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Persistent antigen exposure in chronic infection and cancer has been proposed to lead to
cytotoxic T lymphocyte (CTL) “exhaustion”, i.e., loss of effector function and disease
control. Recent work identifies a population of poorly differentiated TCF-1+PD-1+ CD8+ T
cells as precursors of the terminally exhausted CTL pool. These “predysfunctional” CTLs
are suggested to respond to PD-1 targeted therapy by giving rise to a pool of functional
CTLs. Supported by gene expression analyses, we present a model in which lack of CD4+

T cell help during CD8+ T cell priming results in the formation of predysfunctional CTLs.
Our model implies that predysfunctional CTLs are formed during priming and that the
remedy for CTL dysfunction is to provide “help” signals for generation of optimal CTL
effectors. We substantiate that this may be achieved by engaging CD4+ T cells in new
CD8+ T cell priming, or by combined PD-1 blocking and CD27 agonism with available
immunotherapeutic antibodies.
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INTRODUCTION

In chronic infection and cancer, CD8+ T cells upregulate coinhibitory receptors and display
impaired proliferative and cytotoxic capacities, a phenomenon described as “T cell exhaustion”.
T cell exhaustion is considered a crucial factor in limiting clinical responses to immunotherapy, but
this T cell state is not well understood. Some experts do not envision functions for exhausted T cells,
while others surmise a role in host protection (1). Recent data illuminate how exhausted CD8+

T cells are formed. The original model proposed that exhausted CD8+ T cells develop from effector
T cells as a result of chronic stimulation via their T cell antigen receptor (TCR) (2). However, new
transcriptomic analyses, that include TCR-based lineage tracing, argue that exhausted CD8+ T cells
are not derived from functional effector cells. Rather, CD8+ T cells can attain a “predysfunctional”
state early after infection or tumorigenesis that may progress into a terminally exhausted state. It is
considered that predysfunctional cells may also be “reinvigorated” to become CTL effectors.
Blockade of the PD-1/PD-L1 coinhibitory axis may lead to such reinvigoration. Knowledge about
the exact molecular and cellular mechanisms underlying CD8+ T cell predysfunction, exhaustion
and reinvigoration are clinically relevant in chronic infection and cancer, and likely also in auto-
immune and inflammatory diseases.
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Here, we first discuss the recent literature on CD8+ T cell
predysfunction and exhaustion in a key mouse model of chronic
virus infection. This work has recently led to the concept that
predysfunction and exhaustion represent aspects of a CD8+ T
cell differentiation pathway, distinct from effector and memory
differentiation. By connecting studies on infection and cancer, we
integrate supporting arguments for this concept. We synthesize
these recent insights into a model of progressive fate
commitment of primed CD8+ T cells. Supported by gene
expression analyses, we introduce the novel perspective that
the predysfunctional differentiation state results from CD8+ T
cell priming in the absence of CD4+ T cell help. This viewpoint
implies that reinvigoration of predysfunctional CD8+ T cells may
be achieved by addition of “help” signals. We rationalize that
PD-1 targeted checkpoint blockade may lead to delivery of help
signals and may be supported by engagement of specific T cell
costimulatory receptors.
METHODS

No Help CD8+ T Cell Gene
Expression Signature
RNAseq fastq files of samples of helped CD8+ T cells (n = 3) and
samples of non-helped CD8+ T cells (n = 3) were retrieved from
GEO database (GSE89665) (3). FASTQ files were aligned to the
mouse genome mm10 (GRCm38.77) using HISAT2 v2.1.0
(4), and number of reads was assigned to genes by using
featureCounts v1.6.1 (5). Reads mapped to genes were
normalized and differentially expressed gene analysis between
non-helped CD8+ T cells and helped CD8+ T cell was performed
using edgeR package in R Bioconductor (6). The false discovery
rate (FDR) < 0.01 was used as the criteria to select statistically
differentially expressed gene lists. In total, a list of 1,331 genes
were found differentially expressed between non-helped
condition and helped conditions (FDR < 0.01), which
represents the No Help signature.

Calculation of No Help Score in Published
CD8 T Cell Expression Signatures
RNAseq fastq files were retrieved from GEO database (GSE99531,
GSE122713) (7, 8). FASTQ files were aligned to the mouse
genome mm10 using HISAT2 v2.1.0 (4), and number of reads
was assigned to genes by using featureCounts v1.6.1 (5). Genes
with all zero counts were removed. The raw counts were
normalized by count per million (CPM) methods (6). For each
sample, a “NoHelp score” was determined by the nearest centroid
method on the 1331 genes from the No Help signature. In short,
the No Help score was calculated as the difference of Pearson
correlations in normalized read counts between a given population
and No Help or Help vaccination settings. A higher No Help score
indicates greater transcriptional similarity to helpless CD8+ T cells.

Gene Set Enrichment Analysis
RNAseq files of helped or non-helped CD8 T cells, aligned to the
mouse genome mm10, were imported into Qlucore Omics
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Explorer. Genes with less than 5 reads in at least one of the
samples were discarded. Mapping quality threshold was set to 10.
TNM normalization method was applied. Gene Set Enrichment
Analysis was performed using published gene sets of the top 200
up- and downregulated genes from Tcf7-GFP+ versus Tcf7-GFP−

P14 cells in chronic LCMV infection (9) or B16-gp33 tumor
model (10).

