.563

Education

Below high school Ref

High school 1.06 0.86-1.31 0.588

Above high school 0.95 0.78-1.15 0.598

Hypertension (yes) 1.11 0.95-1.31 0.198

Diabetes (yes) 0.91 0.73-1.12 0.376

Pain elsewhere (yes) 4.64 3.98-5.43 < 0.001

Moderate activity (yes) 1.04 0.89-1.22 0.617

Vigorous activity (yes) 0.90 0.72-1.12 0.338

Smoking (yes) 1.12 0.96-1.31 0.158

Drinking (yes) 0.86 0.70-1.05 0.152

BMI (kg/m2) 1.05 1.02-1.08 < 0.001

Waist circumference 1.00 0.99-1.02 0.471

Albumin (g/L) 1.01 0.98-1.04 0.584

Phosphorus (mg/dL) 0.99 0.85-1.15 0.850

Total calcium (mg/dL) 1.01 0.82-1.24 0.927

Triglycerides (mg/dL) 1.00 1.00-1.00 0.470

Cholesterol (mg/dL) 1.00 1.00-1.00 0.674

Vitamin D (nmol/L) 1.00 0.99-1.00 0.438

eGFR (ml/min/1:73m2) 1.00 1.00-1.01 0.457

BMI: body mass index; eGFR: estimated glomerular filtration rate.
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similar but slightly higher accuracy than random forest
(AUC = 0:70, 95% CI = 0:67 − 0:72), while the performance
of the XGBoost model was less reliable (Figure 1).

The random forest model shows a sensitivity of 0.72,
specificity of 0.61, a positive predictive value of 0.46, and a
negative predictive value of 0.83. The variable importance
of the random forest model is illustrated in Figure 2. The
higher mean decrease accuracy and decrease Gini index sug-
gested the more important role of a variable in knee pain.
Based on mean decrease accuracy, the most important first
five predictions were pain elsewhere, waist circumference,
body mass index, age, and gender. Additionally, the most
important first five predictions with the highest mean
decrease Gini index were pain elsewhere, body mass index,
waist circumference, triglycerides, and age. The logistic
regression model shows a sensitivity of 0.71, a specificity of
0.64, a positive predictive value of 0.47, and a negative pre-
dictive value of 0.83.

Moreover, the prediction model based on logistic regres-
sion was visualized by a nomogram (Figure 3). Gender, age,
hypertension, diabetes, vitamin D, pain elsewhere, total cal-
cium, waist circumference, and BMI were input into the
simplified nomogram. In the testing set, the nomogram
model showed good discrimination ability with an AUC of
0.75 (0.73-0.77), a sensitivity of 0.72, specificity of 0.71, a
positive predictive value of 0.45, and a negative predictive
value of 0.88.

4. Discussion

Knee pain is closely associated with the middle-aged and
elderly population and has become a major reason for early
retirement. The NHANES I survey indicated that about
14.6% population reported knee pain [17]. It was reported
that knee pain made about 20% of individuals with knee
osteoarthritis retire earlier by eight years [18]. This study
developed machine learning models to evaluate the risk of
knee pain for the general US population. In the test set, ran-
dom forest showed similar but slightly higher accuracy than
logistic regression, while the performance of the XGBoost
model was less reliable.

Many risk factors have been proposed for knee pain,
such as age, female gender, obesity, and pain elsewhere. [8,
14, 19]. However, individuals with one or some risk factors
might not experience knee pain, and a single risk factor
alone was insufficient to evaluate the disease risk compre-
hensively. Therefore, several conventional risk factors were
used as the input of the prediction models in this study.
All the input variables can be measured easily in clinical
practice, and no radiologic assessment was required in these
models. Using easily available biomarkers without additional
laboratory or radiologic examinations makes the prediction
model simple to use and cost-effective. The nomogram
model has a high negative predictive value (0.84) but a lower
positive predictive value (0.47). Therefore, this prediction
model is more suitable for identifying individuals with low
knee pain risk.

The aging-induced joint pain is a multifactorial process
involving numerous factors, such as cartilage thinning, mus-
cle weakening, and proprioception reduction. Aging would
also decline the capability of maintaining tissue homeostasis,
thus causing an inadequate response to joint injury. We also
observed that BMI and waist circumference were positively
associated with a higher risk of knee pain [20]. Due to the
population aging and the elevated obesity prevalence, knee
pain was expected to be a growing health problem.

Besides aging and obesity, other biomarkers were also
involved in the prediction models [8]. Pain elsewhere
(shoulder, elbow, hip, wrist, ankle, toes, or fingers/thumb)
was a significant biomarker for knee pain with an OR of
4.64 (95% CI = 3:98 − 5:43), which was consistent with pre-
vious studies [14, 18]. The association between joint pain
and pain elsewhere might be attributed to the shared pathol-
ogy or the progress of chronic pain syndrome [21]. Fer-
nandes et al. [18] analyzed 1822 participants at risk for
knee pain from the Nottingham community and followed
the participants for 12 years. The results showed that pain
elsewhere led to a 2.49-fold risk of knee pain [18]. In another
prospective cohort study of 2982 people, the baseline pain
other than the knee increased the risk of the new onset of
knee pain but not for the progression from mild to
severe [14].
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Figure 1: The receiver operating characteristic curves of the logistic regression, random forest, and XGBoost based on the test set.
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Previous studies also proposed prediction models for
joint pain or osteoarthritis [10–12]. Zhang et al. created a
prediction model for radiographic knee osteoarthritis based
on a 12-year retrospective community cohort (UK Notting-
ham cohort). Age, gender, BMI, family history, and joint
injury were included in the prediction model (AUC = 0:70)
[11]. Similarly, Kerkhof et al. [10] used age, gender, BMI,
questionnaire variables, genetic scores, and radiographic
signs to develop a prediction model for radiographic knee
osteoarthritis based on Netherlands individuals aged 55
years and over (AUC = 0:79). Compared with previous pre-
diction models, our model showed similar accuracy but was
based on easily available biomarkers without additional lab-
oratory or radiologic assessments. These advantages make it
a simple-to-use and cost-effective tool suitable for primary
care.

Still, some limitations should be motioned. First, the def-
inition of knee pain was based on self-reported knee pain. A
proportion of self-reported knee pain might be referred to as
hips/spine pain instead of pain from the knee. Second, we
tested the model performance in the internal set. However,
we are unsure if the proposed knee pain prediction tool
can be applied to other populations, such as the Chinese or

European population. Third, the NHANES was a cross-
sectional design which induces the inherent bias. Further
validation and improvement were required in the following
research. Fourth, although we input multiple variables in
the model, many risk factors potentially remain. The inves-
tigation of additional biomarkers would improve the model
performance.

5. Conclusion

This study proposed a convenient tool to evaluate the risk of
knee pain for the middle-aged and elderly US population in
primary care. All the input variables can be easily obtained
in a clinical setting, and no additional radiologic assessments
were required. In the internal validation, the nomogram
model showed reliable performance with an AUC of 0.72.

Data Availability

The data in this study can be obtained from https://www.cdc
.gov/nchs/nhanes/index.htm
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