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Abstract

Derive the quantitative predictions of constraint-based models require of conversion algo-

rithms to enumerate and construct the skeleton graph conformed by the extreme points of

the feasible region, where all constraints in the model are fulfilled. The conversion is prob-

lematic when the system of linear constraints is degenerate. This paper describes a conver-

sion algorithm that combines the best of two methods: the incremental slicing of cones that

defeats degeneracy and pivoting for a swift traversal of the set of extreme points. An exten-

sive computational practice uncovers two complementary classes of conversion problems.

The two classes are distinguished by a practical measure of complexity that involves the

input and output sizes. Detailed characterizations of the complexity classes and the corre-

sponding performances of the algorithm are presented. For the benefit of implementors, a

simple example illustrates the stages of the exposition.

Introduction

Mathematical modeling in areas of science such as the physics of quantum nonlocality [1–7]

and systems biology [8–11], frequently take the form of a system of linear inequalities in some

Euclidean space. Every inequality in the system defines a half-space and the intersection of all

half-spaces constitutes the polyhedral feasible region of the model. In physics, the no-signaling

approach to quantum nonlocality [2–4, 7] leads to degenerate systems of linear constraints for

the correlations between the parties playing in a correlational set up [4, 6, 7]. In systems biol-

ogy, the structural analysis approach for the mathematical modeling of a biological complex

applies constraint-based methods that take the form of degenerate linear systems of inequali-

ties [8–11].

In order to transform the model constraints into quantitative predictions, conversion meth-

ods are necessary to derive the relational structure (a skeleton graph or a network) that is con-

formed by the set of extreme points of the feasible region. In the no-signaling approach to

quantum nonlocality, the extreme points of the polytope of correlations provide the local oper-

ations and the elementary non-local Popescu-Rohrlich channels [2–4] which are necessary

(and in any cases sufficient) to simulate any no-signaling correlational scenario [5]. Quite
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similarly, the “elementary constituents”, “archetypes” or “modes” in biology [12], are provided

by the extreme points of the feasibility region. In both cases, the resulting output descriptions

display a wide range of structural complexities, characterized by measurements as graph

entropy [13, 14] and graph similarity [15].

The most effective conversion methods available arise from combinatorial geometry [16–

19]. However, when the half-space descriptions of the extreme points of the feasible polytope

are degenerate a combinatorial explosion is produced that is the cause of stubborn difficulties

for their enumeration [19–23].

The paper introduces an algorithm to convert a half-space description into the skeleton

graph conformed by the set of extreme points of the feasible region. Using a combination of

incremental [18, 19] and pivotal [24, 25] methods, an algorithm with a good performance to

resolve degeneracy and to complete the traversal of the set of extreme points is presented. The

effects of degeneracy are studied computationally for a very large number of half-space

descriptions, organized into four families according to the degree of degeneracy of the input

half-space descriptions and on the complexity of the output graphs.

The standard formulation of a constraint-based model is the system of linear inequalities

Ax � b : ð1Þ

Matrix A is real and of size m × n. The model constraints determine the entries of A and the

entries of vector b 2 Rm. Each one of the m constraint inequalities in Eq (1) defines a half-

space of the euclidean space of dimension n, En.

Every row of matrix A is the constraint vector ai 2 R
n, with index i 2 I ¼ f0; . . . ;m � 1g.

Vector ai defines the i-th feasible half-space Hi ¼ fx 2 R
n : ai � x � big. The intersection of

all half-spaces i 2 I constitutes the set of feasible values of x 2 Rn, which conform the convex

polytope P ¼ fx 2 Rn : Ax⩽ bg. We assume P is bounded and of full affine dimension n, for

which is necessary that m> n. The description of P that is provided by Eq (1) is known as a

half-space description, or H-description.

