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Abstract

Pancreatic cancer is one of the deadliest human malignancies, and its prognosis has not improved over the past 40 years.
Mouse models that spontaneously develop pancreatic adenocarcinoma and mimic the progression of the human disease
are emerging as a new tool to investigate the basic biology of this disease and identify potential therapeutic targets. Here,
we describe a new model of metastatic pancreatic adenocarcinoma based on pancreas-specific, inducible and reversible
expression of an oncogenic form of Kras, together with pancreas-specific expression of a mutant form of the tumor
suppressor p53. Using high-resolution magnetic resonance imaging to follow individual animals in longitudinal studies, we
show that both primary and metastatic lesions depend on continuous Kras activity for their maintenance. However, re-
activation of Kras* following prolonged inactivation leads to rapid tumor relapse, raising the concern that Kras*-resistance
might eventually be acquired. Thus, our data identifies Kras* as a key oncogene in pancreatic cancer maintenance, but raises
the possibility of acquired resistance should Kras inhibitors become available for use in pancreatic cancer.
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Introduction

Pancreatic ductal adenocarcinoma (PDA), the most common

form of pancreatic cancer, is frequently associated with mutations

of the Kras oncogene, most commonly KRASG12D [1,2].

Mutations of the tumor suppressor p53 2most commonly

R175H [3]2 are frequently observed in human samples [1].

Expression of mutant KrasG12D (Kras*) and mutant p53R172H -the

mouse ortholog of R175H- in the mouse pancreas was used to

generate the KPC model. KPC mice closely mimic the progression

of the human disease [4,5] and respond to therapeutics in a similar

manner as human patients. In contrast, tumors transplanted in

immuno-compromised mice poorly predict therapeutic response

[6,7]. The KPC model is thus ideally suited to study pancreatic

cancer formation. However, in this model mutant Kras expression

is irreversible. Thus, KPC mice are not suitable to study the role of

Kras* in tumor maintenance. Since drugs targeting Kras* are

currently unavailable, genetic modeling of Kras inhibition is the

only option to determine whether this oncogene is required for

tumor maintenance.

We, and others, have recently described the inducible-

Kras*p53+/2 (iKras*p53+/2) mouse model of pancreatic cancer,

that allows tissue-specific, inducible and reversible expression of

mutant Kras in combination with a loss of function allele of the

tumor suppressor p53 [8,9]. iKras*p53+/2 mice develop

invasive, but non-metastatic pancreatic cancer that is dependent

on sustained Kras* activity for its growth and maintenance. In

other mouse models of pancreatic cancer, as well as in other

tumor models, loss of function of p53 accelerated tumor

formation but only infrequently gave rise to metastatic disease.

In contrast, expression of mutant p53 has been shown to be

highly pro-metastatic [10,11,12]. There is a certain variability in

these findings: for instance, metastatic potential has been

described by other groups using KC or iKras* mice combined

with loss of function allele of p53 [9,13], thus there might be

additional effects to consider, such as genetic background of the

mice. Given that in our mouse colony p53 loss-of function did

not confer metastatic potential to iKras* mice, we generated

iKras* mice that also carried a mutant p53 allele (p53R172H,

hereby p53*). Our goal was to generate a metastatic model

where we could address the role of Kras* in the maintenance of

metastatic pancreatic cancer by following mice in longitudinal

studies, using in vivo imaging.

PLOS ONE | www.plosone.org 1 December 2012 | Volume 7 | Issue 12 | e49707



Results

In iKras*p53* mice, the pancreas-specific p48-Cre (Ptf1a-Cre)

