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Abstract

Background: Communication between brain areas has been implicated in a wide range of cognitive and emotive
functions and is impaired in numerous mental disorders. In rodent models, various metrics have been used to
quantify inter-regional neuronal communication. However, in individual studies, typically, only very few measures of
coupling are reported and, hence, redundancy across such indicators is implicitly assumed.

Results: In order to test this assumption, we here comparatively assessed a broad range of directional and non-
directional metrics like coherence, Weighted Phase Lag Index (wPLI), phase-locking value (PLV), pairwise phase
consistency (PPC), parametric and non-parametric Granger causality (GC), partial directed coherence (PDC), directed
transfer function (DTF), spike-phase coupling (SPC), cross-regional phase-amplitude coupling, amplitude cross-
correlations and others. We applied these analyses to simultaneous field recordings from the prefrontal cortex and
the ventral and dorsal hippocampus in the schizophrenia-related Gria1-knockout mouse model which displays a
robust novelty-induced hyperconnectivity phenotype. Using the detectability of coupling deficits in Gria1−/− mice
and bivariate correlations within animals as criteria, we found that across such measures, there is a considerable
lack of functional redundancy. Except for three pairwise correlations—PLV with PPC, PDC with DTF and parametric
with non-parametric Granger causality—almost none of the analysed metrics consistently co-varied with any of the
other measures across the three connections and two genotypes analysed. Notable exceptions to this were the
correlation of coherence with PPC and PLV that was found in most cases, and partial correspondence between
these three measures and Granger causality. Perhaps most surprisingly, partial directed coherence and Granger
causality—sometimes regarded as equivalent measures of directed influence—diverged profoundly. Also, amplitude
cross-correlation, spike-phase coupling and theta-gamma phase-amplitude coupling each yielded distinct results
compared to all other metrics.

Conclusions: Our analysis highlights the difficulty of quantifying real correlates of inter-regional information
transfer, underscores the need to assess multiple coupling measures and provides some guidelines which metrics
to choose for a comprehensive, yet non-redundant characterization of functional connectivity.

Keywords: Hippocampal-prefrontal coherence, wPLI, Phase-amplitude coupling, Phase-locking value, Pairwise
phase-consistency, Spike-phase coupling, Granger causality, Partial directed coherence, Amplitude cross-correlation,
Gria1
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Background
Communication between different brain regions is vital
for cognition and emotion and is impaired in a variety of
neurological and psychiatric disorders, including schizo-
phrenia and depression. In order to better understand
interregional communication in health and disease at
the electrophysiological level in rodent models, local
field potentials (LFPs) and sometimes action potentials
(spikes) are typically recorded from two or more brain
areas simultaneously in awake subjects. Subsequently,
some measure of interdependency of the signals from
two regions are computed (see Table 1 for an overview).
For example, an influential hypothesis known as commu-

nication through coherence (CTC) states that information
exchange between two connected brain areas depends on
the timing of the arrival of incoming activity in a specific
phase of a certain network oscillation [25–28]. Therefore,
coherence measures a synchrony of oscillations in a certain
frequency range and with a certain phase shift that may
allow the activity generated in one region to optimally affect
the activity of another region.
In general, measures of phase synchronization aim to

determine if two signals have a consistent phase rela-
tionship between each other. Despite being widely used,
coherence is prone to confound by volume conduction
[22, 29]. Therefore, alternative measures of phase

synchronization have been suggested. Nolte et al. dem-
onstrated that using only the imaginary component of
coherence (ImC) effectively reduces the influence of a
volume-conducted signal originating from a common
source [3]. Alternatively, the Phase Lag Index (PLI) may
be used, which disregards the magnitude of the phase
lag between signals from two brain regions but evaluates
if they differ from a symmetrical distribution [4]. The
weighted PLI (wPLI), in turn, applies the combined ad-
vantages of the ImC and PLI by taking the detected
phase lead or lag and weighing it by the magnitude of
the ImC [5]. A constraint related to measures of phase
synchronization like the ImC, PLI and wPLI is sample
size bias, i.e. the observation of spurious non-zero syn-
chrony even in the absence of real connections which in-
creases with a lower number of samples [5]. Therefore
Vinck et al. additionally introduced a debiassed estima-
tor of the wPLI which is more independent from sample
size and thus has a higher statistical power than previous
measures [5]. For the sake of clarity, the debiassed wPLI
will be referred to as wPLI throughout this study, and
the stated older measures are not used.
It should be noted that several other metrics for phase

synchronization exist, such as the phase-locking value
(PLV) [6] and pairwise phase consistency (PPC) [7].
These measure the constancy of the difference between

Table 1 Common measures of synchrony and directionality in neuronal communication

Category Acronym Metric Description References

Non-directed
coupling,
synchrony

– Coherence (magnitude) Magnitude of the complex cross-spectrum [1, 2]

ImC Imaginary part of coherence Discards the real component of the cross-spectrum [3]

PLI Phase Lag Index Disregards the magnitude of the cross-spectrum and averages
the sign of phase differences

[4]

wPLI Weighted phase lag index Phase lags are weighed by the magnitude of the imaginary
component of the cross-spectrum

[5]

PLV Phase-locking value Circular resultant vector length of the phase differences [6]

PPC Pairwise phase consistency Computed based on the distribution of phase differences [7]

Directed (lead/lag,
LFP-based)

– Coherence phase angle Angle of the complex cross-spectrum [8, 9]

CC Cross-amplitude coupling,
amplitude cross-correlation

Instantaneous amplitudes of two filtered LFPs are cross-correlated
and the lag at which the peak occurred is determined

[10]

Directed (causal
influence)

GC Granger causality Quantifies if the past of one time series can predict the future of
another time series using autoregressive modelling

[11–14]

npGC Non-parametric Granger causality Granger causality based on spectral matrix factorization [15]

PDC Partial directed coherence Normalized metric based on GC that measures direct influence
from one time series to another

[16]

DTF Direct transfer function Adaptation to multiple input variables closely related to PDC [17, 18]

Directed (phase-
locking of local
activity)

SPC, MRL Spike-phase coupling, Mean
resultant vector length

Circular concentration of the phase distribution at which spikes
occurred

[2, 19–21]

PAC, CFC,
MI

Phase amplitude coupling, cross-
frequency coupling, modulation
index

Modulation of the amplitude of high-frequency oscillations in
one area by the phase of low-frequency oscillations from another
area

[22–24]

Directed (lead lag,
spike-based)

– Phase angle of MRL Mean phase at which spikes occurred [20]

– Phase-shifted MRL Calculation of the MRL based on phases at shifted lags [2, 19]
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the instantaneous phases of two signals obtained either
by applying Hilbert, wavelet or Fourier transformation
and quantifying the distribution of phase differences ei-
ther by taking the vector average or by determining the
distribution of phase differences across observations, re-
spectively. While PPC and PLV are very similar mea-
sures, the main advantage of the PPC metric is that it is
not biassed by sample size and therefore more suitable
for comparing datasets with varying sample size as
reviewed in [30].
The stated measures of phase synchronization are at-

tempts to quantify non-directed connectivity. This means
that the quantification of coupling is essentially based on
correlation analysis, ignores its temporal structure and
assumes no direction of the influence from one region
to another [30, 31]. However, LFP data can also be used
to measure effective or directed connectivity [31]. These
are parameters that quantify the potentially causal influ-
ence that the activity in one region exerts on another re-
gion by taking recurring pairwise patterns in the time
series obtained from both regions into account. A com-
putationally simple measure to detect directionality be-
tween two time series is cross-correlation. That means
that correlations are calculated as the LFP signals are in-
crementally shifted against one another to obtain a
cross-correlation as function of temporal shifts (lags).
Adhikari et al. developed a method termed amplitude
cross-correlation or cross-amplitude coupling in which
the instantaneous amplitudes of two oscillatory signals
filtered in a certain frequency range are cross-correlated
to determine if one is leading or lagging the other [10].
If the lags at which the peak of the amplitude cross-
correlation function occurs are significantly different
from 0ms, it is indicated that one region leads the other
one with a certain consistency, which could be due to a
directional influence from the leading onto the lagging
region. This method was able to identify directional con-
nectivity in the brain related to working memory and
fear processing [32–34].
A different measure of directed influence is Granger