However, what is physically meaningful is the combinatorial structure that is encoded in the

skeleton graph G(P) of P, known as the V-description of P. The conversion of the H-description

Eq (1) into the graph G(P) is accomplished when the set of vertices V = {p 2 P: p is extreme}

and the set of edges E� V × V have been determined. Then, the skeleton graph G(P) = (V, E)

discloses the organizational structure that is implicit in the set of linear constraints Eq (1).

Whether p is a vertex of G(P) is decided by the non-negativity of its slack vector s(p) = b − Ap
and the rank of its set of active hyperplanes ZðpÞ ¼ fi 2 I : ai �p ¼ big. First, a point p is in

the feasible region P whenever the slack vector s(p) is non-negative. Then, p 2 P is an extreme

point if, and only if, rank ðZðpÞÞ ¼ dimðspanfai : i 2 ZðpÞgÞ ¼ n. An extreme point p is reg-

ular (or non-degenerate) if it has an active set ZðpÞ of cardianlity jZðpÞj ¼ n. The active set of

a regular extreme point p, ZðpÞ, is a basis. Otherwise, when jZðpÞj ¼ nþ s and σ� 1, the

extreme point p is σ-degenerate.

The combinatorial triviality of regular extreme points does not present any difficulty to the

simplex pivoting rules [16, 24, 25]. However, when pivoting around a σ-degenerate extreme

point p, the method faces up to nþs

n

� �
potential bases in the active set ZðpÞ, so the exhaustive

search of the neighboring points of p requires the examination of nþs

n

� �
simplex tableaus and a

factible pivote has to be looked for by testing the n entries of m − n − σ rows of every tableau.

The misery then is that a σ-degenerate vertex demands the simplex method to do a search

among a multiplicity of

m ¼ n ðm � n � sÞ
nþ s

n

� �
ð2Þ
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alternatives, just for finding the neighboring points of p. The amount of searches Eq (2)

may be—per vertex!—much larger than the total number of vertices of the complete skele-

ton graph G(P). Besides, when doing the search, the simplex method may get trapped in an

endless cycle or just get stalled [22]. Several approaches have been tried out to overcome

such deficiencies [20–23].

The practice of the double description method has proved its efficiency [18, 19] in the deter-

mination of the extreme rays of highly degenerate polyhedral cones [26]. However, the method

is not efficient for the construction of the complete skeleton graph of large degenerate systems

of linear inequalities, mainly due to the very large number of tentative vertices that are pro-

duced at intermediate stages of the conversion procedure [26]. The majority of intermediate

vertices are discarded at the end. To overcome this situation, we have designed a swift and

compact pivoting method to determine the neighbors of extreme points, by taking as the input

the extreme rays of a cone. In this way we have combined in Algorithm 5 the best of two meth-

ods: the incremental slicing of cones to defeat degeneracy [18, 19], and pivoting around

extreme points for a swift traversal of extreme points [24].

The incremental procedure goes slicing a cone, starting with a regular cone that is broader

than and includes the target cone. The preparation of the base cone to be the input of the

incremental procedure is explained in Section 1: a basis is chosen from the active set ZðpÞ
and a standard algebraic method produces the extreme rays of the corresponding regular

cone. The half-spaces in the active set ZðpÞ that are not part of the basis set are inserted by

the incremental procedure, one-by-one, until they are exhausted and the target cone has

been sculpted. The half-space insertion procedure is explained in Section 2. The explanation

includes (i) the alternative combinatorial or algebraic test necessary to identify the 2-face

cuts during the slicing procedure and (ii) a recording strategy that helps the algorithm to

reduce the number of tests.

The extreme rays that are produced by the incremental procedure provide the scanning

directions for the pivoting rule that is followed to determine the set of neighboring points of p.

The pivoting rule is developed in Section 3. In Section 4 the incremental and pivoting methods

are combined in Algorithm 5, which converts the system of linear inequalities into the skeleton

graph conformed by the set of extreme points of the feasible region.