[14] recombines a floxed stop cassette inserted in the Rosa26

locus, thus activating expression of the transcriptional activator

rtTa [15]. Cre recombination also induces expression of p53R172H

(p53*) [16] from its endogenous locus upon recombination of a

floxed stop cassette. The rtTa is transcriptionally active in the

presence of doxycycline (doxy), and inactive in its absence. Thus,

the TetO-KrasG12D (Kras*) [17] allele can be transcribed in an

inducible, tissue-specific and reversible manner by administering

doxycycline to the animals’ water (Fig. 1A). In order to induce

carcinogenesis, iKras*p53* mice were placed on doxy at weaning,

followed by a short burst of acute pancreatitis to promote PanIN

formation as previously described [18,19]. The animals were then

maintained on doxy until they developed PDA and had to be

euthanized or succumbed, between 2 and 45 weeks following doxy

administration (Fig. 1B and Table 1). Interestingly, survival of

iKras*p53* animals was longer than that of iKras*p53+/2 mice

(see Kaplan Meier curve in Fig. 1B); however, the reason for this

difference remains unclear. At necropsy, iKras*p53* animals

presented with a tumor mass frequently in the head of the

pancreas, along with visible metastatic lesions (Fig. 1C). A subset

of the animals also presented with hemorrhagic ascites (n = 5). The

histology of the primary tumor revealed moderately to un-

differentiated pancreatic adenocarcinoma with abundant desmo-

plastic stroma (Fig. 1D, Fig. 2A and Table 1) similar to what has

been found in iKras*p53+/2 animals [8]. Metastatic lesions were

highly prevalent in the liver (Fig. 1C inset, 1D, Fig. 2A and

Table 1), and less frequent in the lungs; duodenal invasion was

also occasionally observed (Fig. 1D, Fig. 2A, Table 1 and data

not shown). Both primary tumors and metastases expressed

phospho-ERK1/2, a downstream effector of Kras (Fig. 2B).

Further characterization of the tumors and metastases revealed

expression of PDA markers, such as CK19 (Fig. 2C), high

proliferative index as measured by Ki67 staining (Fig. 2D),

accumulation of mutant p53 protein (Fig. 2E), genomic instability

as detected by c-H2AX expression (Fig. 2F), and accumulation of

desmoplastic stroma including smooth muscle actin-expressing

fibroblasts (Fig. 2G). Thus, the iKras* p53* mouse model

recapitulates the histology and biological behavior of human

pancreatic cancer and previous mouse models with the additional

Figure 1. The iKras*p53* model of metastatic pancreatic adenocarcinoma. (A) Genetic makeup of iKras*p53* mice. (B) Experimental design:
doxy was administered continuously, starting at weaning. Acute pancreatitis was induced within 72 hrs, then the animals were aged until they
developed tumors. Kaplan-Meier survival curve. iKras*p53*, n = 25; iKras*p53+/2, n = 9. Log-rank statistical analysis yielded a P value of 0.001. (C) Gross
morphology pictures of a primary tumor and liver metastases. T: tumor, S: stomach, Sp: spleen, Int: intestine, L: liver (D). Histology of a moderately
differentiated (top row) and an un-differentiated (bottom row) pancreatic tumor; liver and lung metastases. T: tumor. Scale bar 100 um.
doi:10.1371/journal.pone.0049707.g001
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ability to control Kras* expression in a time and organ-selective

manner.

In order to determine the effect of Kras* inactivation on the

primary tumor and metastases, we evaluated different possibilities

for in vivo imaging, which would allow us to follow individual

animals over time in longitudinal studies. Fluorodeoxyglucose

positron emission tomography (FDG-PET) and magnetic reso-

nance imaging (MRI) have been extensively used to image

orthotopic models of PDA [20,21], and, in some cases, for

spontaneous tumors [22,23]. Others have used high-resolution

ultrasound in primary genetically engineered mouse models of

PDA [6]. We explored the use of MRI, a clinically relevant

imaging technique that would allow us to obtain high-resolution

images of tumors and metastases and to measure volume changes

over time. We imaged KPC mice (p48Cre; LSL-Kras; p53R172H)

[4], in parallel with iKras*p53* mice to compare tumor formation

in the two models. Initially, mice to be imaged were chosen based

on clinical manifestation of disease (poor coat condition, distended

abdomen), or, in some cases, upon palpation of an abdominal

mass (Fig. 3A). Control mice were imaged to visualize the normal

pancreas, nested between the stomach, duodenum, spleen, and

adjacent to the right kidney (Fig. 3B). In both individual KPC and

iKras*p53* mice (Fig. 3C and 3D), MRI imaging clearly

identified the pancreatic tumor mass. Additionally, in iKras*p53*

mice, MRI also visualized multiple metastatic lesions to the liver,

ranging from large to very small lesions (0.11 mm3) (Fig. 3D,

bottom panels). In subsequent imaging experiments, the animals

were imaged monthly, starting 1 month after activation of Kras*

expression and induction of pancreatitis, and irrespective from any

sign of disease. In this second cohort of animals, smaller tumors

were occasionally identified so that tumor growth could be

followed over time (Fig. 3E and Fig. 4B). Tumor and total

metastases volumes were measured for individual animals (Fig. 3F,
tumor volumes, top, and combined metastases volume, bottom, for