causality (GC). It aims to infer causation based on the
notion that one signal is helpful in predicting the other.
In parametric GC, two separate autoregressive models
(ARMs) are calculated and statistically compared: a uni-
variate ARM, where the signal is predicted by a weighted
combination of its own past values, and a bivariate ARM
where the signal is additionally predicted by the second
signal. If the inclusion of the bivariate AR leads to a re-
duction of variance of the predicted signal, one signal is
said to Granger-cause the other [11]. GC can also be
computed with non-parametric methods where the same
information is obtained by first calculating the cross-
spectral density matrix and then applying Wilson’s spec-
tral matrix factorization as input to the GC algorithm;

this approach has been demonstrated to be equivalent to
parametric GC [35]. The mathematical foundations of
GC and its application to neuroscience have been
reviewed extensively elsewhere [11–14]. Related mea-
sures that can either be based on multivariate autore-
gressive models or on non-parametric methods for
directionality estimation and allow analysis of more than
two channels include the directed transfer function
(DTF) [17] and partial directed coherence (PDC) [16];
see [18] for a review.
Other indicators of inter-regional communication that

partly circumvent problems caused by volume conductance
and are typically interpreted as indicating a causal directional
influence include those that measure different types of neur-
onal activity in the different regions, i.e. a low-frequency LFP
oscillation (usually in the theta-range) in the presumed dom-
inating region and a local and high-frequency activity at the
receiving end. In contrast to the metrics introduced before,
historically, such measures were introduced by way of an ac-
tual biological discovery of such coupling phenomena, rather
than by a priori mathematical considerations on how to best
assess inter-regional communication. One option is to quan-
tify the extent to which oscillations of distinct frequencies
are coupled to each other, a phenomenon called cross-
frequency coupling (CFC, [36]). Particularly, local phase-
amplitude coupling (PAC)—the statistical relationship be-
tween the phase of a low-frequency and the amplitude of
a high-frequency component—plays an important role in
memory processing in the hippocampus of rats [37, 38]
and humans [39]. However, cross-regional PAC between
the hippocampus and prefrontal cortex has also been used
and was associated with directed information flow and
cognitive functions [22–24, 40]. Since high-frequency
brain oscillations mainly reflect local aspects of informa-
tion processing and low-frequency brain rhythms are rele-
vant for inter-regional communication, CFC might
represent a mechanism of transferring information from
large-scale neuronal networks to local processes [36, 41].
Another widely used measure is based on the recording

of spikes in one (potentially the influenced) region along-
side the LFP in another (potentially the influencing) re-
gion. Spikes are generally not considered to be
confounded by volume conductance or referencing, and
they represent a more direct readout of the actual neur-
onal activity of a region. Phase-locking of neuronal firing
to theta frequency hippocampal oscillations was shown
for example in the prefrontal cortex (PFC) [1, 19], entorhi-
nal cortex [42] and the amygdala [43]. For example, action
potentials in these brain regions occurred rhythmically at
the same phase of the hippocampal theta rhythm. Such
spike-phase coupling (SPC) was observed to correlate with
performance in multiple cognitive tasks [1, 19, 44] and has
been used to evaluate coupling deficits in mouse models
related to schizophrenia [2, 20, 45].
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The above-mentioned measures have been widely used
for two decades to assess inter-regional neuronal com-
munication in rodents during a variety of cognitive tasks
and disease-related manipulations, mostly involving re-
cordings from the hippocampus and prefrontal cortex
[1, 2, 20, 21], but also increasingly from the thalamus
[46] and the amygdala [47]. However, typically, only one
or two measures of coupling are calculated and inter-
preted as sufficient surrogate to quantify task- or
manipulation-related differences in actual information
exchange between the analysed regions. In this analytical
set-up, the contingency of the achieved conclusions on
the choice of the coupling measure is usually not evalu-
ated, but the redundancy of the various measures is im-
plicitly assumed. This assumption is not justified,
however, given the mathematical and partly biological
differences between these constructs. Likewise, the de-
pendence of the conclusions on the exact placements of
electrodes within the analysed regions and the choice of
reference are often not evaluated either. This presents a
problem especially when interpreting negative data, i.e.
the supposed absence of differences in coupling.
We therefore sought to evaluate the redundancy and

contingencies of such coupling metrics. To this end, we
recorded data during a simple behavioural assay—nov-
elty-induced locomotion and its habituation over time—
in Gria1−/− (KO, knockout) mice and their littermate
controls. We have recently shown that the Gria1-KO
model, which recapitulates some behavioural deficits
relevant to schizophrenia, shows profound and state-
dependent aberrations of hippocampal-prefrontal coup-
ling in this task [48]. We focused on the most widely used
connectivity measures—coherence magnitude and phase
angle, wPLI, PPC, PLV, cross-amplitude coupling, parametric
and non-parametric GC, PDC, DTF, cross-regional PAC, SPC
and SPC-related directionality—with respect to three ‘litmus
tests’ for redundancy: (a) detection of KO-related alterations
of coupling across the 10min test, (b) detection of KO-related
changes of a measure over time and (c) bivariate within-
animal correlation of the analysed measures. We investigated
connectivity between the medial prefrontal cortex (PFC) and
the hippocampus—both the dorsal (dHC) and the ventral
(vHC) partition. For the majority of the analysis, four com-
monly used frequency bands, delta (δ, 1–4Hz), theta (θ, 5–12
Hz), beta (β, 15–30Hz) and low gamma (γ, 30–48Hz) are dis-
tinguished, whereby the analysis of theta and gamma may be
regarded as particularly informative due to the existence of
spectral peaks indicating real underlying oscillatory processes.

Results
Elevated locomotor activity in Gria1-KO mice during
measurement of interregional communication
In order to measure inter-regional coupling, we im-
planted 15 adult Gria1−/− mice and 12 littermate

controls unilaterally with LFP electrodes in 4 regions,
PFC (2 electrodes), mediodorsal thalamus (MD, 1 elec-
trode), dHC (1 electrode) and vHC (2 electrodes), and
inserted screws for ground and reference above the cere-
bellum and frontal cortex, respectively (Fig. 1a). Record-
ings from all sites were made during a 10-min test of
novelty-induced locomotor activity which confirmed the
strongly elevated behavioural activity and failure of its
short-term habituation over time in Gria1−/− mice, as
observed before (Fig. 1b, c [48]). After the experiments
were completed, the placement of electrodes was evalu-
ated through electrolytic lesion sites, and misplaced elec-
trodes were excluded from the dataset; data from the
MD was disregarded for most of the subsequent analysis
because of the low number of animals with accurate
placements. In accordance with our previous study in
this mouse line [48], we recorded and analysed all data
as referenced to the ground screw above the cerebellum
by default and used the data from the frontal reference
screw for a separate analysis (displayed in Fig. 7). We ex-
tracted LFP signals (Fig. 1d, e) from all depth electrodes
and multi-unit activity (MUA) spikes from the prefrontal
wires. For PAC, amplitude cross-correlations and SPC,
the theta phase angle was extracted using a Hilbert
transform or linear interpolation between consecutive
cycles (Fig. 1f, g). Additionally, we sorted the LFP power
values obtained from each electrode in distinct fre-
quency bands according to the placement of electrodes
in different subdivisions of the PFC (PrL, Cg1 and Cg2),
dHC (apical dendritic layers of CA1, CA1 pyramidal
cells, CA1 stratum oriens) and vHC (apical dendritic
layers of CA1/CA3, CA1 pyramidal cells, dentate gyrus).
While we did not conduct statistical analysis given the
much smaller number of sites outside the target region
(PrL in PFC and apical dendritic layers, including fissure,
in the hippocampus), a qualitative inspection suggested
that the placements inferred from lesion sites did not
noticeably alter the obtained spectral LFP power
(Fig. 1h–j).