The computational practice in Section 5 affords understanding about the effects that the

degeneracy present in the input systems has on the performance of Algorithm 5. The very

large number of input systems employed in the practice of Section 5 is organized in four fami-

lies that offer a controlled and distributed sampling of the complexity spectrum of the conver-

sion problem. The amount adopted to estimate the complexity combines the average

degeneracy hσi that is present in the input system and the average connectivity κ of the output

graph G(P).

The family with the lowest complexity consists of regular (non degenerate) polytopes with

H-descriptions produced at random [7]. The other three are one-parameter families. The fam-

ily with the highest complexity consists of Birkhoff polytopes [27, 28]. The other two families,

with intermediate complexities, consist of no-signaling polytopes [7]. Section 5 details the

characterization of the four families, produced by applying Algorithm 5.

The computational practice of Section 5 distinguishes two classes of conversion problems.

A first class consists of systems of linear inequalities that have a combined complexity which

becomes smaller as a function of the input size. The systems in this class convert into skeleton

graphs with a number of vertices that grows faster than their vertex-connectivity, as a function

of the input size. For these conversion problems (I) the CPU time consumed by Algorithm 5 is

mostly applied to complete the traversal of extreme points and not to resolve degeneracy, (II)

the algebraic test for 2-face cuts in Algorithm 5 is faster than the combinatorial test and (III)

An algorithm for degenerate systems of linear inequalities
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the incremental procedure is highly sensitive (i) to the choice of the input basis set and (ii) to

the insertion order of the cutting half-spaces.

The second class of conversion problems distinguished by the computational practice in

Section 5 has a combined complexity that does not decrease as a function of the input size. As

the input size of the systems of linear inequalities in this class is increased, the number of verti-

ces of their skeleton graphs increases and the vertex-connectivity does not decrease. For these

conversion problems (I) the CPU time consumed by Algorithm 5 is mostly applied to resolve

the degeneracy present at the H-description and not to complete the traversal of extreme

points, (II) the combinatorial test for 2-face cuts in Algorithm 5 is faster than the algebraic test

and (III) the incremental procedure is not sensitive (i) to the choice of the input basis set and

(ii) neither to the insertion order of the cutting half-spaces.

The two complementary classes described above are detailed in Sections 5 and 6.

For the benefit of the implementor we make use of a simple, but rich enough, no-signaling

constraint H-description [7] as example to illustrate our exposition.

Example (Outset)

The conversion problem consists of the two-party correlations that are feasible for a no-signal-

ing box [4] with a binary input per party and asymmetric in its outputs, producing one out of

3 and of 2 possible outcomes per party respectively. The no-signaling and non-negativity con-

straints on correlations [7] produce the system of linear inequalities in Table 1. The feasible

polytope PNS is the intersection of m = 24 half-spaces in an Euclidean space of dimension

n = 14.

Using the constraint vectors in Table 1 one verifies that the origin p = 0 is an extreme

point of PNS since its active set ZðpÞ ¼ f0; . . . ; 19g has rank ðZðpÞÞ ¼ 14 and the slack

vector at p = 0, s(0) = b − A p = b, is not negative. This extreme point is degenerate with

s ¼ jZðpÞj � n ¼ 6 and for the simplex method it represents a multiplicity Eq (2) of

μ = 2,170,560 search options. This huge value of μ is to be compared with the 6 cutting half-

spaces that the double description method needs to insert, one at a time.

1 Regular cones as the base case

The cone described by the active set ZðpÞ of the extreme point p is the set

KZðpÞ ¼ fx 2 R
n : ai � x � bi; i 2 ZðpÞg. The cone DZðpÞ :¼ fx 2 Rn : ai � x � 0; i 2 ZðpÞg

is the translation of cone KZðpÞ to the origin,

KZðpÞ ¼ pþ DZðpÞ : ð3Þ

Table 1. Parameters (A, b) of the heuristic example.