KPC and iKras*p53* #1, #2, #3) at the indicated time points.

Thus, this technique is an effective, non-invasive method to

determine the presence of tumors and metastases in individual

animals.

In order to determine whether the primary tumor and

metastases are dependent on Kras* we withdrew doxy in

iKras*p53* mice, thus inactivating the Kras* transgene, and

performed serial imaging of the same animal over time (scheme in

Fig. 4A and Fig. 5A). Following Kras* inactivation, the primary

tumor mass (Fig. 4B and Fig. 5B) regressed to barely detectable

or undetectable within 3 weeks (Fig. 4C and Fig. 5C). By 6 weeks

following Kras* inactivation, only rare metastatic lesions persisted,

although with reduced size (Fig. 5C). For each time point, we

were able to obtain volumetric measures both of the primary

tumor and of the metastases (Fig. 4D and Fig. 5F). When mice

were dissected following prolonged Kras* inactivation, their

pancreas appeared small and translucent, and lacked any apparent

visible tumor mass (Fig. 4E). Histological analysis (Fig. 4E,

Table 1. Pathology of iKras*p53* mice.

ID
Survival
(weeks) Classification Grade Metastasis Ascites

W M P U LN Duo Spleen Liver Lung

4067 18 PanIN III

4292 42 PDA X Y Y N Y Y –

4659 25 PDA X Y Y Y – – Y

4668 28 PDA X Y Y N Y – Y

5552 32 PDA X Y N N N N Y

5820 44 PDA X N N N – – –

5821 19.5 PDA X Y Y N – – Y

5825 48 PDA X Y N N – – –

5827 45 PDA X Y N N Y N –

6106 38 PanIN III

6649 22 PanIN III

6977 37 PanIN II

6989 34 PDA X N N N – – –

7275 42.5 –

7435 6 PDA X N Y N – – Y

7994 12 PanIN II –

8460 14.5 PDA X Y Y N – – –

8461 10 –

8847 16 PanIN II

9261 22 PanIN II

9805 15 PDA X Y Y N Y Y –

9806 15 PanIN III

11326 2 –

Histological Grade - W: well differentiated; M: moderately differentiated; P: poorly differentiated; U: undifferentiated (sarcomatoid).
Presence of Metastasis - Y: yes; N: no; –: not available.
doi:10.1371/journal.pone.0049707.t001
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Figure 2. Characterization of iKras*p53* primary tumor and metastases. (A) Histology of a primary pancreatic adenocarcinoma and
metastases to liver and lung. (B–G) Immunohistochemistry of primary tumor and metastases for: (B) phospho-ERK1/2; (C) CK19; (D) Ki67; (E) p53; (F)
cH2AX; (G) aSMA. M: metastasis. Scale bar 20 um.
doi:10.1371/journal.pone.0049707.g002
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Figure 3. In vivo imaging of the pancreas, pancreatic tumors and metastases. (A) Experimental design. (B) MRI of a control mouse pancreas
and liver. P: pancreas, S: stomach, Sp: spleen, K: kidney, L: liver, G: gallbladder. (C) Large pancreatic mass (T), but no metastatic lesions in a KPC mouse.
(D) Two iKras*p53* mice on doxy 15 weeks (left) and 42 weeks (right) show a large pancreatic mass and liver metastases. (E) Identification of smaller
tumors (iKras*p53* #3, left panel, 38 weeks) can be monitored as they develop into larger tumors (iKras*p53* #3, right panel, 40weeks). (F) Volume
measurements of both primary tumors and combined metastases for individual KPC and iKras*p53* animals at the indicated time points.
doi:10.1371/journal.pone.0049707.g003
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Figure 4. Longitudinal imaging of pancreatic tumor growth and regression. (A) Experimental design. (B) MRI taken at 38 weeks after Kras*
activation shows normal pancreas morphology. P: pancreas, S: stomach, Sp: spleen. However, in the same animal, there is evidence of a small
pancreatic tumor (T) at 40weeks, 2 days, which continues to increase in size over the next four weeks. (C) Tumor regression occurs following Kras*
inactivation. By three weeks, there is no longer an identifiable tumor mass. (D) Tumor volume at the indicated time points. (E) Gross morphology of