Differences in detecting delta and gamma-range coupling
in Gria1-KO mice across measures of synchrony
We first analysed phase synchronization along the two
prefrontal-hippocampal connections (PFC-dHC and
PFC-vHC) and within the hippocampus (vHC-dHC)
using coherence, wPLI, PLV and PPC (Fig. 2a–r). We
confirmed our previous observation [48] that PFC-dHC
theta coherence is strongly elevated in Gria1-knockouts
in a novel environment and further increases with time,
mirroring the spatial exploration behaviour of this geno-
type (Fig. 1b, c, Fig. 2a, d). However, this phenotype was
by no means specific to the PFC-dHC coupling, but also
re-appeared in the PFC-vHC and vHC-dHC connections
suggesting a broader deficit of excessive theta-range
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Fig. 1 (See legend on next page.)
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connectivity (Fig. 2b, c, e, f). Reassuringly, the same
phenotype was revealed by the wPLI, PLV and PPC
metric across connections (Fig. 2g–r). However, when
inspecting the other frequency bands, findings were not
particularly consistent between wPLI and the other three
measures (which appeared very similar to each other).
While all indicators revealed a reduced gamma-range
PFC-dHC coupling in knockouts, a sole analysis with
wPLI suggested further differences in the delta (PFC-
dHC, vHC-dHC) and gamma (PFC-vHC) ranges that
would have gone undetected, if using the other metrics
(Fig. 2d–f, j–r). Also, qualitatively, wPLI resulted in spec-
tra with a quite different shape compared to the other
ones.

Differences in detecting elevated inter-regional theta-
range coupling in Gria1-KO mice across measures of
directional communication
An analysis of directional connectivity with parametric
GC revealed a confirmatory but much more fine-grained
picture with KO-induced aberrations in all four fre-
quency bands depending on the connection and direc-
tion (Fig. 3a–c). Most prominently, we found strongly
elevated theta range GC in knockouts for all projections
departing in either subdivision of the hippocampus. This
confirms the hippocampal (as opposed to prefrontal) ori-
gin of the theta hyper-connectivity phenotype in Gria1-
knockout mice that we had postulated before based on
the normalization of this phenotype in mice with hippo-
campal rescue of GluA1 expression [48]. Likewise, beta/
gamma dHC➔PFC GC was strongly reduced in knock-
outs (Fig. 3a), in line with reduced phase
synchronization measures (Fig. 2d, j, m, p), while
PFC➔dHC beta and gamma GC were even mildly ele-
vated. This again suggests a hippocampal origin of the
observed reduced synchrony in this frequency range.
The most prominent GC was found in the delta range,
with PFC➔d/vHC GC being significantly larger than the
delta GC in the opposite direction in both genotypes.

Further, genotype-related differences in vHC➔PFC and
dHC➔vHC delta GC were found that do not match with
the results from the non-directional synchrony metrics
(Fig. 2).
In contrast to GC, significantly elevated theta PDC in

knockouts was only detected in the dHC➔PFC/vHC
connections, but not in the vHC➔PFC/dHC projections.
And in the beta/gamma ranges, there were virtually no
matches between PDC and GC at all regarding
genotype-related differences (except for a minority of
null-results and trends; Fig. 3a–f). Assessing SPC using
the mean resultant vector length (MRL) of the vector
representing average spike occurrence in theta phase
space [21], we found the opposite of what would have
been assumed from the PDC metric: locking of PFC
spikes to vHC theta was higher in Gria1-knockouts, but
phase-locking of PFC spikes to dHC theta showed no
difference between genotypes (the latter also contrasts
with GC and all synchrony measures; Fig. 3g).
Further discrepancies appeared when analysing con-

sistent phase differences (leads and lags) between poten-
tially coupled oscillations in different regions to assess
directionality. We investigated two directional measures
obtainable from the SPC: the average theta phase of the
MRL [20] and analysis of the effect of incremental shifts
of the MUA relative to the theta cycle on the MRL [19].
The MRLs of PFC spikes relative to the dHC—but not
vHC—theta phase were significantly shifted between ge-
notypes: while they occurred during the rising phase of
theta in knockouts, they occurred at its through in wild-
type mice (Fig. 3h). Leading of PFC spikes relative to
dHC and vHC theta was seen with phase-shifted MRL
analysis in knockouts, but no significant difference be-
tween genotypes was detectable in this metric (Fig. 3i).
The equivalent analysis, but conducted with PFC LFP
(instead of spikes) using cross-amplitude coupling
showed the opposite, namely a lead of dHC and vHC
theta relative to prefrontal theta in knockouts, and dif-
ferences between genotypes in both connections (Fig. 3j).

(See figure on previous page.)
Fig. 1 Experimental set-up, behaviour and recorded signals. a Placement of LFP and screw electrodes. b Top, experimental set-up; bottom,
distance moved in 20 s bins by Gria1−/− (KO, purple) and wild-type controls (WT, black); dashed line indicating mean; shaded region representing
SEM; solid overlaid line representing linear interpolations across time. c The same data as in b but displayed as total distance moved in 10 min
(top) and slope of the interpolated line (bottom). ***p < 0.001, t test. d Examples of unfiltered LFP traces recorded in the four brain regions. e
Illustration of the processing for connectivity measures using the same LFP frequency band in both regions; raw LFP signal (top) and LFP signal
filtered in a specific frequency range (bottom). f Illustration of cross-regional θ-γ PAC, whereby the signal in one region is filtered in the low-γ
range and the amplitude is extracted (top), while the signal in the other region is filtered in the θ range and Hilbert-transformed to extract the θ
phase (middle). The coupling strength is derived as a modulation index (MI) measuring the phase-related change of γ amplitude (bottom). g
Illustration of SPC; the hippocampal LFP (top) is filtered in the theta range and the instantaneous phase angle is extracted by linear interpolation
(below, brown); the prefrontal high-pass filtered signal reveals MUA from which spikes are extracted by thresholding (below, single spikes, and
bottom left, average of all extracted PFC spikes, black). A circular histogram is computed by assigning each spike to its theta phase angle, and the
average of all vectors is calculated as mean resultant vector (red) whose length (MRL) is taken as indicator of SPC strength (bottom right). h–j
Power of LFP in the indicated frequency bands (x-axis) and region (top of panel) displayed for each individual electrode that contributed to the
WT dataset colour-coded by the sub-division in which it was placed; hippocampal layers: pyramidal (Pyr), stratum oriens (Or), lacunosum-
moleculare (LM), radiatum (Rad), and fissure (Fis). No statistical analysis was done given that rare placements
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Fig. 2 (See legend on next page.)
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In reverse, in the gamma range, PFC led both hippocam-
pal regions exclusively in the knockouts (Fig. 3j), which
is not consistent with GC, but—at least for the PFC-
vHC connection—with PDC. Lastly, we examined the
coherence phase angle. This showed a characteristic ~
90° shift between the theta, beta and gamma oscillations
of the PFC vis-à-vis the dHC, particularly in wild-type
mice. In contrast to the other directional metrics, signifi-
cant genotype-related differences were only seen in the
gamma range, and they were prominent in the two HC-
PFC connections (Fig. 3k).
Finally, dHC- and vHC-gamma oscillations were

coupled stronger to theta oscillations in PFC and the
mutually coupled part of the hippocampus in knockouts
(gamma-theta cross-regional PAC; Fig. 3l). However,
PFC-gamma to hippocampal theta coupling was even re-
duced in knockouts (Fig. 3l) which contrasts sharply
with the results from all other measures.
In summary, while the identification of genotype-

related differences in coupling was similar between some
measures (especially coherence, PLV, PPC and GC),
there was also a considerable lack of redundancy across
the different measures of interregional connectivity (see
overview in Table 2).