ai ¼ � x̂ i ; i 2 f0; . . . ; 13g a14 ¼ � x̂0 � x̂1 � x̂2 þ x̂5 þ x̂6

a15 ¼ � x̂9 � x̂10 � x̂11 þ x̂12 þ x̂13 a16 ¼ � x̂0 � x̂3 þ x̂9

a17 ¼ � x̂1 � x̂4 þ x̂10 a18 ¼ � x̂5 � x̂7 þ x̂12

a19 ¼ � x̂6 � x̂8 þ x̂13 a20 ¼ x̂0 þ x̂1 þ x̂2 þ x̂3 þ x̂4

a21 ¼ x̂0 þ x̂1 þ x̂2 þ x̂7 þ x̂8 a22 ¼ x̂0 þ x̂1 þ x̂3 þ x̂4 þ x̂11

a23 ¼ x̂5 þ x̂6 þ x̂7 þ x̂8 þ x̂9 þ x̂10 þ x̂11 � x̂12 � x̂13

bi ¼
0; i 2 f0; . . . ; 19g

1; i 2 f20; . . . ; 23g

(

Each vector x̂ i (i = 0 to 13) is the standard i-th unit vector of Euclidean space E14.

https://doi.org/10.1371/journal.pone.0175819.t001

An algorithm for degenerate systems of linear inequalities

PLOS ONE | https://doi.org/10.1371/journal.pone.0175819 April 13, 2017 4 / 21

https://doi.org/10.1371/journal.pone.0175819.t001
https://doi.org/10.1371/journal.pone.0175819


Since rank ðZðpÞÞ ¼ n, both cones KZðpÞ and DZðpÞ are peaked, with apices located at p and

the origin, respectively. The polyhedral cone KZðpÞ fits the feasible region P and the 1-faces (or

extreme rays) of KZðpÞ provide the directions to scan for the neighbors of p. Then, and in view

of Eq (3), the first step towards the skeleton graph G(P) is to convert the half-space description

of cone DZðpÞ into its set of extreme rays XZðpÞ, such that DZðpÞ ¼ r ¼
X

r2XZðpÞ

cr r : cr � 0

8
<

:

9
=

;
.

The determination of the set of extreme rays of a degenerate cone is the subject matter of

the next section. Meanwhile, the extreme rays of a regular cone may be obtained from its half-

space description by methods of linear algebra. A regular cone DB is the intersection of the

half-spaces of a basis B⊊ZðpÞ. The set XB of extreme rays of DB is given in the following.

Lemma 1.1 (Regular cones). Let p be an extreme point of P. Let B⊊ZðpÞ be a basis. The set
of extreme rays of the cone DB is

XB ¼ rj 2 R
n : ai � rj ¼ � dij; i; j 2 B

n o
: ð4Þ

The set XB in Lemma 1.1 is the negative of the biorthogonal companion of B. Given that

B⊊ZðpÞ we have that DB � DZðpÞ. The set of extreme rays of cone KB is the set XB þp.

For a degenerate vertex p with active set ZðpÞ the double description method, discussed in

the next section, produces the set XZðpÞ of extreme rays of cone DZðpÞ � DB by starting with

the set of rays provided by Lemma 1.1 for a basis B⊊ZðpÞ.

1.1 Example (The base cone)

The extreme point p = 0 of the no-signaling polytope PNS has degeneracy σ = 6. The basis

B ¼ f0; . . . ; 13g⊊ZðpÞ, through lemma 1.1, provides us with the set of rays

XB ¼ fri ¼ x̂ i : i ¼ 0; . . . ; 13g : ð5Þ

Use the constraint vectors in Table 1 to verify the membership conditions of set Eq (4).

2 Incremental slicing of cones

The incremental procedure to generate the set of extreme rays XZðpÞ of the cone at a degenerate

extreme point p, which is described by the set of active planes ZðpÞ, starts with the approxi-

mate set XB, provided by lemma 1.1 for a basis B⊊ZðpÞ. The set B0≔ZðpÞnB is not empty

by degeneracy. Then, the half-spaces remaining in B0 are introduced one at a time. The inser-

tion process produces a non-increasing chain of cones by eliminating the current extreme rays

which are not in the feasible half-space introduced and adding the new extreme rays that are

created by the half-space that has been added. When all hyperplanes in the degeneracy set B0

have been inserted, the set of extreme rays XZðpÞ, describing cone DZðpÞ, is produced.