the pancreas following Kras* inactivation - note the small pancreas with no evident tumor mass (left panel). Histology of the regressed tissue (HE,
middle panel, Scale bar 100 um) reveals acini (red arrowhead) surrounded by fibrosis (green arrowhead) and adipose tissue (blue arrowhead) with
dilated ducts (yellow arrowhead) containing some cells that exhibit mucin accumulation identified by arrows (PAS staining, right panel, Scale bar
20 um). (F) Histology of fibrotic cysts, indicating a possible previous tumor site (HE, left panel), are lined with cells that are CK19 positive (inset). Scale
bar 100 um. Gomori Trichrome (Scale bar 100 um), SMA staining (inset), p-ERK1/2, and Ki67 staining indicate that the remaining fibrosis is no longer
reactive. Scale bars 20 um.
doi:10.1371/journal.pone.0049707.g004
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middle panel) revealed fibrotic parenchyma (green arrowhead), with

acini (red arrowhead) interspersed within dilated ducts (yellow

arrowhead), and surrounded by adipose tissue (blue arrowhead). Some

of the dilated ducts retained intracellular mucin accumulation

identified by positive PAS staining (Fig. 4E, right panel). We also

observed cysts lined with CK19-positive cells, that might indicate

the previous tumor site (Fig. 4F left panel). The fibrotic areas

retained collagen fibers, as highlighted with Trichrome staining,

but the cells within them lacked Smooth Muscle Actin expression

and were not proliferative, indicating scar tissue rather than active

stroma. Both throughout the remaining pancreas and within the

cysts, phospho-ERK1/2 expression was rare, confined to individ-

ual cells; Ki67 staining was present in a subset of the epithelial

cells, but mitotic figures were rare (Fig. 4F). Thus, we concluded

that in this spontaneous model of pancreatic cancer Kras* was

required for the maintenance of both the primary tumor and

metastases, even in the presence of an additional oncogene,

mutant p53. Dependence of a single oncogene for advanced

tumors has been observed before [24,25,26,27,28,29]; however, to

our knowledge, the effect of oncogene inactivation in metastases

from solid tumors has been rarely addressed.

We next proceeded to determine whether the tumor cells had

been completely eliminated, or whether a subset of them had

survived inactivation of Kras*. For this purpose, we re-induced

Kras* expression following tumor regression. Upon doxy admin-

istration, we observed rapid recurrence of the primary tumor mass

(Fig. 5D and 5F), suggesting that some tumor cells had survived

the transgene inactivation and were able to resume rapid growth.

Additionally, further analysis revealed phospho-ERK1/2 levels

were increased throughout the primary tumor as well as in the

liver and lung metastases (Fig. 5E). This observation led us to

investigate whether tumor cells might eventually acquire resistance

to Kras* inactivation.

To address this possibility, and to be able to obtain histological

information of the same tumor over time, we generated primary

cell lines from iKras*p53* tumors. Primary tumor lines in culture

were characterized either by epithelial or mesenchymal-like

morphology (Fig. 6A and 6C). The expression of mutant Kras*

RNA was regulated by doxy in culture, as expected (Fig. 6A and
6C). Furthermore, we determined Ras activity in the iKras*p53*

primary cell lines was comparable with the levels of active Ras in

cells extracted from KPC tumors (Fig. 6G). Phospho-ERK1/2

levels were initially regulated by doxy in the medium; however,

this regulation was weakened over time in culture, with phospho-

ERK1/2 levels becoming constitutively elevated, even though

Kras* expression was still doxy-dependent (Fig. 6B and 6D).