Statistical Analysis
Data was analyzed with GraphPad Prism software using
unpaired two-tailed Student’s t-test, or repeated measures one-
way ANOVA with Tukey’s multiple comparison test. A P value <
0.05 was considered statistically significant; *P < 0.05, **P < 0.01,
and ***P < 0.001.

Illustrations
Illustrations in Figures 1–4 were created with BioRender.
HELP DELIVERY DURING CD8+

T CELL PRIMING

Priming of CD4+ and CD8+ T cells relies on three key signals:
TCR engagement by peptide/MHC complexes, costimulation by
CD28 and members of the TNF receptor family, as well as
specific cytokine signaling. Dendritic cells (DCs) can supply
these signals, provided that the DC is of the appropriate subset
and adequately activated, by pathogen- or danger-derived signals
or by CD4+ T cells. In secondary lymphoid organs, CD4+ and
CD8+ T cells engage in successive antigen-specific interactions
with different DC subtypes. Migratory DCs deliver the antigen
from the site of infection, while lymph node-resident DCs pick
up the antigen locally. CD4+ and CD8+ T cells are initially
activated independent from each other, in different regions of the
lymph node by migratory conventional (c)DC1 and cDC2
subsets (12–14). After this first step of priming, a second step
of priming takes place on lymph node-resident cDC1s. In this
interaction, CD4+ T cell help is delivered that is essential for
optimal differentiation of CD8+ T cells into CTL effector and
memory cells (11) (Figure 1). CD4+ and CD8+ T cells that have
undergone the first step of priming produce specific chemokines
that attract lymph node-resident cDC1 (12, 13, 15). In case the
cDC1 co-presents recognizable MHC class II- and MHC class I-
restricted antigens, it can relay help signals from the CD4+ T cell
to the CD8+ T cell. Plasmacytoid (p)DCs likely promote this
scenario by the production of type I interferon (IFN), which
optimizes maturation and antigen crosspresentation by
cDC1s (16).

Upon cognate contact with the CD4+ T cell, the lymph node-
resident cDC1 gains expression of various cytokines and co-
stimulatory ligands that in concert optimize the CD8+ T cell
response (11). Interaction between CD40 ligand on the CD4+ T
cell and CD40 on the cDC1 amplifies production of IL-12 and
IL-15 by the DC, which improves clonal expansion and effector
differentiation of CD8+ T cells (17, 18). Furthermore, CD40
signaling in DCs upregulates CD80/CD86 and CD70, which
October 2020 | Volume 11 | Article 592569
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relay costimulatory signals via CD28 and CD27, respectively
(19–21). In both CD4+ and CD8+ T cells, CD28 costimulation
amplifies the TCR signal and drives cell division (22), while
CD27 costimulation promotes cell survival and effector
differentiation (3, 23–25). CD27 costimulation of CD8+ T
cells is a key effector pathway of CD4+ T cell help. It
promotes CTL differentiation and survival, likely directly, but
also by increasing expression of the IL-2 receptor alpha chain,
IL-2 and the IL-12 receptor, leading to autocrine IL-2 signaling
Frontiers in Immunology | www.frontiersin.org 3
and responsiveness to DC-derived IL-12 (3, 26–28). IL-21
production by CD4+ T cells also promotes CTL effector
differentiation (29).

By transcriptomic analyses in mice, we have discovered how
help signals impact effector and memory gene expression
programs of CD8+ T cells (3, 30). At the effector stage,
“helped” versus “helpless” CTLs differentially expressed about
1,000 transcripts, encoding proteins enabling critical CTL
functions, such as cytotoxicity and migratory abilities. From
FIGURE 1 | Two-step priming model. During the first step of T cell priming (left), CD8+ T cells and CD4+ T cells are initially activated independently by different DC
subtypes that present antigen on MHC class I and class II, respectively. In the second step of priming (right), recently activated CD4+ and CD8+ T cells interact with
the same lymph node-resident cDC1 co-expressing MHC class I and MHC class II epitopes. Helped CD8+ T cells undergo optimal priming by signaling via various
costimulatory and cytokine signals that emerge from the helped cDC1, resulting in an optimal CTL effector program (11).
A
B

