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Abstract

Calpain, an intracellular Ca2z-dependent cysteine protease, is known to play a role in a wide range of metabolic pathways
through limited proteolysis of its substrates. However, only a limited number of these substrates are currently known, with
the exact mechanism of substrate recognition and cleavage by calpain still largely unknown. While previous research has
successfully applied standard machine-learning algorithms to accurately predict substrate cleavage by other similar types of
proteases, their approach does not extend well to calpain, possibly due to its particular mode of proteolytic action and
limited amount of experimental data. Through the use of Multiple Kernel Learning, a recent extension to the classic Support
Vector Machine framework, we were able to train complex models based on rich, heterogeneous feature sets, leading to
significantly improved prediction quality (6% over highest AUC score produced by state-of-the-art methods). In addition to
producing a stronger machine-learning model for the prediction of calpain cleavage, we were able to highlight the
importance and role of each feature of substrate sequences in defining specificity: primary sequence, secondary structure
and solvent accessibility. Most notably, we showed there existed significant specificity differences across calpain sub-types,
despite previous assumption to the contrary. Prediction accuracy was further successfully validated using, as an unbiased
test set, mutated sequences of calpastatin (endogenous inhibitor of calpain) modified to no longer block calpain’s
proteolytic action. An online implementation of our prediction tool is available at http://calpain.org.
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Introduction

Calpain (EC 3.4.22.17, Clan CA, family C02) is an intracellular

Ca2z-dependent cysteine protease known to regulate substrate

functions by limited proteolysis, i.e. proteolytic processing [1–8],

resulting in the modulation of a wide variety of biological

phenomena. The many known homologues of calpain constitute

a major protease family distributed over a wide range of

organisms. Calpain has been associated with regulation of signal

transduction system, cell motility and apoptosis, while malfunction

has been observed in several serious diseases in human [3],

including muscular dystrophies [9,10], diabetes [11,12] and

tumorigenesis [13,14].

For precise modulation of substrate functions by calpains, the

cleavage sites are anticipated to be strictly determined depending

on substrates [15]. In other words, the positions of the cleavage

sites are essential determinants for how calpains modulate

substrate functions. Therefore, prediction of cleavage sites by

calpains is crucial to gain insight into how calpain proteolysis

modulates cellular functions through substrate proteolysis [8]. The

prediction holds an advantage when available amounts of

substrates are low and cleavage site determination by protein

chemistry such as protein sequencing and mass-spectrometry is

impossible. If cleavage sites are determined, antibodies specific to

the sites [16–18] and inhibitors for specific substrate proteolysis

[19–21] can be designed to analyze proteolytic events by calpain

under various conditions. Many studies have been attempted to

predict calpain cleavage sites [22–24], however, precise prediction

has never been successful so far.

Mechanisms of substrate recognition by calpain are altogether

poorly understood, compared to other types of proteases. For

example, while PEST motifs (sequences rich in proline, glutamic

acid, serine and threonine) have been shown to play a role in

calpain recognition for some substrates [25], numerous studies

have also identified cases for which PEST motifs do not impact

substrate recognition or cleavage [26,27]. Attempts at predicting

substrate cleavage by calpain have so far been entirely built on

empirically derived rules for position-based residue preferences

[19] and, more generally, Position-Specific Scoring Matrix

methods [22], although the importance of higher order structure

information has long been established [28].

A number of different methods [29–32] have been developed to

predict substrate recognition and cleavage by proteases other than

calpain, notably caspases: another family of cysteine protease

involved mainly in apoptosis, as well as in various biological

phenomena also involving calpain at times [33]. However, despite

their similarity, calpain’s particular mode of proteolytic action

would appear to set it apart from caspase, and different methods

seem needed in order to attain similar prediction results.

Difficulties of predicting calpain cleavage sites probably originate

from the structure and functions of calpains: calpains can

proteolyze various substrates in vitro and in vivo that are involved
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in a variety of cellular processes [8]. To achieve this, substrate

binding sites of calpain molecules may have evolved to recognize

their substrates in a wide range of peptide sequences, rather than

binding strongly to a few specific amino acid residues around

cleavage sites in a fashion similar to trypsin or caspases (which

have predominant K/R and D residue preferences at the P1 site,

respectively [34–36]). As a consequence, elucidating the mecha-

nisms of substrate cleavage by calpains, requires complex

combinatorial analysis of a wide range of amino acid sequences

around substrate cleavage sites.