Interestingly, proliferation, as measured by proliferating cell

nuclear antigen (PCNA), did not appear to be doxy-dependent

in culture. However one of the cell lines (iKras*p53*-2) exhibited

increased expression of the apoptosis marker cleaved caspase-3 in

response to the removal of doxy from the media (Fig. 6E and 6F).

The data is consistent with previous observations that a subset of

human pancreatic cancer cells is dependent on oncogenic Kras for

survival [35,36].

To determine the effect of Kras* inactivation in vivo, we injected

the cells subcutaneously in NOD/SCID mice. While subcutaneous

injection is not appropriate for pre-clinical studies of pancreatic

cancer, since it does not reflect the complexity of the tumor

microenvironment, it nevertheless provides a readout of the ability

of tumor cells to grow in vivo. All of the lines tested (n = 3) rapidly

formed tumors when transplanted in NOD/SCID mice kept on

doxy-water. Upon doxy withdrawal, the tumors first ceased

growing and subsequently regressed rapidly; interestingly, com-

plete regression was only observed in the cell line that was

dependent on oncogenic Kras for survival in cell culture

(iKras*p53*-2). After a latency period, however, the tumors grew

back in the absence of doxy (Fig. 7A and Fig. 7C). Histological

analysis showed that the transplanted tumors as well as the

relapsed tumors resembled the primary tumor they were derived

from (Fig. 7B and Fig. 7D, compare with Fig. 1D, top and

bottom panels respectively). Both phospho-ERK1/2 and Ki67

expression levels were initially down-regulated upon Kras*

inactivation (Fig. 7D, inset), but expressed in the relapsed tumors

(Fig. 7B and Fig. 7D). We also observed down-regulation of

SMA in the fibroblasts surrounding the tumor cells, even though,

as expected, SMA expression was retained in the vasculature-

associated fibroblasts (Fig. 7D), indicating a change in epithelial-

mesenchymal interactions upon Kras* inactivation in the epithe-

lium. When we analyzed expression of oncogenic Kras* in the

tumors, we found that the relapsed tumors had constitutively

elevated expression of Kras*, indicating loss-of doxycycline

dependence in the transgene (Fig. 7E). Thus, it appears likely

that the tumor recurrence is due to selective pressure for Kras*

expression, and not to acquired independence from Kras*. We

also explored whether additional oncogenic pathways might

contribute to the relapse. We did not detect any changes in the

EGF signaling pathway, but we did observe an increase in myc

expression in the relapsed tumors (Fig. 7E, data not shown).

In a different set of experiments, we injected tumor cells in

NOD/SCID mice in absence doxy, to determine whether doxy-

independent cells were already present in the tumor lines. In this

case the tumor cells failed to give rise to tumors over a period of 13

weeks (Fig. 7C); thus, dysregulation of the Kras* transgene was

not likely to be present in the initial cell population, but occurred

while the cells were growing in NOD/SCID mice. In summary,

our observations indicate that, in vivo, the tumor cells depend on

oncogenic Kras* to form and maintain tumors. Of note, we did

not observe recurrence in iKras*p53* mice, but only once the cells

were cultured and re-established in NOD/SCID mice; it is

therefore possible that the different environment, possibly because

of the absence of a functional immune system, or because of the

manipulation of the cells, might be permissive to tumor growth.