C

FIGURE 2 | Predysfunctional TCF-1+ CD8+ T cells in a chronic LCMV infection model display a gene expression signature characteristic of helpless antigen-specific
CD8+ T cells in a vaccination model. The transcriptional “No Help” signature was determined by differential gene expression (False discovery rate (FDR) < 0.01) of
antigen-specific CTLs raised in No Help versus Help vaccination settings (GEO database GSE89665) (3). (A) Differential expression of selected genes characteristic of
predysfunctional TCF-1+CD8+ T cells (Table 1) in No Help versus Help settings. FDR is depicted per gene. (B) GSEA of the top 200 upregulated (red)- or
downregulated (blue) genes from TCF1+ versus TCF1− virus-specific CD8+ T cells in chronic LCMV infection (9) within the gene expression profiles of CD8+ T cells
from the No Help versus Help vaccination settings. NES, normalized enrichment score. (C) No Help score in predysfunctional TCF-1+TIM3− and terminally exhausted
TCF-1−TIM3+ CD8+ T cells from a setting of chronic LCMV infection (GEO database GSE122713) (7). The No Help score was calculated as the difference of
correlations in gene expression between a given population and No Help or Help vaccination settings. A higher No-Help score indicates greater transcriptional
similarity to helpless CD8+ T cells. **P < 0.01 by Student’s t-test.
October 2020 | Volume 11 | Article 592569
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functional studies in a tumor model, we concluded that CD4+ T
cell help confers upon CTLs the exact properties desired for
effective anti-tumor immunity, as defined by Chen and Mellman
in “The cancer immunity cycle” (31). Conversely, helpless CTLs
Frontiers in Immunology | www.frontiersin.org 4
proved to have a dysfunctional phenotype characterized by low
cytotoxic capacity and high expression of PD-1 and other co-
inhibitory receptors (3), classifying them as “exhausted”,
according to the original definition. Other authors defined by
A

B C

FIGURE 3 | Predysfunctional TCF-1+ CD8+ T cells in human cancer display a gene expression signature characteristic of helpless antigen-specific CD8+ T cells in a
mouse vaccination model. (A) GSEA showing enrichment of the top 200 upregulated (red) or downregulated (blue) genes in gp33-specific TCF-1+ CD8+ T cells in a
murine B16-gp33 tumor model (10) within the gene expression profiles of vaccine antigen-specific CD8+ T cells in No Help versus Help settings (3). (B) No Help
scores, defined in our vaccination model, determined in the transcriptomes of predysfunctional TCF-1+TIM3− and terminally exhausted TCF-1−TIM3+ tumor antigen-
specific CD8+ T cells from a murine B16-OVA tumor model (GEO database GSE122713) (7). (C) No Help score defined as in (B), determined in the transcriptome of
patient-matched PD-1-high, PD-1-intermediate, and PD-1-negative CD8+ TILs in human melanoma (GEO database GSE99531) (8). *P < 0.05, ***P < 0.001 by
Student’s t-test (B) or one-way ANOVA (C).
FIGURE 4 | Helpless dysfunction model. Upon priming of CD8+ T cells, a differentiation spectrum is formed, ranging from uncommitted memory precursors to
terminally differentiated effector cells. In presence of CD4+ T cell help signals (left), the antigen-specific CD8+ T cell population attains higher differentiation states, with
the majority of cells becoming terminally differentiated, short-lived effector CTLs. These helped CTLs clear the antigen source and die. When antigen wanes, memory
precursor cells persist and form helped central (TCM) and effector memory (TEM) CD8

+ T cells. In absence of help signals (right), antigen-specific CD8+ T cells undergo
incomplete effector differentiation and terminally differentiated effector CTLs are lacking. Instead, predysfunctional effector CTLs are formed that are less committed
(“memory-like”), i.e., have not fully unfolded their effector program and express coinhibitory receptors. In addition, formation of effector memory CD8+ T cells is
impaired. As a result, antigen persists and continuous TCR stimulation of memory precursor cells drives their differentiation into predysfunctional CTLs that self-
maintain or differentiate into terminally exhausted cells.
October 2020 | Volume 11 | Article 592569
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micro-array similar gene expression features in helpless CTLs,
which proved to resemble exhausted CTLs, as defined in a mouse
model of chronic LCMV infection (32). In conclusion, there
appears to be a connection between helpless priming of CD8+ T
cells and acquisition of the exhausted state. This connection will
be clarified in this Hypothesis and Theory article.
ANTIGEN-SPECIFIC CD8+ T CELL FATES
IN CHRONIC INFECTION

Exhaustion
Exhaustion of antigen-specific CD8+ T cells was first described in
mouse models of chronic infection with LCMV (33). Exhausted
virus-specific CD8+ T cells were defined by a diminished ability
to display effector functions such as IFNg production, and high
expression of coinhibitory receptors such as PD-1. It was
proposed that virus-specific effector CD8+ T cells gradually
turn into exhausted cells upon chronic engagement of the TCR
by persistent viral antigen. Observations that TCR-regulated
transcription factors contribute to exhaustion led to this idea
(34–36). In agreement with TCR signaling driving exhaustion,
the exhausted virus-specific CD8+ T cell fraction was found to
increase in time upon viral persistence (37). However, virus-
specific CD8+ T cells can already show impaired effector
functions from the beginning of a chronic infection, suggesting
causes other than chronic antigen exposure (37). Adoptive
transfer experiments demonstrated that exhausted CD8+

T cells in chronic LCMV infections derive from the same
progenitors as memory cells and not from terminally
differentiated (KLRG1hi) effector T cells (38). This finding
suggested that exhausted CD8+ T cells in chronic infection do
not follow a normal effector differentiation path (39).