Assume the insertion procedure has gone adding half-spaces from B0 as far as to generate

coneðXJ 0 Þ � DB, for some J 0⊊ZðpÞ. Assume the procedure is to advance one step farther by

adding the half-space Hk, for some k remaining in ZðpÞnJ 0. Then, by working on the current

set of rays XJ 0 and the vector ak that is associated to Hk, the procedure will produce the set of

extreme rays XJ that results from the insertion of the half-space Hk. This one-plane insertion

procedure defines the function ðXJ 0 ;akÞ 7!XJ ¼ FðXJ 0 ;akÞ.

The procedure represented by F begins with the partition of the current set of rays XJ 0

into three sets. A first set collects the rays that are within the feasible half-space Hk, the set

Xþ≔ fr 2 XJ 0 : ak � r < 0g. A second set is X� ≔ fr 2 XJ 0 : ak � r > 0g, which is the set of

An algorithm for degenerate systems of linear inequalities
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rays outside the feasible half-space Hk. The third set is X0 ≔ fr 2 XJ 0 : ak � r ¼ 0g, which col-

lects the rays lying on the hyperplane @Hk. The rays in X+[X0 remain extreme for the next

cone DJ . We have XJ � Xþ [ X0. Rays in X− become unfeasible, but they are necessary to

complete the set of extreme rays of cone DJ .

New extreme rays in XJ are the intersections of the hyperplane @Hk with 2-faces of the cur-

rent cone DJ 0 . In order to decide whether a pair of extreme rays ρ and ρ0 constitute a 2-face of

DJ 0 or not, let J 0jr ¼ fi 2 J 0 : ai � r ¼ 0g and let J 0jðr; r0Þ ¼ J 0jr \ J 0jr0 be the joint

active subset of the pair (ρ, ρ0) in DJ 0 . Central to the incremental slicing procedure [7, 19] is

the following.

Lemma 2.1 (Tests of colaminarity [19]). For some J ⊊ZðpÞ with rankðJ Þ ¼ n, let ρ and ρ0

be extreme rays of DJ . The following statements about the pair (ρ, ρ0) are equivalent.

1. The pair (ρ, ρ0) constitues a 2-face of DJ .

2. rankðJ jðr; r0ÞÞ ¼ n � 2.

3. Let φ be an extreme ray of DJ. If J jφ � J jðr; r0Þ, then either φ = ρ or φ = ρ0.

Algorithm 1 The standard insertion method.

def F ðXJ 0 ; akÞ:
1 Xþ≔ fr 2 XJ 0 : r �ak < 0g

2 X � ≔ fr 2 XJ 0 : r �ak > 0g

3 X0 ≔ fr 2 XJ 0 : r �ak ¼ 0g

4 X = X+ [ X0

5 for ρ0 2 X−:
6 for ρ 2 X+:
7 if ρ * ρ0: // Lemma2.1
8 X = X [ {φk(ρ0, ρ)} // Formula(6)
9 returnX

When statement (a) holds we say that the pair of extreme rays (ρ, ρ0) is colaminar in DJ

and denote the relation by ρ * ρ0.
The completion of XJ is achieved by incorporating all the intersections that the current

hyperplane @Hk makes with the 2-faces of DJ 0 that are framed by pairs of rays (ρ0, ρ)2X− × X+.

When the case is that ρ * ρ0, the ray

φkðr
0; rÞ ¼ ðak � r

0Þr � ðak � rÞr
0 ð6Þ

is extreme for the sliced cone DJ ¼ DJ 0 \ Hk. The collection of all such rays,

Yk ¼ φkðr
0; rÞ : ðr0; rÞ 2 X� � Xþ and r � r0

� 	
; ð7Þ

completes the set of extreme rays of DJ , XJ ¼ Xþ [ X0 [ Yk. The pair ðJ ;XJ Þ constitutes a

double description of the cone DJ .