Currently, CaMPDB, an online repository of calpain sequences

[37], lists a little over a hundred confirmed substrate sequences,

along with a computationally expanded set of many thousands

potential substrate candidates, obtained through BLAST align-

ment search. While a crucial help to devise machine-learning

cleavage prediction methods, the limited number of confirmed

cleavage data, compounded by the presence of important selection

biases in the set, further complicates the task of reaching prediction

performances on calpain cleavage comparable to other types of

cysteine protease (by contrast, in their recent work on caspase

cleavage prediction, Song et al.[32] had access to data for 562

cleavage sites over 370 sequences).

Over the past twenty years, Support Vector Machine

algorithms have become a ubiquitous tool in machine learning

and occupy a prominent position in bioinformatics research. In

addition to belonging to the margin-maximizer group of

classifiers (thus providing a bound on the generalization error),

SVM distinguish themselves by the use of so-called kernel

functions to transform the input data before classification.

Traditional SVM algorithms, such as used by recent related

work on protease substrate prediction [32,38] require selecting a

single kernel function and using it on all input data throughout

the algorithm. Such work emphasized the importance of using

richer feature sets (such as secondary structure information in

addition to sequence), however, because of the nature of

standard single-kernel methods, had to compromise on the type

and format of features that could be used.

The use of recent extensions to the SVM framework, commonly

known as Multiple Kernel Learning (MKL) algorithms allowed us

to combine heterogeneous feature sets, each with their own

adapted kernel function, while optimizing the contribution of each

sub-kernel to the resulting classifier.

Most interestingly, it has been shown [39] that Multiple Kernel

Learning can give a good understanding of which feature sets are

important for discrimination. While standard SVM methods

produce classification function that are notoriously difficult to

interpret in terms of feature contribution compared to other

classification techniques, MKL yields weights for each sub-kernel

that, once properly scaled, provide a useful representation of the

relative discriminative power of each set of features.

Materials and Methods

Optimizing Feature Set Contribution through Multiple
Kernel Learning

At the heart of kernel methods, the ‘‘kernel-trick’’ makes use of

kernel functions to remap input data into a high dimensional

feature space where a variety of methods can be used to efficiently

analyze the data (e.g.: find a margin-maximizing separating

hyperplane, in the case of SVM). The choice of such a kernel

function not only affects separability of data in the feature space,

but can also help efficiently filtering in or out certain character-

istics of the input without the need for additional steps.

A kernel function does not explicitly calculate data coordinates

in the feature space, but instead computes the inner products

between the images of all pairs of input vectors in that space.

Given a kernel function, k(xi,xj), and a set of labeled training

instances (xi,yi)i~1,:::,N (yi[f1,{1g), training an SVM means

learning the weights (ai) in the decision function:

f (x)~sign
XN

i~1

aiyik(xi,x)zb

 !
ð1Þ

Where b is the bias.

Judicious choice of kernel function (see below) gives great

flexibility regarding the nature of features that can be used (real

values, binary values, strings…), but it can sometimes be desirable

to combine features of different structure or dimension within the

same classifier. In such case, a standard solution is to find a

common encoding that can be satisfyingly applied to each set of

features in order to produce a unique input vector for each

instance. Going with such an approach, however, means losing

potentially useful data structure information in the encoding and

being forced to use identical kernel parameters for all data sources.

Additionally, it is very difficult to extract useful information in

terms of feature contribution to the final classifier.

A more elegant solution resides in the use of ‘‘multiple kernel

learning’’. Although there exist a variety of methods [39–41], they

all tend to rely on expressing a combined kernel as a linear sum (2)

of T sub-kernel functions (k1(x,x0)… kT (x,x0)), leading to the

decision function (3) and its associated optimization problem.

k(x,x0)~
XT

j~1

bjkj(x,x0) ð2Þ

f (x)~sign
XN

i~1

aiyi

XT

j~1

bjkj(x,x0)

 !
zb

 !
ð3Þ

[39] offers a method to reformulate the problem as a ‘‘semi-

infinite’’ linear program, that can in turn be solved using standard

LP techniques.