Predysfunction
Despite the persistence of viral antigen, not all virus-specific
CD8+ T cells in chronic infection acquire a terminally exhausted
phenotype. A subset of virus-specific CD8+ T cells in chronic
LCMV infection was found to proliferate and give rise to
terminally exhausted cells (40). Other authors defined in the
same model a small “memory-like” subpopulation within the
virus-specific CD8+ T cell pool that retained proliferative
capacities and could re-expand upon secondary infection in an
antigen-free host (41). Later, this proliferative population was
found to express the transcription factor TCF-1 (9, 42) and the
chemokine receptor CXCR5 (43, 44). These studies report that
TCF-1+ CXCR5+ CD8+ T population is self-sustaining and
constantly replenishes the exhausted CD8+ T cell pool. This
population is described by different nomenclature (Table 1), but
throughout this article, we will use the term “predysfunctional”.
The predysfunctional population is established early in chronic
infection with LCMV strain clone 13, before the peak of the T cell
response, but is not seen in acute infection with LCMV strain
Armstrong (51). TCF-1 is also expressed in memory T cells in
acute infection, but predysfunctional TCF1+ T cells in chronic
infection can be identified by co-expression of CXCR5, Slamf6
Frontiers in Immunology | www.frontiersin.org 5
and PD-1 (29, 44). TCF-1 signaling represses effector
differentiation and is thereby essential for generation and
maintenance of predysfunctional T cells (42, 57, 59).

From Predysfunction to Exhaustion
Antigenic stimulation of predysfunctional TCF-1+CXCR5+ CD8+

T cells can drive their differentiation into TCF-1− CXCR5−

“terminally exhausted” cells (40, 49, 69). During this
differentiation process, predysfunctional cells transiently acquire a
more effector-like gene signature (49, 57, 70). Terminally exhausted
CD8+ T cells are short-lived and display higher expression of
coinhibitory receptors than TCF-1+ predysfunctional cells (9, 42–
44). Conversion from a predysfunctional to a terminally exhausted
state is associated with epigenetic and transcriptional changes
involving genes encoding coinhibitory receptors, effector
molecules and effector-associated transcription factors (7, 47, 70).
TABLE 1 | Definitions of predysfunctional CD8+ T cell populations in chronic
infection and cancer.

Population name Markers Source References

Memory-like TCF-1+ LCMV-c13 (9, 39, 41, 45)
Human HCV (9)
Human melanoma (46)

Stem-like CXCR5+TIM3− LCMV-c13 (44, 47)
Human NSCLC (48)

PD-
1+CD101−TIM3−

LCMV-c13 (49)

TIM3−CD28+ Human kidney
cancer

(50)

TCF-1+ B16-gp33 (10)
Progenitor-like TCF-1highTIM3low LCMV-c13 (42)

Human melanoma (42)
Tcf7+Tox+ LCMV-c13 (51)

Progenitor TCF-1+ LCMV-c13 (52–55)
Ly108+ (Slamf6+) LCMV-c13 (29)

Progenitor exhausted Slamf6+TIM3− LCMV-c13;
B16-OVA

(7)

TCF-1+PD-1+ Human melanoma (7)
Precursor T-bethighEomeslow LCMV-c13 (40)
Memory
precursor-like

PD-1−TCF-1+ MC38-OVA (56)

Precursor exhausted KLRG1-PD-1+

Ly108+
LCMV-c13 (57)

TCF-1+ LCMV-c13 (58)
Stem cell-like
exhausted

CXCR5+TIM3− LCMV-c13 (59)

Pre-exhausted GZMK+, ZNF683+ Human NSCLC (60)
Predysfunctional multiple Human cancers (61)
Early dysfunctional CD38lowCD101low ASTxCre-ERT2 (62, 63)
Transitional GZMK+ Human melanoma (64)

Human HCC (65)
Follicular cytotoxic CXCR5+ LCMV-13 (43, 66)

LCMV-DOCILE;
HIV

(67)

Human CHB (68)
October
 2020 | Volume 11 |
The listed populations have in common that they sustain the CTL response in presence of
persistent antigen, and form the progenitors of the terminally exhausted population, as
originally shown by Utzschneider et al. (9), Wu et al. (42), He et al. (43), and Im et al. (44)
and corroborated by Miller et al. (7) and Zander et al. (29). Other cited papers consider the
defined population to be predysfunctional based on the markers and the proliferative/
”stem-like” phenotype described in the original papers. In the papers describing human
single cell RNAseq data, the predysfunctional population is defined by intermediate
expression of inhibitory receptor genes, low expression of effector-associated genes,
and TCR sharing with the terminally exhausted population.
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The transcription factor TOX plays a critical role in epigenetic
imprinting of dysfunction in the TCF-1+ subset and induces fate
commitment to a terminally exhausted phenotype (51, 52, 71–73).
Both the establishment of the predysfunctional population and the
TOX-driven commitment to exhaustion are part of a differentiation
path that is separate from effector differentiation, occurring in early
stages of chronic LCMV infection (51, 57, 71). Together, these
findings provide strong support for the notion that terminally
exhausted T cells found in chronic infections are derived from a
population of predysfunctional cells, instead of from functional
effectors. Similar processes likely take place in human, where virus-
specific predysfunctional and terminally exhausted CD8+ T cell
populations have been identified in patients with chronic hepatitis C
virus (HCV) infection (9). Also, CXCR5+ CD8+ T cells were found
in patients infected with human immunodeficiency virus (HIV) or
chronic hepatitis B virus (HBV) (67, 68).