Differences in detecting increases of inter-regional
coupling over time in Gria1-knockouts across measures
As a second indicator for redundancy between connect-
ivity measures, we investigated the potential physio-
logical correlates of the characteristic divergence of
exploratory drive between the two genotypes over time
(Fig. 1b, c). This divergence is likely induced by a failure
of spatial short-term habituation in Gria1-knockout
mice resulting in increasing exploration—as opposed to
the decreasing activity seen in controls [48, 49]. To allow
for an efficient analysis, we captured the change of a
given parameter over time in a single number, namely
the slope of the linear interpolation across the time
series over the 10-min test. We previously found that
both local theta power in the dHC and also dHC-PFC
theta coherence displayed a characteristic divergence be-
tween the groups that mirrored exploratory behaviour
[48]. In this novel dataset and analysis, this pattern
emerged much more broadly, namely across multiple
power and coherence measures in all three connections
(compare Fig. 1b, c with Fig. 4a–d). This included local
PFC power in all analysed frequency bands and gamma

and (at trend-level) theta peak power in the hippocampal
regions (Fig. 4a, b). For coherence, the KO-related in-
crease in slopes was limited to the delta and theta range
and was apparent in the hippocampal-prefrontal connec-
tions (confirming our earlier results) and marginally for
intra-hippocampal coupling (Fig. 4c, d). In the beta and
gamma range, either no group difference occurred or—
for PFC-dHC beta coherence—it was even inversed with
a higher slope in wild-type mice. Stunningly, this pattern
was not reproduced by the wPLI analysis (Fig. 4e, f)—
even in the one case where the coupling slope was in-
creased in knockouts in both metrics (PFC-vHC, theta),
the metrics differed in the respect that, in wild-type con-
trols, theta-wPLI remained constant, while theta coher-
ence decreased over time.
GC remained largely constant or slightly decreased over

time in wild-type mice, irrespective of connection or fre-
quency band (Fig. 4g–i). In Gria1−/− mice, in contrast, GC
increased over time in the delta and theta range in most con-
nections leading to genotype-related differences in the
vHC➔PFC (δ, θ), vHC➔dHC (θ), dHC➔vHC (δ, θ),
PFC➔vHC (δ, γ) and PFC➔dHC (δ, θ) projections. Thus,
except for an isolated match in the vHC➔PFC theta con-
nectivity, the GC metric did not align with the wPLI-based
slope assessment but provided a near-perfect match to the
coherence slope pattern (Table 2). The latter observation
even extends to the one instance of PFC-dHC beta coupling
where the slope is higher in wild-type than in KO mice
(Fig. 4g–i). The slope of the gamma-theta PAC also showed
the expected divergence between genotypes in coupling
strength along vHC connections, but not in the PFC-dHC
connections (Fig. 4j). This pattern matched neither with co-
herence and GC (as they detected temporal changes in the
PFC-dHC connection) nor with wPLI (which detected no
changes in the vHC-dHC connection). Likewise, cross-
correlational lags did not change in any pattern that resem-
bled the other measures (Fig. 4k). The slopes of MUA-
related metrics were not determined because SPC analysis
requires a considerable and equal number of spikes (not suit-
able for short intervals), and PDC and other lag metrics were
not further regarded given that they already differed from
the other metrics in the first comparison (Fig. 3).

Lack of redundancy between most coupling measures
revealed by bivariate correlation analysis
Given that the above analysis of comparing genotype-
related differences across measures ultimately allows

(See figure on previous page.)
Fig. 2 Non-directional measures of synchrony in Gria1−/− and wild-type controls across 10min novelty-induced activity. a–l Spectrogrammes (a–
c, g–r) and frequency spectra (d–f, j–r) displaying coherence (a–f), wPLI (g–l), PLV (m–o) and PPC (p–r) along the PFC-dHC (a, d, g, j, m, p), PFC-
vHC (b, e, h, k, n, q) and vHC-dHC (c, f, i, l, o, r) connections. Dotted red lines in spectra indicate boundaries of the analysed frequency bands
named by the greek letters at the top. Stars indicate significant differences between genotypes (t test) in mean (black) or peak (grey) synchrony
metrics. Lines display mean ± SEM. *p < 0.05; **p < 0.01; ***p≤ 0.001
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(See figure on previous page.)
Fig. 3. Directional metrics of inter-regional coupling in Gria1−/− and wild-type controls across 10 min novelty-induced activity. a–c Parametric GC
on log10 scale in the frequency bands indicated by greek letters and along the directional connections identified by the colour (blue: dHC➔PFC
(a), vHC➔PFC (b), vHC➔dHC (c); orange: reverse of the before). Statistical indicators in the same colour identify a difference between genotypes
(Sidak); statistical indictors in black (WT) or purple (KO) refer to a significant difference between the GC values of the two opposing directions
within the colour-coded genotype whereby the location of the indicator identifies the direction with smaller average GC. d–f The same display as
a–c but for PDC. g Mean resultant vector length (MRL) as an indicator of SPC of prefrontal spikes to hippocampal theta. h Average theta phase
angle of the mean resultant vector from SPC analysis. The theta phase corresponding to the degree value is shown on the right (horizontal axis
illustrates voltage of LFP). i MRL as a function of lag between prefrontal MUA and hippocampal LFP. Some data was excluded based on lag
amplitudes above 100ms; contributing N numbers are stated; statistics identical to g. j Cross-correlation functions of instantaneous amplitude
curves in the connections and frequency bands named at the top of each sub-panel with peak values indicated by a red dot. Statistical indictors
in black (WT) or purple (KO) refer to a significant difference of the lag (temporal shift) from 0ms (Wilcoxon’s signed rank test). k Spectra of
coherence phase angle along the named connection. Dotted red lines and greek letters indicate analysed frequency bands. l Theta-gamma cross-
regional PAC for the named directional connections. Solid lines display mean, and shaded area SEM throughout; bars display mean ± SEM
throughout. Grey stars in g–l indicate genotype differences (t test in g, i, j and l; Watson-Williams test in h and k). #p < 0.1; *p < 0.05;
**p < 0.01; ***p ≤ 0.001