Selecting Feature Sets and Kernel Functions
The use of Multiple Kernel Learning gave us the opportunity to

not only select a large number of heterogeneous features, but also

assign a specifically adapted kernel function to each set. Through

review of biological hypotheses and preliminary results we

identified a number of feature types and kernel functions most

likely to yield good performance for cleavage prediction. We were

then able to run several different configurations in order to

evaluate which combination produced the best compromise

between performance and model complexity.

In addition to the classic Gaussian Radial Basis Function (RBF)

kernel (commonly used on such problem, in conjunction with

binary-encoded vectors of amino acid positions; see for example

[38]), we examined two other types of kernel functions that offered

interesting alternative perspectives on our data:

String kernel. Similar to linear or RBF kernel functions, in

that it is position-dependent, a typical string kernel function

calculates the number of identical k-mers (of length varying

between 1 and the kernel order: d ) between two sequences of

length L and can be defined as:

Calpain Cleavage Prediction Using MKL
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k(x,x0)~
Xd

l~1

XL{lz1

i~1

I(ui,l(x)~ui,l(x
0)) ð4Þ

Where ui,l refers to the substring of u of length l starting at

position i, and I(:) is the indicator function.

It offers the advantage of working directly on string data

(removing the need for binary encoding of sequences and leading

to more compact feature vectors) and can be configured to look at

k-mers instead of being restricted to single amino acid position in a

sequence. These two aspects make it well-suited to examine

position-based sequence features.

Spectrum kernel. Spectrum kernels are a family of functions

based on position-independent k-mer enumerations. In this

instance, we use gapped substring kernels, defined as:

k(x,x0)~Wd,g(x):Wd,g(x0) ð5Þ

Where Wd,g(x) returns a vector of occurrence counts for all

k-mers of length at most d and allowing for at most g gaps within

string x.

Using this type of kernel function lets us focus on the search for

feature motifs anywhere in the sub-sequence, regardless of position

or window size. It is therefore particularly adapted for structural

features, such as secondary structure or solvent accessibility:

accommodating their typically flexible nature by allowing for

looser positioning around the cleavage site.

Using Calpain Type Specificity
Humans present 15 genes that encode a calpain-like protease

domain, generating diverse kinds of calpain homologues with

combinations of several functional domains such as Ca2z-binding

domains (C2-domain-type and EF-hand-type) and Zn-finger

domains. Additionally, calpain homologues are increasingly being

found in other organisms including insect, nematode, trypano-

some, plant, fungus, yeast and even some bacteria. The substrates

present in our data (Figure 1) were mainly shared between

m-calpain (heterodimer of calpain-1 and CAPNS1) and m-calpain

(heterodimer of calpain-2 and CAPNS1), two major ubiquitous

homologues activated respectively by mM and mM levels of Ca2z

concentrations in vitro. In addition to these two types, a muscle-

specific calpain known as calpain-3 (also called p94) accounted for

two more substrate sequences.

While it is generally considered that members of the calpain

family behave similarly in their proteolytic activity [1,42,43],

Figure 1. Schematic structures of major calpain homologues. ‘‘Conventional’’ calpains (m- and m-calpain) are composed of larger catalytic
subunits (calpain-1 and -2) and a smaller regulatory subunit. Some homologues, such as skeletal muscle-specific calpain (calpain-3/p94) have slightly
diverged properties, including unique insertion sequences (NS, IS1 and IS2) and no requirement for a small subunit. Symbols used are: I: N-terminal
domain with little homology; IIa and IIb: protease sub-domains containing the active sites Cys and His/Asn, respectively; III: C2-like Ca2z-binding
domain; IV and VI: 5-EF-hand Ca2z-binding domain; V: Gly-rich hydrophobic domain; NS, IS1 and IS2: p94-specific sequences.
doi:10.1371/journal.pone.0019035.g001

Figure 2. Linear-kernel SVM performance trained on full set of substrates (All) vs. calpain-1 (Cal 1) and calpain-2 (Cal 2). AUC score as
function of symetrical extension length (number of nucleotides) on each side of putative cleavage site. A: using only position information. B: using
position and secondary structure (SS) information.
doi:10.1371/journal.pone.0019035.g002

Calpain Cleavage Prediction Using MKL
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preliminary results (Figure 2) showed that some amount of

specificity may exist with regard to substrate sequence and

cleavage location. Despite potential issues with reducing the

amount of training data even further, we investigated the

hypothesis that separating data by calpain type might lead to

improved prediction quality.