Discussion

Thanks to studies in mouse models that closely mimic the

progression of the human disease, as well as genomic data and

studies in primary human tumors, we have developed a

sophisticated understanding of the biology of pancreatic cancer

[1,30,31]. Given the complex mutational profile of pancreatic

cancer and the impossibility to target every single alteration, it is of

key importance to understand the genes/pathways that are

required for tumor maintenance. Mutations in the Kras gene

occur early during disease progression [32]. Mouse model studies

have shown a key role of mutant Kras in the initiation of this

Figure 5. Pancreatic tumor relapse occurs following Kras* reactivation. (A) Experimental design. (B) Identification of a large pancreatic
tumor mass 22 weeks after Kras* activation. T: tumor, S: stomach, Sp: spleen, L: liver, G: gallbladder. (C) Images taken 1, 3 and 6 weeks following Kras*
inactivation. Note the greatly reduced primary tumor mass and metastatic load. (D) Reactivation of Kras* results in rapid tumor relapse. (E) Histology
of the primary tumor as well as metastases found in the liver and lung following tumor relapse show abundant phospho-ERK1/2 expression (insets).
Scale bar 100 um (F) Tumor and total metastases volume at the indicated time points.
doi:10.1371/journal.pone.0049707.g005
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Figure 6. Characterization of primary pancreatic cancer cell lines from iKras*p53* mice. (A) Primary cell line iKras*p53*-1 exhibits
epithelial morphology and demonstrates doxycycline dependent Kras* expression (* p,0.05), and pERK1/2 levels at passage 5. (B) The same cell line
at passage 12; Kras* expression is still dependent on doxy (*** p,0.001), but pERK1/2 levels do not depend on Kras* expression. (C) A second primary

Kras in Metastatic Pancreatic Cancer
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disease [33,34]. Moreover, a subset of human pancreatic cancer

cell lines require Kras* for growth and survival both in vitro and in

immuno-compromised host mice [35,36]. Additionally, other

human tumors such as lung adenocarcinoma and breast cancer

show similar dependency on oncogenic Kras [17,24]. We have

recently shown that pancreatic cancer in the mouse is addicted to

Kras* [8]. However, our first study did not extend to analyzing the

role of Kras* in the presence of another oncogenic event, nor did it

investigate metastatic disease. Given that pancreatic cancer is

highly metastatic in humans, we felt it was essential to extend our

approach to include this characteristic by combining Kras*

expression with mutant p53*. Even in the presence of p53*, we

show that Kras* is required for the maintenance of primary tumor

and metastases. However, tumor cells survived Kras* inactivation

and, upon Kras* reactivation, gave rise to renewed tumor growth.

Moreover, when tumor cells were isolated and implanted in

immuno-compromised hosts, they rapidly developed resistance. In

other models addressing oncogene dependence, eventual acquisi-

tion of resistance has been commonly observed [24,37]. In our

system, it remains to be determined whether the presence of

mutant p53 promotes resistance to Kras* inhibition, or whether

the immuno-compromised status of the host is permissive for

tumor relapse, as previously suggested [38]. Taken together, our

findings validate the notion of inhibiting Kras in pancreatic cancer

patients; however, they also provide a note of caution concerning

the potential for tumor cells to eventually bypass their oncogene

dependence. Future studies should be aimed at understanding the

mechanisms that enable a subset of tumor cells to survive Kras*

inactivation to provide strategies for complete tumor eradication.

Materials and Methods

Mice
Mice were housed in specific pathogen-free facilities of the

University of Michigan Comprehensive Cancer Center. This study

was approved by the University of Michigan University Commit-

tee on Use and Care of Animals (UCUCA) guidelines. p48Cre

(Ptf1a-Cre) mice [14] were intercrossed with TetO-KrasG12D [17],

Rosa26rtTa/rtTa [15] and p53R172H/+ [16] mice to generate

p48Cre; TetO-KrasG12D; Rosa26rtTa/+; p53R172H/+ (iK-
ras*p53*). Littermates lacking Cre or the mutant Kras and

p53 alleles were used as controls. KPC mice [4] and iKras*p53+/2

mice [8] were previously described.

Doxy was administered through the drinking water, at a

concentration of 0.2g/L in a solution of 5% sucrose, and replaced

every 3–4 days.

Pancreatitis was induced through two series of eight hourly

intraperitoneal injections of caerulein (Sigma), at a concentration

of 75 ug/kg, over a 48-hour period, as previously described [18].

Magnetic Resonance Imaging
Mice were anesthetized with 1–2% isoflurane/air, and body

temperature was maintained by blowing warm air through the

bore of the magnet using an Air-Therm (World Precision

Instruments, Sarasota, FL). MRI scans were performed using a

7 T Agilent (Palo Alto, CA) Direct Drive system with a quadrature

rat head volumic coil (m2m Imaging, Cleveland, OH). Mice were

placed supine in the coil, taped below the thoracic cavity on the

bed to reduce respiratory motion. T2-weighted images were

acquired using a fast spin echo multi-slice sequence with TR/TE:

4000/30 ms, 8 echo trains, 4 averages, 2 dummy scans, field of

view (FOV) = 25625 mm2, matrix size = 1286128, slice thick-

ness = 1 mm, number of slices = 25 contiguous. Using in-house

software developed in MATLAB (The MathWorks, Inc., Natick,

MA) the tumor boundary was manually defined on each slice and

then integrated across slices to provide a volume estimate.