Table 2 Pairwise comparison between wild-type and Gria1-knockouts

KO vs. WT Delta Theta Beta Gamma

PFC-
dHC

PFC-
vHC

vHC-
dHC

PFC-
dHC

PFC-
vHC

vHC-
dHC

PFC-
dHC

PFC-
vHC

vHC-
dHC

PFC-
dHC

PFC-
vHC

vHC-
dHC

Average
metric

Coherence *** *** *** *

wPLI ** * * *** ** ** # * * #

PLV *** *** *** * **

PPC *** *** *** * **

GC → # * # * # *

GC ← * * ** *** * *** *** #

PDC → * *** * ***

PDC ← ** * # ** **

MRL ← **

MI/PAC → * ** *

MI/PAC ← * # *

Coher.
phase

# # * *** #

CC *** * * * ***

MRL-phase
←

*

MRL-lag ←

Slope metric Coherence *** ** * ** *** # ** #

wPLI # **

GC → ** * ** * * **

GC ← ** ** *** * *

MI/PAC → **

MI/PAC ← * *

CC * # *

Overview over genotype-related statistical comparisons of the data displayed in Figs. 2, 3 (average metric) and 4 (slope metric). GC and PDC results are derived
from the Sidak post hoc test after repeated-measures ANOVA across both directions of a connection and genotypes; MRL-phase and coherence-phase angle are
compared with the Watson-Williams test [20]; all other P values are derived from independent-sample t tests. For LFP-based measures (coherence, wPLI, PLV, PPC,
GC, PDC), the P values in the theta range refer to the peak theta (not mean theta). Arrows in directional measures indicate direction of coupling: → direction
labelled in column name (e.g. PFC→ dHC in the PFC-dHC column); ← opposite direction. For MI and MRL measures, the region named first corresponds to the
region that contributes the theta oscillation to the analysis. p ≥ 0.1; #p < 0.1; *p < 0.05, **p < 0.01, ***p ≤ 0.001
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only a qualitative judgement about the epistemological
redundancy of interregional coupling metrics, we supple-
mented our analysis by a more quantitative analysis in
form of bivariate Spearman correlations between pairs of
parameters and within genotypes and connections using
the average value for each parameter in each electrode
pair as a dependent variable. We included all metrics
analysed in Figs. 2 and 3 and also partial directed coher-
ence (PDC) and non-parametric Granger causality
(npGC). This revealed multiple levels of complexity
when analysing the relation between the metrics. On the
one hand, at the level of isolated observations, the corre-
lations supported the commonalities between measures
already seen with the two prior analyses. For example,
PFC-dHC theta coherence correlated strongly with
dHC➔PFC theta-GC in wild-types (Fig. 5a). However,
this correlation did neither exist in the knockouts in the
same connection (Fig. 5a) nor in the same genotype but
the PFC-vHC connection (Fig. 5b). Indeed, PFC-vHC
theta coherence did correlate highly with GC in the op-
posite, i.e. PFC➔vHC, direction but not in the
vHC➔PFC direction—and it did so across all frequency
bands (Fig. 5b, see Additional file 1: Table S1 and S2 for
the full correlation tables in wild-type mice including all
metrics and four frequency bands), which was not the
case in the other two connections (Figs. 5a and 6a). In
general, when carefully examining each pair of metrics,
it became apparent that a correlation seen in one geno-
type and connection would rarely reappear in another
one (Fig. 5a, b, 6a).
In order to evaluate this systematically, we calculated

the average correlation coefficient for each pair across
the three connections and indicated its significance only
if it was given in all of them (Fig. 6b). Reassuringly, the
three pairs of mathematically closely related metrics
showed consistent correlations in each connection and
frequency band: PPC and PLV, parametric and non-
parametric GC, and PDC and DTF. Beyond that, how-
ever, there was not a single pair of distinct metrics that
achieved a significant correlation in all three connections
in wild-type mice in the theta band, and only two (co-
herence correlating with PPC and PLV) in the gamma
band (Fig. 6b, Additional file 1: Table S4). In Gria1-
knockouts, the picture was similar, except that, here,

coherence correlated significantly with PLV and PPC in
both the theta and the gamma bands, and additionally,
gamma wPLI correlated with coherence, PPC and PLV,
across connections. The latter result contrasts sharply
with the absence of such wPLI correlations in wild-type
mice, illustrating that some observed correlations may
depend on the genotype and are hence not reflecting a
priori redundancies.
We further examined the correlations that were not

significant in all three connections, but yet achieved a
high correlation coefficient on average. In the theta
range, coherence also correlated strongly with PPC and
PLV (average rho ≥ 0.8)—in alignment with our first
analysis (Figs. 2 and 3), the correlation result in knock-
outs, and the gamma band in both genotypes (Fig. 6b)—
and with coherence phase angle (average rho > 0.7); fur-
ther correlations yielded a medium (0.6–0.7) average
rho: (a) coherence phase angle with PPC, PLV, PDC,
DTF, GC and npGC and (b) PPC/PLV with wPLI, PDC
and DTF. In the gamma range, coherence phase angle
also showed the largest number of medium average cor-
relations with other measures, namely wPLI (average
rho = 0.77) and with coherence magnitude, PPC, PLV,
PDC, DTF, GC and npGC (average rho 0.6–0.7); the
only remaining medium average correlations (0.6–0.7) in
the gamma range were wPLI with PDC and DTF (Fig. 6b,
Additional file 1: Table S4). Also in knockouts, the co-
herence phase angle showed average medium corre-
lations with most other LFP-based metrics in the
theta and gamma range (Fig. 6b). It should be
noted that this combined analysis may overlook
correlations with directional metrics in case they
occur in only one direction. For example, theta GC
(and npGC) did actually correlate with theta PDC
(and DTF) in each of the three connections but
only in one direction each: PFC➔vHC, dHC➔PFC
and vHC➔dHC which is difficult to interpret given
that we always recorded significant GC and PDC in
both directions. Results from the SPC (MRL), PAC
and amplitude cross-correlation (lag) analyses did
not correlate with any other measure consistently in
any genotype. This synopsis largely aligns with the
redundancy patterns seen with the two former ana-
lyses (Table 2).

(See figure on previous page.)
Fig. 4. Changes of power and coupling strength over time during the 10 min open-field test. a, c, e Examples of individual measures of power
(a), coherence (c) and wPLI (e) as they behave as population average over the 10 min of novelty-induced activity in the open field (dashed line,
mean; shaded area, SEM) with linear interpolation between time points overlaid (solid line) to determine the slope as indicator of temporal
changes. b, d, f Average slope (temporal change) of power (b), coherence (d) and wPLI (f) in the indicated regions or connections (top of sub-
panel) and frequency bands (x-axis). g, h, i Slope of GC in the frequency bands indicated by greek letters and along the directional connections
identified by the colour (blue: dHC➔PFC (g), vHC➔PFC (h), vHC➔dHC (i); orange: reverse of the before). Statistical indicators in the same colour
identify a difference between genotypes (t test). j Slope of theta-gamma PAC in the stated directional connections. k Slope of cross-correlation
lags indicating putative changes of temporal shifts of the oscillations in the named frequency bands. Black stars indicate significant differences
between genotypes (t test), and error bars or shaded regions indicate SEM throughout. #p < 0.1; *p < 0.05; **p < 0.01; ***p≤ 0.001
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Sensitivity of measures to reference location
The choice of placement site for the reference electrode
varies considerably between studies, and both the refer-
encing to the ground screw above the cerebellum (as
done for all above analyses) and to the anterior part of
the frontal cortex are widely used. In order to investigate
the effect of this difference, we recorded a separate refer-
ence signal from a frontal reference screw [2, 45] and
used it to digitally re-reference all recorded data by sub-
tracting this signal from the recorded LFP traces before
re-calculating the local power, coherence, wPLI and GC.
Using repeated-measure ANOVAs with the within-