Experimental Setting
The data used in all our experiments was obtained from the

online calpain database CaMPDB [37], selecting only confirmed

substrate sequences (‘‘SB’’ label). The issue of selection bias in the

curated set was addressed by removing redundant sequences (as

defined by presenting an alignment with over 95% identity to

another sequence in the set) resulting in a set of 90 sequences.

Table 1. SVM Parameters.

Parameter Min Max Optimal Value

C (cost) 0.1 10 1.67

t (width) .001 1000 2.1

d (order of string kernel) 1 6 5

d’ (order of spectrum kernel) 1 10 8

g (gaps allowed) 0 3 1

Tested range and optimal values for SVM kernel function parameters. Integer
values were tested for the entire range. Non-integer parameters were set using
values within their ranges in two successive grid search of decreasing step
value.
doi:10.1371/journal.pone.0019035.t001

Figure 3. AUC (with a linear-kernel SVM) as function of cleavage extension length (left and right side of cleavage site) in number of
nucleotides. Left column uses sequence only, while right column uses secondary structure information (SS) as well.
doi:10.1371/journal.pone.0019035.g003
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For each sequence, we computed secondary structure and

solvent accessibility data using, respectively, PSIPRED [44] and

ACCpro [45]. Each amino acid sequence was thus labeled with 3

classes for secondary structure (a-helix, b-sheet, ‘‘other’’) and two

classes for solvent accessibility (above and below a 25%

accessibility treshold).

The different kernels were trained and evaluated using the

Shogun framework [39] through its Python modular interface.

Windows of varying sizes around each cleavage site made the set

of positive instances, while negative instances where randomly

sampled from every other position in the sequence so as to yield a

10 to 1 ratio between negative and positive instances.

All performance results were measured using Area under ROC

Curve (AUC) with 10610 cross-validation (average of all AUC

values generated from 10 repeats of 10-fold cross-validation).

When used with Gaussian or Linear kernels, all feature vectors

were extracted from sequence data using a canonical binary

encoding (each amino acid position in the primary sequence was

matched by 20 binary values in the feature vector). Raw sequence

data was used as input for string and spectrum kernels.

Optimal SVM parameters (cost: C and, where applicable, kernel

width: t) were set for each kernel using a grid search (see Table 1).

For each combined kernel the optimal window-length param-

eters (left and right extension around cleavage site position) of each

sub-kernel were found by sequentially running a grid search on

one set of parameters while freezing the others. This process was

iterated until convergence of the top cross-validated AUC score,

yielding locally optimal parameters (between 2 and 8, depending

on kernel configuration) in reasonable computational time.

We first explored the impact of calpain-type specificity by

running limited cross-validation experiments on the full set of

substrate sequences, then on two subsets made of substrates

cleaved by calpain-1 and calpain-2 respectively (the set of

substrates cleaved by calpain-3 was too small to be efficiently

analyzed and was therefore ignored in this part).

As a baseline we computed optimal AUC scores using a single

Gaussian kernel: first on sequence data alone, then on sequence

and secondary structure concatenated together using encoding

and window length parameters described in [38] and finally on a

variant of [38] using a grid search to find optimal extension length

parameters.

Finally, AUCs were computed for three configurations of

combined kernel, using the method developed by [39] to

simultaneously optimize sub-kernel weights and matrices.

Results and Discussion

Preliminary Results
We analyzed the impact of using different extension sizes on

either side of cleavage sites. In particular, we looked for

pronounced asymmetrical features. In order to keep the size of

input features down and avoid unnecessary noise, it was critical to

accurately narrow down sequence regions directly or indirectly

involved in substrate recognition and cleavage for each type of

feature (sequence, secondary structure and solvent accessibility).