Reinvigoration
Importantly, PD-1 blockade unleashes the expansion potential of
predysfunctional, but not terminally exhausted virus-specific
CD8+ T cells (9, 43, 44). Predysfunctional TCF-1+ CD8+ T cells
express PD-1 that supports the maintenance of this population
early during chronic LCMV infection (57). Chronic virus
infections (LCMV clone 13, HIV) induce chromatin accessibility
and permanent demethylation of the Pdcd1 locus (encoding PD-
1), causing exhausted CD8+ T cells to stably express PD-1 at high
levels (74, 75). Terminally exhausted CD8+ T cells express higher
levels of PD-1 and other coinhibitory receptors than
predysfunctional cells (9, 42, 43). In the terminally exhausted
population, efficacy and durability of virus-specific CD8+ T cell
reinvigoration by PD-1 blockade proved to be limited by the
epigenetic landscape, including chromatin accessibility and de
novo DNA methylation (76, 77). Taken together, these results
argue that the predysfunctional virus-specific CD8+ T cell
population in chronic infection is reinvigorated by PD-1
blockade. Predysfunctional cells respond to PD-(L)1 blockade by
undergoing proliferation, as well as differentiation toward a
terminally exhausted phenotype (7). During this differentiation,
cells pass through an intermediate or “transitory” state,
characterized by a transcriptional signature that resembles that
of effector CTLs (49, 70). While these effector-like CD8+ T cells
that are reinvigorated by PD-1 blockade are able to produce
cytokines and contribute to virus control, they retain expression
of inhibitory receptors and eventually convert to a terminally
exhausted state upon persistent antigen exposure (49).
PROPOSITION: HELPLESS PRIMING
GENERATES PREDYSFUNCTIONAL
CD8+ T CELLS

Establishing a chronic infection in mouse models is often aided
by depleting CD4+ T cells (33, 37, 44, 77, 78), suggesting a link
between the absence of CD4+ T cell help and infections persisting
chronically. Decreased antigen presentation and decreased
costimulatory signaling by DCs during priming promote the
Frontiers in Immunology | www.frontiersin.org 6
formation of TCF-1+ cells, suggesting that this population may
be generated as a result of suboptimal priming (45). Importantly,
CD4+ T cell depletion in chronic LCMV infection impaired the
generation of terminally differentiated effector CD8+ T cells, but
not of predysfunctional TCF-1+ CD8+ T cells (53). This finding
indicates that the predysfunctional TCF-1+ CD8+ T cell
population is formed independently of CD4+ T cell help. We
propose that this population is formed as a result of helpless
priming and provide supporting evidence in this article.

As a model to study CD4+ T cell help for the CTL response,
our group made use of a therapeutic DNA vaccination scheme in
mice. We used a comparative setting with two vaccines that
encode an immunodominant MHC-I restricted peptide from the
human papillomavirus (HPV) E7 protein to prime CD8+ T cells,
either with or without HPV-unrelated immunodominant MHC-
II restricted peptides to induce CD4+ T cell help (79). Genome-
wide mRNA deep sequencing of HPV-E7-specific CD8+ T cells
at the effector stage of the CTL response yielded “Help” and “No
Help” signatures (3). Helpless CTLs expressed many genes
characteristic of the predysfunctional CD8+ T cell subset at a
higher level than helped CTLs, including Tcf7 (encoding TCF-1),
Tox, Pdcd1, Cxcr5, and Slamf6 (Figure 2A) (3). We therefore
hypothesized that predysfunctional CD8+ T cells found in
chronic LCMV infection are cells that have not experienced
CD4+ T cell help during priming. To test this, we determined
how predysfunctional CD8+ T cells defined in literature and
helpless CD8+ T cells defined in our study are related at the gene
expression level, by Gene Set Enrichment Analysis (GSEA). A
published gene expression signature characteristic for the
predysfunctional TCF-1+ CD8+ T cell population in chronic
LCMV infection (9) in mice thus proved to be enriched in the No
Help gene expression signature of antigen-specific CD8+ T cells
from our vaccination study (Figure 2B). Additionally, using
another published dataset from chronic LCMV infection (7), we
determined a “No Help score” as a measure of correlation with
our No Help gene expression signature. This analysis
demonstrated that predysfunctional TCF-1+ CD8+ T cells
display a higher No Help score than TCF-1− terminally
exhausted cells, indicating that predysfunctional CD8+ T cells
are transcriptionally more similar to helpless CD8+ T cells
(Figure 2C).
CD8+ T CELL DYSFUNCTION IN CANCER

The Parallel
In cancer, tumor antigen-specific CD8+ T cells may be
chronically stimulated within the tumor micro-environment
(TME), which theoretically can lead to exhaustion, as it does in
mouse models of chronic virus infection. However, in the LCMV
models, infection is systemic and analysis is generally focused on
CD8+ T cells from the spleen. This milieu is distinct from the
TME in partially undefined aspects. In both environments,
specific conditions are created by interplay between infected
cells or growing tumor cells, immune cells and non-immune
cells. Intratumoral CD8+ T cells are known to be exposed to
October 2020 | Volume 11 | Article 592569
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various suppressive immune cell types, inhibitory molecules,
hypoxia, metabolites and nutrient deprivation (2).