Immunohistochemistry
Histology and Immunohistochemistry were performed as

previously described [8]. A list of antibodies is provided in

Table 2. Images were acquired with an Olympus BX-51

microscope, and Olympus DP71 digital camera, and DP

Controller software.

Establishment of Primary Cell Cultures
Tissue was harvested from the primary tumor, minced, and

digested with 1 mg/ml collagenase V (Sigma) at 37uC for 15

minutes. Digestion was stopped with the addition of complete

medium: RPMI-1640 (Gibco) +10% Fetal Bovine Serum +1%

penicillin/streptomycin. Cells were isolated by filtration through a

100 um cell strainer and plated in complete medium containing

doxycycline (Sigma) at 1 ug/ml.

Subcutaneous Tumor Transplantation
16106 iKras*p53* cells were injected subcutaneously into the

flank of NOD/SCID mice at a 1:1 ratio of Matrigel (BD

Biosciences) and complete medium. Doxy was administered

through the drinking water at a concentration of 0.2 g/L in a

solution of 5% sucrose for 3 days, and in chow (BioServ). Tumor

size was measured by caliper.

Quantitative RT-PCR
RNA extraction, cDNA preparation and quantitative PCR for

Kras* and normalization to GAPDH was performed as previously

described [8]. Statistical analysis was conducted with an unpaired

t-test.

Western Blot Analysis
Cells were lysed in RIPA buffer (SigmaAldrich, R0278) and

protease inhibitor (Sigma-Aldrich, P8340). Equal amounts of

protein were electrophoresed in 12% or 4–15% gradient SDS-

PAGE gels, transferred to PVDF membrane (Bio-Rad). Mem-

branes were blocked with 5% milk, and primary antibody

incubations were performed overnight at 4uC. Primary antibodies

and dilutions are provided in Table 2. Secondary antibody HRP-

conjugated anti-rabbit (1:5,000) was used and detected with

Western Lightning Plus-ECL (Perkin Elmer). Protein bands were

visualized on Kodak Biomax XAR film.

cell line, iKras*p53*-2, has mesenchymal morphology. At passage 6, Kras* expression is dependent on doxy (** p,0.01), and pERK1/2 levels depend
on Kras* expression. (D) Analysis at passage 11: Kras* is still regulated by doxy (* p,0.05, ** p,0.01), but pERK1/2 levels remain elevated. (E) Western
blot analysis of apoptosis, indicated by cleaved caspase-3 (CC3), and proliferation, measured by proliferating cell nuclear antigen (PCNA), in both
iKras*p53*-1 and iKras*p53*-2 cell lines. (F) Immunofluorescence of apoptosis, indicated by cleaved caspase-3 (CC3), in iKras*p53*-2 cells either in the
presence of (+48 h) or absence (248 h) of doxy in the media. DAPI staining marks the nuclei. Scale bar 100 um. (G) Ras pull-down assay
demonstrates that Ras activity levels are comparable between iKras*p53* cell lines and cells from KPC tumors.
doi:10.1371/journal.pone.0049707.g006
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Figure 7. iKras*p53* cells reactivate Kras* expression independently of doxycycline regulation. (A) Tumor volume measured over time
for iKras*p53*-1 cells transplanted subcutaneously in NOD/SCID mice. The yellow line indicates the presence of doxy, black lines indicate the absence
of doxy, arrows indicate harvest time-points. N = 5. (B) Histology and phospho-ERK1/2 expression (inset) of iKras*p53*-1 tumors harvested during the
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Active Ras Pull-down Assay
Pull-down and immunoblotting of active Ras was performed

using an Active Ras pull-down kit (Pierce) following the

manufacture’s instructions.
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