When comparing single-kernel performances across calpain-

type (Figure 2) we can observe that, while AUC performance

peaks at 6 amino acids around the cleavage site for the m-calpain

(Cal-1) set, performance on the m-calpain (Cal-2) set increases

until at least the 8th amino acid.

This trend is even more visible when considering asymmetrical

extension lengths (Figure 3), where we can clearly see important

differences between m-calpain and m-calpain. Along the Y-axis, for

X&5 (that is, with P19–P59 fixed and extending toward P1, P2,

P3...), m-calpain has a peak around 6 and quickly decays after that.

On the other hand, m-calpain predictions perform well until

around the 20th amino acid. This probably indicates that m-calpain

recognizes a relatively short stretch of the N-terminal side of

substrates (until around P6), whereas m-calpain uses longer

portion of the N-terminal side of substrates (P20 and beyond). In

other words, m-calpain probably recognizes substrates mainly by

domain II (Figure 4), while m-calpain also uses domain III for

recognition of (at least some) substrates. This may indicate that

m-calpain has more affinity to short peptides than m-calpain.

Considering that m- and m-calpain have similar catalytic velocity

(Vmax), this would imply that m-calpain has larger turn-over

numbers for short peptides. While in our own experience

(unpublished work) m-calpain has indeed showed higher activity

to peptide substrates than m-calpain (over 5-fold), current

literature presents arguments both partly in favor [46] and against

[47] this hypothesis.

One interesting difference was reported from 3D structural

studies: when the protease domain (subdomains IIa and IIb,

Figure 1) from either type of calpain was isolated, expressed and

used for proteolytic assay, the domain from m-calpain showed over

1000-fold more activity than m-calpain. Structurally, this phe-

nomenon could be explained by interferences of the active site

with Trp106, due to the lack of interaction between subdomain IIa

and domain III resulting in instability of the Gly197–Gly210 loop

[48]. In contrast, whole 3D structure of m-calpain, composed of

domains I2IV+VI, showed stabilized Gly197–Gly210 loop and

no interference with Trp106 [49].

It is possible that some substrates may interact with domain III

of m-calpain, resulting in disruption of the interaction between

Gly197–Gly210 loop and domain III, which would interfere with

the interaction between domain IIa’s S2–S3 sites and substrates

(with corresponding P2–P3 residues). In this case, m-calpain would

use over S4 sites for substrate recognition, which may explain the

difference we observed between m- and m-calpain.

In all cases (Cal-1, Cal-2 and ‘All’), the addition of secondary

structure information (SS) to the linear kernel’s input features, not

Figure 4. Schematic representation of contact region between calpain and substrate sequence. Domain II is the protease domain of
calpain, while domain III binds Ca2z. Amino acid sequences of domain III are less conserved than those of domain II, which are highly conserved not
only between m- and m-calpains but also among all calpain family members.
doi:10.1371/journal.pone.0019035.g004
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only resulted in higher AUC across the board but also attenuated

the previously observed impact of features length specificity within

each calpain subset (Figure 3, right column). However, it is

interesting to note that this attenuation is less pronounced for m-

calpain (Cal-1) than for m-calpain (Cal-2): this may indicate that

m-calpain has stronger substrate-specificity at the secondary

structure level than m-calpain. There is no experimental evidence

that may support this hypothesis but it is consistent with the

previously mentioned specificity of m-calpain over wider substrate

areas (since secondary structure only makes sense for oligopeptides

of about 10 residues or more).

Finally, there is an imprecise but significant ‘‘line’’ along the X-

axis at Y&6 for both m- and m-calpain. This may indicate that, if

substrates do not interact well with domain III (i.e. P6–P14), they

interact more with domain II via P69–P149, implying that calpain

use different ranges of its structure to recognize different

substrates: a possible explanation for calpain’s ability to recognize

such a variety of substrates with a single molecule.