subject factor of re-referencing and the between-subject
factor of genotype, we found that the location of the ref-
erence has quite a substantial influence on the results.
There were significant effects of re-referencing on delta
power, coherence and GC in all brain regions (except for
the MD) and connections, while the effect on wPLI was
comparatively minor (but note that delta wPLI is gener-
ally very low and entirely different from delta-coherence
and GC; Fig. 7a–m). In the theta range, in contrast, re-
referencing affected power only in the dHC but strongly
impacted coherence, wPLI and GC alike along both
hippocampal-prefrontal connections—not only in terms
of significant effects of re-referencing, but also in terms
of genotype-reference interactions, which indicate that
the prior conclusions on theta range connectivity are
partly dependent on the position of the reference. In the
GC measure, interactions were apparent in the d/
vHC➔PFC direction but not in the reverse (Fig. 7k, l).
Nevertheless, there were also significant effects of geno-
type in those connections and measures, suggesting that
the fundamental observation of elevated hippocampal-
prefrontal theta connectivity in knockouts still holds, es-
pecially for the PFC-dHC connection and the GC meas-
ure in general (Fig. 7e, f, h, i, k, l). Intra-hippocampal
theta connectivity was not much affected by the refer-
ence placement, irrespective of measure (Fig. 7g, j, m).
In the higher frequency ranges, the effects were more

mixed. Beta power in the dHC and coherence—but only
partly wPLI and GC—along its connections were af-
fected by reference placement. In the gamma range, re-
referencing impacted power in the PFC and dHC, wPLI
in the PFC-d/vHC connections and coherence along all
three connections (Fig. 7a–j). In fact, the formerly ob-
served lower PFC-dHC gamma coherence and wPLI in
knockouts (Fig. 2d, j) were dependent on the reference

placement for detection (interaction effect only for co-
herence and wPLI, Fig. 7e, h). A similar observation
holds for the PFC-vHC gamma connectivity which was
increased in KOs in the wPLI, but not the coherence
measure (Fig. 2e, k). Here again, an interaction indicated
that the absence or presence of this difference in the co-
herence measure depends on the reference location
(Fig. 7f), while an effect of genotype is maintained when
using wPLI even though an interaction is found in
addition (Fig. 7i). The impact of referencing on gamma-
GC, in contrast, was limited to the dHC➔PFC projection
(Fig. 7k–m).
In summary, a frontal reference screw—as often used

when studying prefrontal-hippocampal connectivity [2,
45]—may considerably alter the results obtained for
LFP-based measurements of connectivity between the
PFC and the hippocampus. Somewhat surprisingly, the
wPLI measure does not eliminate this contingency but
only reduces it, especially in the beta-gamma range.
Referencing effects on GC are particularly visible in the
low (delta/theta) frequency range and (as interactions) in
the direction from the hippocampus to PFC.

Discussion
We here examined the level of redundancy and experi-
mental contingencies of the most widely applied mea-
sures of interregional directed and non-directed
neuronal connectivity that are obtainable with chronic-
ally implanted field electrodes in awake rodents. This
analysis revealed a surprisingly large absence of redun-
dancies between such metrics and a worrying contin-
gency with respect to the location of the reference
electrode. Both findings suggest that the implicitly held
belief that experimental results obtained with one metric
of connectivity and one configuration for referencing
would allow general conclusions about aberrations in
inter-regional functional connectivity is problematic. In-
triguingly, a similar conclusion has been reached by a re-
cent study on connectivity measures applied on human
EEG data [50].
While this finding was somewhat expected a priori

when regarding metrics of distinct conceptual founda-
tion—e.g. non-directional synchrony vs. measures of
causation—the lack of similarity even within the same
analytical category is unreckoned. From a conceptual
perspective, the result reveal the absence of a concrete
empirical counterpart of the rather interchangeably used

(See figure on previous page.)
Fig. 5. Correlations between individual measures of hippocampal-prefrontal connectivity. a, b Spearman’s coefficient (rho, colour of squares) and
significance (star within squares) of bivariate correlations between individual measures of connectivity in the PFC-dHC (a) and PFC-vHC (b)
connections within KO (top-right) and WT (bottom-left) mice. White stars, p < 0.01; purple stars, p < 0.001. Theta and gamma metrics are spatially
separated, and delta and beta metrics are omitted (see Additional file 1: Table S1 and S2 for pairwise correlations of all metrics analysed in
this figure)
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terms of inter-regional communication, coupling, infor-
mation transfer or functional connectivity. Given these
contingencies of a result obtained with any single metric,
it is difficult to equate it with the too generic notion of
neuronal communication.
A particular analytical problem appears to be the lack

of benchmarking of the sensitivity, specificity and ro-
bustness of the individual measures against a ground
truth of actual physiological trans-synaptic activity along
anatomically verified connections. Notably, we here, like
previous studies, found evidence for significant causal
influence not only along the direct anatomical projec-
tions—dHC➔vHC [51, 52], vHC➔dHC [52] and
vHC➔PFC [52–55]—but also along the PFC-dHC con-
nection that is mediated only indirectly via the nucleus
reuniens [56, 57], and even in the direction for which no
obvious anatomical correlate has been described yet to
our knowledge (PFC➔vHC [52]), which complicates the
validation and interpretation of the functional connectiv-
ity measurements.
In the absence of such benchmarking and while facing

considerable logistical limits in applying multiple refer-
encing and metrics for every experiment, our analysis at
least qualitatively implies some guidelines to choose the
set of coupling metrics suited for a rather comprehen-
sive, yet non-redundant analysis of inter-regional
communication.
Firstly, we demonstrate that some mathematically re-

lated measures do actually show a pairwise redundancy
and hence do not need to be included into the same
analysis, namely PPC and PLV [30], parametric and non-
parametric GC (allowing for considerably faster compu-
tation by using the non-parametric approach [15]) and
PDC and DTF [16, 18].
Secondly, beyond these reliable redundancies, we

found further partial redundancies across connections,
genotypes and frequencies helping to narrow the list of
metrics to include in an analysis further. Most import-
antly, PPC and PLV also showed considerable overlap
with both the magnitude and (to a lesser degree) the
phase angle of coherence, and medium average correla-
tions with wPLI, PDC and DTF. In addition, coherence
phase angle correlated broadly at a medium average level
with coherence amplitude, PDC, DTF, GC and npGC in
addition to PLV and PPC. For practical purposes, this
suggests that an assessment of two metrics—PPC and

coherence phase angle—would be a useful first-pass ap-
proach to survey LFP data for possible aberrations in
functional connectivity, which can then be followed up
with mutually non-redundant directional metrics.
Thirdly, while in such further analysis, GC and PDC (or

DTF) may seem particularly attractive metrics given that they
deliver a more fine-grained picture of coupling in distinct di-
rections and may be interpreted as indicators of causal influ-
ence between two brain regions, it is important to note that
they do not yield similar results even though they are some-
times (erroneously [58]) equated. Despite some correlations
between PDC (and DTF) with PLV, PPC and coherence phase
angle in the correlation analysis (Figs. 5 and 6), there were ac-
tually considerable and irresolvable discrepancies between
these measures in the genotype comparison (compare Fig. 2
with Fig. 3d–f); for example, genotype-related differences in
PFC-dHC gamma-range coupling seen across all measures of
synchrony and coherence phase angle were not detected by
PDC, while the reverse was true for the vHC-dHC connection.
GC, in contrast, did mostly reflect aberrations seen with the
synchrony measures and could clarify their directional under-
pinning (Table 2). Therefore, PDC/DTF and GC may serve as
complementary metrics rather than surrogates.
Fourth, spike-phase and phase-amplitude coupling can-

not be expected to be equivalent to any of the other pa-
rameters and are therefore very useful to include to
deliver a different perspective on functional connectivity.
While this may have been expected given their distinct
biological nature, the degree of absence of redundancy is
nevertheless astonishing. It should be noted, however, that
the presented SPC analysis using MUA [21] is likely far
from optimal given that units cannot be chosen by the
movement of the electrodes and not properly sorted. The
recording of single-unit activity from moveable electrode
bundles or arrays [2, 45] will certainly improve the assess-
ment of SPC and its related directional measures.
Finally, for LFP-based measures, the reference elec-

trode should be placed in a brain structure that is largely
separate from the brain regions between which connect-
ivity is studied. A frontal screw may easily obscure phe-
notypes in prefrontal connectivity as it may pick-up field
potential signals from the PFC [29, 59].