Mouse Models
Using a mouse model of tamoxifen-inducible liver cancer, it was
shown that tumor antigen-specific CD8+ T cells taken from the
TME early during tumorigenesis could be reinvigorated by PD-1
blockade or recall in an antigen-free host. Late in tumor
development, however, these cells could no longer be rendered
functional. It was found that tumor-specific CD8+ T cells in the
TME over time acquire a fixed dysfunctional phenotype (62).
Follow-up research in this model showed that tumor-specific
CD8+ T cells in the TME first attain a reversible dysfunctional
state and next enter a epigenetically fixed dysfunctional state
(63). These data are in agreement with a transition from
predysfunction to exhaustion.

In a murine melanoma model, single-cell transcriptomics
revealed that among CD8+ tumor infiltrating lymphocytes (TILs),
TCF-1+ predysfunctional and TCF-1− terminally exhausted cell
subsets can be discerned that are analogous to those defined in
chronic LCMV infection. Adoptive transfer experiments
demonstrated that TCF-1+ CD8+ T cells can persist long-term
inside a tumor and give rise to terminally exhausted cells (7). Like in
chronic infection, transcriptional and epigenetic changes underlying
this conversion depended on the transcription factor TOX (72, 73).

Human Cancer
Also in human cancer, there is increasing evidence for the
existence of predysfunctional and terminally exhausted CD8+

T cell populations. In non-small cell lung cancer (NSCLC),
CXCR5 expression was selectively found on CD8+ TILs and
not on CD8+ T cells from healthy tissue or blood (48). In kidney
cancer, TCF-1+TIM3−CD28+ predysfunctional TILs were
found to reside in niches that are rich in antigen-presenting
cells, while PD-1+TIM3+ terminally exhausted cells were
distributed throughout the tumor tissue. Transcriptional and
epigenetic profiles of these human TIL subsets proved to be
similar to those described in the mouse. Importantly, TCR
repertoire overlap between the two populations indicated that
TCF-1+ predysfunctional TILs are indeed the progenitors of
terminally exhausted TILs (50). TCR repertoire overlap
between a terminally exhausted TIL population, characterized
by high expression of coinhibitory receptor genes, and a
predysfunctional TIL population, characterized by expression
of GZMK, was also found in human melanoma (64), NSCLC
(60), colorectal cancer (CRC) (80) and hepatocellular carcinoma
(HCC) (65). These findings are consistent with a model
where also in human cancer, exhausted TILs derive from a
predysfunctional population. However, a strict division of the
human TIL pool into predysfunctional or terminally exhausted
may be an oversimplification. Rather, CTL dysfunction in
human TILs covers a spectrum of differentiation states,
ranging from predysfunctional to terminally exhausted (61).

The question remains whether the active CTLs that display
effector functions in human tumors are generated from a
separate CD8+ T cell pool, or are connected to the (pre)
dysfunctional pool. In CRC, HCC and NSCLC studies, TCR
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sharing was found between GZMK+ predysfunctional TILs and
CX3CR1+ effector populations from blood and normal tissue (60,
65, 80). These results support a model in which the
predysfunctional population forms a branchpoint from which
differentiation trajectories of effector versus exhausted CD8+ T
cells emanate, possibly reflecting CD8+ T cells after the first step
of priming that subsequently receive CD4+ T cell help, versus
CD8+ T cells that do not. However, it was not determined in
those studies whether the T cells that shared TCRs were tumor-
specific. In melanoma, intratumoral GZMH+ effector CTLs did
not share TCRs with the predysfunctional or exhausted CD8+

TIL population, indicating that they formed a separate lineage
(64). Interestingly, in this study, tumor reactivity was enriched in
the dysfunctional but not in the cytotoxic TIL population,
suggesting that the cytotoxic population consists of bystander
cells that do not recognize the tumor, as was demonstrated
before (81, 82). These data argue that in melanoma, persistent
tumor antigen recognition drives the conversion of helpless
tumor-specific TILs from the predysfunctional to the
terminally exhausted state, while the tumor may also harbor
helped bystander cells with an effector phenotype (61). Whether
tumor-specific dysfunctional TILs can differentiate within the
TME into competent effector CTLs remains to be investigated.