When switching to a non-linear single kernel (Gaussian RBF),

performance increased significantly (Table 2). However, in

contrast to the linear model results and despite previous findings

[38], the addition of secondary structure information not only

failed to bring significant improvement but, in most cases lowered

AUC results (Table 2, I9 and I99). This performance hit could be

caused by the extra noise brought by the addition of overly rigid

position-specific secondary structure information, compounded by

the high dimension and sparsity of the resulting feature space: a

type of problem often better handled by simpler linear model over

complex kernels (although the added discriminative power of the

non-linear model still results in overall better performance on

sequence alone). The unsatisfying compromise of having to choose

a single kernel and common encoding for both types of

information further hinted at the potential benefit of our multiple

kernel approach. Interestingly, AUC results for the calpain-2

subset showed much better resistance (if no significant improve-

ment) to the addition of secondary structure features: a further

confirmation that specificity by calpain type might exist, with at

least different use of secondary structure information.

Multiple Kernel Learning Results
We obtained a top AUC score of 83.36% on the full training set

(‘All’), using MKL with a combined kernel containing position,

string and secondary structure information (Table 3). Despite

using no more input data (sequence and secondary structure) than

single kernel methods (Table 2, I99), our method resulted in a

considerable AUC increase from the baseline score of 76.86%

(pairwise T-test p-value v2:2e{16, between 10610 cross-valida-

tion AUC results, with equal variance assumption). Although the

addition of solvent accessibility seemed to improve scores, the

increase was not significant compared to the introduction of

secondary structure alone (Table 4).

Due to the limited availability of cleavage data (less than 90

distinct sequences for all calpain types, see Table 5), it could be

expected that breaking down the general set into smaller calpain

gene product subsets (of approximately half the size) would hurt

performances: yet, results were not only stable within each subset,

but in some cases, improved. Interestingly, solvent accessibility

brought a significantly higher score to the calpain-1 subset

(85.46%), indicating that the mechanisms of substrate recognition

by m-calpain might rely more heavily on this property than m-

calpain.

In most instances, optimal window length parameters showed a

strong asymmetry between left- and right-side extension around

cleavage site (Figure 5).

Analyzing the final weights (Table 6) for each sub-kernel in the

MKL method (computed on normalized kernel matrices), we were

able to confirm what raw AUC results (Table 3) plainly suggested

in terms of feature selection: similar orders of magnitude between

the weight for position-based features and those for secondary

Table 2. AUC Results with single Gaussian kernel methods.

Cal 1 Cal 2 All

Position (I) 77.77 (0.88) 77.09 (1.28) 76.86 (1.05)

Position + SS* (I9) 73.25 (2.00) 74.13 (1.57) 75.39 (1.11)

Position + SS** (I99) 73.25 (2.00) 77.22 (1.19) 75.39 (1.11)

*: using same encoding and window length as [38].
**: using same encoding as [38] but with optimal window parameters obtained
through grid search.
Results are shown as: % AUC (% SEM).
Position: Residue position information, with a Gaussian RBF kernel (t = 2.1,
C = 1.67) and canonical binary encoding. SS: Secondary structure, with a
Spectrum kernel (k between 2 and 5, allowing up to 1 gap).
doi:10.1371/journal.pone.0019035.t002

Table 3. AUC Results with MKL methods.

Cal 1 Cal 2 All

String + SS (II) 82.39 (0.70) 80.20 (0.67) 81.46 (0.54)

Position + String + SS (III) 84.28 (0.67) 83.09 (0.79) 83.36 (0.54)

Position + String + SS + SA (IV) 85.46 (0.66) 83.23 (0.68) 83.71 (0.59)

In addition to legends from table 2:
String: Sequence string, with a String kernel (position-based substrings of
length 1 to 6). SA: 25% solvent accessibility, with a Spectrum kernel (k between
1 and 7, allowing up to 1 gap).
doi:10.1371/journal.pone.0019035.t003

Table 4. Pairwise T-test Comparison.

Test p-value Conclusion

(I) vs. (II) v2:2e{16 Significant

(II) vs. (III) v2:2e{16 Significant

(III) vs. (IV) 0.6029 Inconclusive

(II) vs. (IV) v6:327e{9 Significant

P-values for pairwise T-test comparisons between results from different
combination of kernels, using sets of 10610 AUC results, under assumption of
equal variance.
doi:10.1371/journal.pone.0019035.t004

Table 5. Substrate labeling by calpain sub-type.