Conclusions
In summary, our analysis calls for a more cautious inter-
pretation of previous findings in the rodent literature on

(See figure on previous page.)
Fig. 6. Correlations between individual measures of intra-hippocampal and overall connectivity. a Spearman’s coefficient (rho, colour of squares)
and significance (star within squares) of bivariate correlations between individual measures of connectivity in the vHC-dHC connection within KO
(top-right) and WT (bottom-left) mice. b The same display as in a but indicating the average correlation coefficient across the three connections
(Figs. 5a, b and 6a) by the colour of a square and significance only if a significant correlation existed in every one of the three connections. White
stars, p < 0.01; purple stars, p < 0.001. Theta and gamma metrics are spatially separated, and delta and beta metrics are omitted (see
Additional file 1: Table S3 and S4 for pairwise correlations of all metrics analysed in this figure)
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Fig. 7. Assessment of the impact of the reference electrode placement on the measurement of power and connectivity. a–j Spectra for power
(a–d), coherence (e–g) and wPLI (h–j) for the regions or connections indicated at the top of each panel, shown for standard referencing to the
ground screw above the cerebellum (black, WT; purple, KO; as in Figs. 2 and 3) or digitally re-referencing to the reference screw above the frontal
cortex (blue, WT; orange, KO). Red lines indicate the boundaries of the analysed frequency bands named by the greek letters at the top. k–m GC
in the frequency bands indicated by greek letters and along the directional connections identified by the colour (blue: dHC➔PFC (k), vHC➔PFC
(l), vHC➔dHC (m); orange: reverse of the before; display as in Fig. 3a–c). Throughout, shaded regions indicate SEM, and stars indicate the results
of RM-ANOVA: black, effect of genotype; green, effect of chosen reference; grey, genotype-reference interaction. In the theta range, the statistics
for coherence and wPLI refer to peak theta. *p < 0.05; **p < 0.01; ***p≤ 0.001

Strahnen et al. BMC Biology           (2021) 19:24 Page 17 of 22



inter-regional coupling (especially when regarding nega-
tive results), the need for better benchmarking of indi-
vidual measures and the necessity to report multiple
measures of connectivity in future studies.

Methods
Animals
Male and female Gria1 knockout (Gria1−/−, Gria1tm1Rsp;
MGI:2178057) [60] mice (N = 15, 9 males) and wild-type
littermate controls (N = 12, 8 males) were bred from het-
erozygous parents. Animals were group-housed in type
II long individually ventilated cages (Greenline, Tecni-
plast, G), enriched with sawdust, sizzle-nest™ and card-
board houses (Datesand, UK) and subjected to a 13-h
light/11-h dark cycle. The mice were implanted with
electrodes at ca. 9 months of age and were tested in the
open-field test ca. 3–5 weeks later to allow recovery
from surgery intermittently.

Surgery
Electrode implantation surgeries under general isoflur-
ane anaesthesia and a broad peri-operative analgesic re-
gime were conducted similarly as previously described
for a similar dataset from a distinct cohort [48]. Briefly,
single polyimide-insulated tungsten wires of 50 μm
diameter (WireTronic Inc., CA, USA) were implanted,
with reference to the bregma (in mm), into the PFC (AP
+ 1.8–1.9, ML 0.3–0.35; 1.8–1.9 below pia), MD (AP −
1.2, ML 0.3, 2.7 below pia), dHC (AP − 1.9–2.0, ML 1.5,
1.4 below pia) and vHC (AP − 3.1–3.2, ML 2.9–3.0, 3.4
mm for single and 3.8–3.9 mm for dual electrodes below
pia). In a majority of mice, dual electrodes were used for
PFC and vHC, whereby the second electrode was placed
about 0.5 mm higher than the stated distance from pia.
In later analysis, the data from each electrode was
regarded as the unit of observation (N), so that a single
mouse could contribute up to an N = 4 for vHC-PFC
connections and up to an N = 2 for dHC-vHC, PFC-
vHC, MD-PFC and MD-vHC connections. Both hemi-
spheres were implanted at roughly equal proportion.
Stainless steel screws (1.2 mm diameter, Precision Tech-
nologies, UK) were implanted in the contralateral hemi-
sphere ca. 1 mm from the midline above the cerebellum
(AP − 5.5) for ground and above the anterior frontal cor-
tex (AP + 4.0) for additional reference, and were con-
nected with a 120-μm PTFE-insulated stainless steel
wire (Advent Research Materials Ltd., UK; Fig. 1a). All
electrode wires were connected to pins in a dual-row 6-
pin or 8-pin connector (Mill-Max, UK).
To later determine electrode placements post-mortem,

electrolytic lesions were made after breathing ceased
under terminal ketamine/medetomidine anaesthesia. Im-
mediately afterwards, animals were transcardially per-
fused with PBS followed by 4% paraformaldehyde (PFA)/

PBS, and the brains were post-fixed for 24 h in PFA/
PBS. Coronal sections of 60 μm were cut on a vibratome
in PBS and then washed 3 times in PBS, stained with
DAPI and mounted for inspection of lesion sites on an
epifluorescence microscope (DM6, Leica).

Novelty-induced locomotion and recording
Animals were tethered to enable electrophysiology re-
cordings and then placed into a novel environment con-
sisting of a clear type III plastic cage (length 43 cm,
width 22 cm, height 20 cm; Tecniplast) containing clean
sawdust. Animals were allowed to explore for 10 min.
The animals’ location in the open field was video-
tracked with ANY-maze (Stoelting, UK), and the dis-
tance travelled was calculated in 20 sec time bins. Prior
to testing, a 32-channel RHD2132 headstage (Intan
Technologies, CA, USA) was plugged into the implanted
connector via a custom-built adaptor that interfaced a
36-pin Omnetics connector (A79022–001, MSA compo-
nents, G) with another 6-pin or 8-pin Mill-Max con-
nector. The headstage was wired to an Open-Ephys
acquisition board (https://open-ephys.org, USA; obtained
through the Open-EPhys store at Champalimaud,
Portugal) via two light-weight flexible SPI-cables (Intan
Technologies), daisy-chained through a custom-
connected miniature slip-ring (Adafruit, NY, USA). The
adaptor was wired so that all signals were referenced to
the ground signal obtained from above the contralateral
cerebellum, while the signal from the additional frontal
reference screw was recorded separately (for later offline
re-referencing) like the LFP channels, i.e. also referenced
to ground. Using the RHD2132 headstage, the Open-
Ephys acquisition board and the Open-EPhys acquisition
software, data were amplified and digitized, sampled at
10 kHz and digitally high-pass filtered at 0.1 Hz for the
acquisition of raw data (for MUA and GC analysis) and
simultaneously band-pass filtered at 0.1–250 Hz (for all
remaining analysis of LFP signals).

Data processing and analysis
All signal analyses were done in MatLab (MathWorks).
Data were exported to MatLab and, for all LFP analyses,
down-sampled to 1 kHz and analysed with custom-
written scripts. To reduce low-frequency drift, signals
were first detrended using the locdetrend function of the
Chronux signal processing toolbox (http://chronux.org/)
with 1 s of data and a sliding window of 0.5 s.

Spectral analysis
Power and coherence spectra as well as the phase angles
were calculated with Chronux routines implemented in
the Chronux toolbox using the multi-taper method [61].
Power values were expressed as 10*log10 values for all
analyses, and the range of frequencies was set from 0.1
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to 48 Hz. A bandwidth of 0.2 Hz and a total of 220 ta-
pers were used to calculate power and coherence over
the course of the 10min exploration time. To analyse
the temporal development, power and coherence were
also calculated in 10-s bins using a bandwidth of 1 Hz
and 19 tapers.