Reinvigoration
In mouse models of melanoma, the TCF-1+ predysfunctional
CD8+ TILs proved to be the responders to PD-1 blockade and
necessary for tumor control (7, 10, 56). In melanoma patients, an
increased fraction of TCF-1+ predysfunctional CD8+ TILs is a
positive predictor for response to PD-(L)1 targeted therapy (7,
46). In a murine liver cancer model, CD101 and CD38 marked
predysfunctional versus terminally exhausted TILs. These
markers were heterogeneously expressed by PD-1high TILs
from melanoma and NSCLC patients, suggesting that the
human PD-1high TIL population consists of a mixture of
predysfunctional and terminally exhausted cells (63).
HELPLESSNESS AND PREDYSFUNCTION
IN CANCER

CD4+ T cell help is less likely to be delivered in cancer than in
infection for the following reasons: Tumor cells generally do not
express PAMPs and may only exude DAMPs under specific
circumstances. Therefore, they are less likely to activate
migratory DCs than infected cells. Furthermore, in the
suppressive TME, migratory cDC2s, which are essential for the
priming of CD4+ T cells (83), are reportedly suppressed by Tregs,
resulting in suboptimal priming of CD4+ helper T cells in the
tumor-draining lymph node (84). Also, DC-activating signals
such as type I IFN that promote crosspresentation functions of
the lymph node-resident cDC1 (16), are often lacking. In the
blood of melanoma patients, tumor reactivity of CTLs was found
to be enriched in the PD-1+ population (85). These data led us to
hypothesize that helpless priming may contribute to the
dysfunctional phenotype of CD8+ T cells in cancer.
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To test this hypothesis, we performed bioinformatic analyses
using our previously defined No Help versus Help signatures of
mouse CD8+ T cells and datasets frommouse and human cancer.
GSEA showed that gene sets characteristic of predysfunctional
TCF-1+ CD8+ TILs from a gp33 antigen bearing B16 melanoma
mouse model (10) were enriched in the No Help gene expression
signature (Figure 3A). In an ovalbumin (OVA) antigen-bearing
B16 melanoma model from a different research group (7), TCF-
1+ CD8+ TILs displayed a higher No Help score than TCF-1−

CD8+ TILs (Figure 3B). These results indicate that also in mouse
cancer models, dysfunctional TCF-1+ CD8+ TILs display a gene
expression profile that resembles that of helpless cells. In NSCLC
patients, the presence of PD-1high TILs was a positive predictor of
response to PD-1 blockade therapy. Importantly, PD-1high TIL
displayed higher intrinsic tumor reactivity compared to TIL
populations with intermediate or no PD-1 expression from the
same tumor (8). We used the published gene expression profiles
from these matched TIL subsets to calculate their No Help score.
Among these patients’ TIL populations, the transcriptome of
PD-1high TILs was most similar to that of helpless vaccine
antigen-specific CD8+ T cells (Figure 3C). These data from
human cancer support our hypothesis that dysfunctional
tumor-reactive CD8+ T cells are cells that have lacked help
during priming.
HELPLESS DYSFUNCTION MODEL

We present a novel model posing that virus-specific or tumor-
specific, predysfunctional TCF-1+ CD8+ T cells in chronic
infection or cancer result from priming in the absence of CD4+

T cell help. CD4+ T cell help delivered during priming optimizes
effector differentiation of antigen-specific CD8+ T cells (3, 53).
Additionally, CD4+ T cell help promotes effector memory CD8+

T cell (TEM) generation, and renders these TEM cells more
effector-like on a per-cell basis (30). These results are in line
with a previously proposed progressive differentiation model for
primed CD8+ T cells (86), adding that CD4+ T cell help shifts
differentiation of primed CD8+ T cells toward a more effector-
like state (Figure 4).

By optimizing CTL function, CD4+ T cell help contributes to
antigen clearance, which is necessary for proper memory
formation (87, 88). CD4+ T cell help also promotes the long-
term maintenance of TCM cells and is necessary for open
configuration of gene loci encoding CTL effector molecules in
memory CD8+ T cells (30, 89, 90). The epigenetic imprinting
induced by help signals during priming allows memory cells to
rapidly exert effector functions upon reactivation in a CD4+ T
helper cell-independent manner (30, 91).

In the absence of CD4+ T cell help, effector differentiation of
CD8+ T cells is incomplete, resulting in predysfunctional CTLs
that have limited cytotoxic and migratory potential and express
coinhibitory receptors (3, 32), which prohibits antigen clearance.
The chronic stimulation of memory precursor cells impairs the
formation of a memory pool and instead drives their
differentiation into predysfunctional CTLs, as seen in chronic
Frontiers in Immunology | www.frontiersin.org 8
infection and cancer (39, 54). These predysfunctional TCF-1+

cells have self-maintaining properties and form the progenitors
of the terminally exhausted TCF-1− CD8+ T cell pool (58).
Exhausted CD8+ T cells differ in their epigenetic and
transcriptional states from predysfunctional CD8+ T cells.
They have a further developed effector differentiation program,
but are fixed in their dysfunctional state (55).
OVERCOMING CTL DYSFUNCTION BY
HELP SIGNALS

Based on our model, we propose that in chronic infection and
cancer, CTL dysfunction can be overcome by help signals. In that
scenario, help signals would enable the CTLs to progress further
toward a terminal effector differentiation state. Adoptive transfer
of CD4+ T cells has been shown to increase proliferation of pre-
existing TCF-1+ CD8+ T cells in chronic LCMV infection (53).
Also, adoptive transfer of IL-21-producing CD4+ T cells into
tumor-bearing mice induced generation of a CX3CR1+ effector
CD8+ T cell pool, leading to improved tumor control (29). Using
help signals to alleviate CTL dysfunction is not yet incorporated
into clinical protocols. In the clinic, PD-1 blockade is used as
method to “reinvigorate” dysfunctional CTLs.