Calpain-1 Calpain-2 Calpain-3 All Types

Substrate sequences 46 49 2 90

Cleavage sites 94 114 4 220

Values from each calpain gene types do not add up to the figures for ‘All Types’,
due to some substrates being cleaved by more than one type, while other
sequences are missing calpain type labeling.
doi:10.1371/journal.pone.0019035.t005
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structure and solvent accessibility, can be formally interpreted as

an indication that the latter still bring discriminative power to the

combined classifier [39].

Validation with Mutant Calpastatin Sequences
Calpastatin is an endogenous inhibitor protein specific to

calpain [50,51]: after activation by Ca2z, calpain is recognized by

calpastatin, which binds to its active site while remaining

uncleaved, thus inhibiting proteolytic activity. In their experimen-

tal work, Moldoveanu et al. were able to induce proteolysis in

several mutant sequences of calpastatin by deleting one or two

specific residues (Lys176, Glu177, or both) from a sequence of wild

type rat calpastatin (gi 13540322) [49]. Both sequences of

calpastatin (wild type and mutants) being phylogenetically

unrelated to all substrate sequences in our training set, they

provided a good opportunity for qualitative validation on the

generalization power of our prediction method.

The 3D structure of co-crystallized m-calpain and calpastatin

[49,52] indicated that Leu172-Gly173 and Thr179-Ile180 are at

the P2–P1 and P19–P29 positions, respectively. Deletion of Lys176

and Glu177 makes this mutant calpastatin a good substrate,

strongly suggesting, in the absence of further experimental

confirmation, that the cleavage site is at the C-terminus of

Ile175 and/or Gly178. Indeed, our program predicted a sharp

peak between Gly178 and Thr179 for this mutant calpastatin

(Figure 6B). The results presented in figure 6 showed not only that

our prediction model correctly identifies the binding site in the

original calpastatin sequence as a poor candidate for cleavage, but

most importantly, detected a sharp signal increase on the same site

after the sequence had been altered to allow cleavage by calpain,

closely matching what has been experimentally observed by

Moldoveanu et al. [49].

Conclusion
Through the use of a novel extension to the classic SVM

framework, we were able to significantly improve cleavage

prediction performance, as measured by a critical AUC increase:

from less than 77% (RBF position-based score for the full calpain

set) to over 83% (combined kernel using secondary structure on

top of sequence information). The demonstrated inability of single-

kernel methods to benefit from the addition of extra features such

as secondary structure, presumed to be helpful [28], provides a

strong argument in favor of MKL: by allowing seamless

integration of heterogeneous features while retaining their

respective structure, MKL can yield satisfying performance on

even critically small training sets.

Furthermore, we presented results strongly favoring the

hypothesis that subtypes of calpain behave differently with regard

to substrate recognition and cleavage, dispelling previous assump-

tion that proteolytic action was identical across all types of calpain

(treating subtypes separately lead to significant performance

increase in the case m-calpain where AUC was improved by a

further 2% to 85.46%).

In future work, we plan to explore the possibility of adapting this

method to general cleavage prediction for other types of proteases

(such as proteasomes). Additionally, the recently suggested use of

generalized ‘p-norm (for values of pw1) to promote weight

sparsity [53] could allow us to consider much greater combina-

tions of kernels at a time while preserving model accuracy.

Figure 5. AUC as function of cleavage extension length. AUC values produced by MKL prediction method, when varying extension length for
one feature set at a time (all other parameters at their optimal value). See table 2 and 3 for notations.
doi:10.1371/journal.pone.0019035.g005

Table 6. MKL weights.

Position String SS SA

String + SS (II) - 1.0 0.09 -

Position + String + SS (III) 0.80 0.59 0.07 -

Position + String + SS + SA (IV) 0.78 0.59 0.06 0.18

Optimal training weights obtained for each combination of kernels (on full
calpain set) using MKL training algorithm described in [39].
doi:10.1371/journal.pone.0019035.t006
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An online implementation of the prediction method presented

in this article is available at http://calpain.org.
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