Weighted phase lag index
To address the issue of volume conduction, we calcu-
lated the weighted Phase Lag Index (wPLI) [5] using the
routines implemented in the FieldTrip toolbox [62]. The
10-min exploration time was divided into non-
overlapping 1-s bins and padded to the next power of
two. The complex cross-spectrum was computed using a
Hann taper with a spectral smoothing of 0.5 Hz. For
temporal analysis, wPLI was averaged for each minute of
the 10-min period using the same spectral parameters.

Phase-locking value and pairwise-phase consistency
Phase-locking was assessed using two of the most widely
used metrices, namely the phase-locking value (PLV) [6]
and pairwise-phase consistency (PPC) [7]. Both were cal-
culated using routines implemented in the FieldTrip
toolbox [62]. The 10-min exploration time was divided
into non-overlapping 1-s bins and padded to the next
power of two. The complex cross-spectrum was com-
puted using a Hann taper with a spectral smoothing of
0.5 Hz.

Phase-amplitude coupling
Cross-frequency coupling (CFC, [36]) was assessed using
the measure of phase-amplitude coupling (PAC), the
statistical relationship between the phase of a low-
frequency and the amplitude of a high-frequency com-
ponent, in a cross-regional analysis [22, 23]. The 10-min
recording was split into 1-min bins during which the
PAC was calculated using the Modulation Index (MI,
[23, 63]). Briefly, time-series data was first band-pass fil-
tered in the desired frequency range, followed by a Hil-
bert transform using the MatLab function hilbert which
calculates the real and imaginary part of the signal to
obtain the instantaneous amplitude and phase at any
given time point. Theta phases were binned into eight-
een 20° intervals, and the mean gamma amplitude was
calculated in each phase bin. The distribution across
bins was assessed using the Kullback-Leibler divergence
[64] and normalized between 0 and 1. The MI is close to
zero if the mean gamma amplitude is uniformly distrib-
uted over the theta phases and close to one if the mean
gamma amplitude is exceptionally higher within one
phase bin [23].

Cross-correlation of instantaneous LFP amplitudes
To determine whether one signal was leading or lagging
the other, amplitude cross-correlations of instantaneous
amplitudes of LFP oscillations between all brain regions
were performed [10]. The 10-min period was divided
into 1- s bins with a 95% overlap. First, the two signals
were band-pass filtered in the respective frequency
range; the Hilbert transform was computed using the
MatLab function hilbert to calculate the instantaneous
amplitude and the envelope of the signal. The mean
amplitude was subtracted, and the cross-correlation be-
tween the amplitudes of the two signals was calculated
with the MatLab function xcorr over lags ranging from
− 100 to + 100 ms; the lag at which cross-correlation
peaked was determined [10]. While lags below − 100 ms
or above 100ms would have led to the exclusion of the
respective data point [65], no instances of such lags were
found in our dataset. To determine if the obtained lags
or leads significantly differed from zero, Wilcoxon’s
signed rank tests were performed.

Granger causality
Parametric Granger causality (GC) was calculated using
the MVGC-toolbox [66]. GC mainly applies to stationary
signals which means that the variances are not exces-
sively changing over time [13, 67]. Therefore, the 10-
min period was divided into 1-min bins and the in-built
trial averaging function was used to calculate GC in
non-overlapping 10-s sections to ensure reasonable sta-
tionarity [68–70]. The 1-min bins were used for the ana-
lysis of GC over time and then averaged to obtain a GC
value for the whole 10-min testing period. Raw LFP data
was sampled down to 250 Hz to ensure a reasonable
model order for autoregressive modelling [14, 66, 71].
The model order was obtained using the Bayesian Infor-
mation Criterion (BIC, [72]) as it was shown to provide
the best fit to electrophysiological data [66]. The model
order was fixed to 27 across all animals and trials to ob-
tain comparable results [73]. Non-prefiltered data were
used because empirical analyses have shown that filter-
ing time-series data increases the VAR model order and
leads to high variances making it unsuitable for GC ana-
lysis [71]. To obtain GC values for specific frequency
bands, we first computed GC up to the Nyquist fre-
quency and then integrated over the desired frequency
range [71]. A permutation procedure implemented in
the MVGC-toolbox was performed to test the null hy-
pothesis that values obtained by GC estimation occurred
by chance [13, 66]. Non-parametric Granger causality
(npGC), directed transfer function (DTF) and partial di-
rected coherence (PDC) were calculated using the Field-
Trip toolbox [62]. The same temporal configurations
were used as described above for parametric GC, and
raw LFP data was sampled down to 250 Hz as well.
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Instead of deriving the noise covariance matrix and
transfer function by autoregressive modelling (as done
for parametric GC), these were obtained by applying
Wilson’s spectral matrix factorization to complex Fou-
rier spectra. This non-parametric approach was shown
to be better at capturing all spectral features, less error-
prone because no model order had to be chosen and
computationally faster [15, 35].

Spike-phase coupling
Multi-unit activity was extracted by high-pass filtering
the raw signal above 800 Hz and applying a threshold at
3.5 standard deviations from the mean. Spikes were ex-
cluded, if the threshold exceeding was longer than 2ms,
and if spikes occurred within 1 ms form each other. LFP
of the second brain region was filtered between 5 and
12 Hz using the eegfilt—function of the EEGLAB-tool-
box [74]. To account for speed-dependent waveform
asymmetry in the theta oscillation, the theta phase was
defined by linear interpolation between troughs of con-
secutive cycles [75, 76]. Only periods in which the theta
amplitude was above 0.25 standard deviations of its
mean were included to ensure sufficient theta oscilla-
tions and prevent spurious phase determination. The
number of spikes was fixed to 1000 for each recording
to prevent spuriously high MRL values and fluctuations
in the firing rate. Each spike was assigned a theta phase,
and the mean resultant vector length (MRL) was calcu-
lated as an indicator for the strength of coupling using
the CircStat-Toolbox [2, 77]. The MRL gets close to one
when the spikes are concentrated around a certain phase
of the theta oscillation and approaches zero when they
are uniformly distributed. Additionally, the phase angles
of the mean resultant vector were used to quantify the
differences in phase angles between genotypes, which
were statistically assessed with the Watson-Williams test
for two samples [20, 77].
To determine the directionality between multiunit activ-

ity and theta oscillations, phase-locking was calculated for
50 different temporal offsets ranging from − 100 to + 100
ms in steps of 4ms. If the MRL peaked at a positive offset,
spikes were most strongly locked to the next theta cycle,
suggesting that spiking activity drives theta [19]. Wilcox-
on’s signed rank test was applied to determine if the lag or
lead was significantly different from zero.

Statistics
Genotype-related differences within the same metric and
frequency range were assessed by independent-sample t
test or, in the case of GC (Fig. 3), by Sidak paired post
hoc tests conducted after a significant effect of genotype
or interaction in the prior repeated-measures (RM)
ANOVA. For circular data (spike and coherence phase
angles) the Watson-Williams two-sample test was used

to assess genotype-related differences. A p value < 0.05
was used as an indicator for statistical significance; no
further correction for multiple comparisons were ap-
plied, given that we aimed to emulate the situation that
only a single measure is used to characterize connectiv-
ity, and false negatives were to be avoided given the ana-
lytical goal of detecting redundancies between metrics.
Bivariate correlations were calculated using Spearman’s
rho. To detect correlations between circular and circular
and between circular and linear data, we used circular-
circular correlation and circular-linear correlation as im-
plemented in [77]. Variability in the data is displayed as
standard error of the mean (SEM) throughout.
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