We here propose that PD-1 blockade recapitulates aspects of
CD4+ T cell help and acts on the predysfunctional/helpless CD8+

T cell population. As reviewed in the preceding sections, in
chronic LCMV infection and cancer, PD-1 blockade induced
proliferation of predysfunctional TCF-1+ CD8+ T cells. The
question is whether PD-1 blockade is sufficient to overcome
lack of help and—by association—to convert predysfunctional
CTLs into fully functional effectors. In chronic LCMV infection,
established through transient CD4+ T cell depletion, PD-L1
blockade promoted differentiation of predysfunctional CD8+ T
cells into transitional cells that displayed a more effector-like
phenotype and contributed to virus control. However, eventually
these cells became terminally exhausted (49). Blockade of the
PD-L1/PD-1 axis in a helpless setting increases the magnitude of
the antigen-specific CD8+ T cell response, but in contrast to
CD4+ T cell help, it did not rescue the formation of the effector
population that conferred protection against chronic infection
and cancer (29). These results suggest that predysfunctional/
helpless cells cannot be rescued by PD-1 blockade alone.

The prevailing view is that PD-1 blockade relieves pre-
existing dysfunctional CTLs from suppression in the TME.
However, accumulating data argue that PD-1 blockade can also
facilitate de novo CTL priming. Firstly, PD-(L)1 targeted
immunotherapy can be effective while PD-L1 is not expressed
in the tumor (92). Secondly, PD-1 signaling impedes TCR as well
as CD28 signaling, indicating that it can also impact on
costimulation at the T cell/DC interface (93). In agreement
with this, tumor regression upon PD-1 blockade in mouse
colon carcinoma depended on CD28 co-stimulation (94).
Thirdly, the response to PD-1 blockade in mouse colon
carcinoma was found to depend on influx of newly activated
CD8+ T cells from tumor draining lymph nodes (95).
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Recent data from human cancer also argue that PD-1
blockade promotes CD8+ T cell priming: In basal cell
carcinoma, new CD8+ T cell clones entered the upon tumor
PD-1 blockade (96). TCR repertoire analysis argued that these
clones pre-existed in blood and entered the tumor after
treatment (97). PD-1 is expressed rapidly after stimulation of
naive CD8+ T cells, and inhibits effector differentiation during
priming (98). We found that in the CD4+ T cell help-dependent
second step of priming, CD8+ T cells downregulate PD-1,
whereas helpless cells maintain PD-1 expression (3). This
supports a model in which PD-1 serves as a checkpoint in the
two-step T cell priming process.

We have shown in the mouse vaccination model, that the
effects of CD4+ T cell help on the CTL response could be
mimicked by combined PD-1-blockade and CD27 agonism
(99). We and others have shown that delivery of CD4+ T cell
help is highly dependent on CD70-CD27 signaling and CD27
agonism installs a large part of the Help gene signature into
CD8+ T cells during priming (3, 20, 24, 25). The combined effect
of PD-1 blockade and CD27 agonism likely recapitulates
combined CD28 and CD27 costimulation that are known to
complement each other in generation of the CTL effector pool
(23). The collective data make a strong case for combining CD27
agonism with PD-(L)1 blockade in cancer immunotherapy.
CONCLUDING REMARKS

We here present our hypothesis that CD8+ T cell priming in the
absence of CD4+ T cell help leads to CD8+ T cell dysfunction. We
pose that exhausted antigen-specific CD8+ T cells observed in
infection and cancer derive not from previously active CTLs, but
from helpless CD8+ T cells that emerge from the priming process
in a dysfunctional state. We pose that provision of CD4+ T cell
help, or the key signals that recapitulate help for CD8+ T cells will
be crucial for the development of effective immunotherapeutic
strategies in chronic infection and cancer. In immunotherapy,
reverting exhausted cells back to a functional phenotype is
Frontiers in Immunology | www.frontiersin.org 9
considered an important challenge (1). Alternatively, we argue
that in patients with immunogenic cancer types, de novo priming
of helped CD8+ T cells will be beneficial for tumor control. For
this purpose, potential approaches are antigen-agnostic PD-1/
CD27 targeting or antigen-informed therapeutic vaccination.
Such vaccines should contain MHC-I and MHC-II epitopes to
activate both CD8+ and CD4+ T cells. Other strategies include
specific targeting of antigens and activation signals to XCR1+

cDC1s. In these approaches, evaluation of the transcriptional
help signature in tumor-specific CD8+ T cells is a potential
diagnostic tool.
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