The test of colaminarity in Eq (7), corresponding to line 7 of the pseudo-code for function

F in Algorithm 1, may proceed in one of two standard ways. Either by applying the algebraic

test (b) in lemma 2.1, which applies methods of linear algebra, or the combinatorial test (c),
which runs over the set XJ 0 nfr; r

0g [19, 29].

2.1 Example (A first plane insertion)

The extreme point p = 0 of PNS has active set ZðpÞ ¼ f0; . . . ; 19g. The set XB of extreme

rays of the base cone DB, for basis B ¼ f0; . . . ; 13g, was determined in Eq (5). There remains

B0 ¼ f14; . . . ; 19g half-spaces to be inserted. By inserting H14 first, the current set XB is

An algorithm for degenerate systems of linear inequalities
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partitioned into the following subsets,

Xþ ¼ fr0 ¼ x̂0 ; r1 ¼ x̂1 ; r2 ¼ x̂2g ;

X� ¼ fr5 ¼ x̂5 ; r6 ¼ x̂6g ;

X0 ¼ fr3 ¼ x̂3 ; r4 ¼ x̂4 ; r7 ¼ x̂7 ; . . . ; r13 ¼ x̂13g :

ð8Þ

For the base cone DB the test of colaminarity for the pairs in X− × X+ may be skipped,

because in a regular cone, as is the case for DB, every pair of extreme rays is colaminar (Lemma

2.2 below). The set of new rays Y14 that is obtained by applying Formula (6) to every pair in

X− × X+ is shown in Table 2. The new cone in the chain DJ 0 � DB, with J 0 ¼ f0; . . . ; 13; 14g,

has gained six new rays and lost the two rays in X−, which became unfeasible.

The set XZðpÞ of extreme rays of the degenerate cone DZðpÞ is produced by the iteration of

the insertion function F in Algorithm 1. The half-spaces in the degeneracy set B0 ¼ ZðpÞnB
are introduced one by one until the set is exhausted. This incremental slicing of cones consti-

tutes function X in Algorithm 2. The base case to start the iteration, line 1 of Algorithm 2, is

the set of extreme rays XB of a basis B⊊ZðpÞ, as is given by lemma 1.1.

Algorithm 2 Incremental slicing with standard insertion function F.

def X (B, B0):
1 X ¼ XB // Lemma1.1
2 for k 2 B0:
3 X = F(X, ak) // Algorithm1
4 returnX

2.2 Example (Standard incremental slicing)

For the extreme point p = 0 of PNS the standard slicing function X is applied to basis

B ¼ f0; . . . ; 19g, with complement B0 ¼ ZðpÞnB ¼ f14; . . . ; 19g. The first half-space H14

was inserted in section 2.1 already.

When the next three half-spaces in {15, 16, 17} are inserted, all pairs in X− × X+ pass the test

of colaminarity, producing each a new extreme ray for the subsequent cone in the chain. Con-

sequently, the number of intermediate extreme rays goes up. It is not so for the insertion of the

last two half-spaces, H18 and H19. The 2-faces of the current cone that are slashed by the inser-

tion of H18 are identified by the test of colaminarity. This time the subset of colaminar pairs in

X− × X+, shown in Table 3, is rather sparse. The last two insertions, H18 and H19, make the

number of intermediate rays come down. Upon conclusion, the standard function X in Algo-

rithm 2 returns a set of 54 extreme rays for the cone DZðp¼0Þ, which is almost four times the 14

extreme rays at a non-degenerate extreme point in dimension 14.

The computational practice has shown [19, 26] that the typical behaviour of the number

of intermediary rays during the slicing process is to go up and then come down. At the step

corresponding to Table 3 of Example 2.2, the elements of X− listed along the left column

of Table 3 become unfeasible but they give rise to as many new rays as colaminarity

symbols * are entered in Table 3. Although a great deal of the intermediary rays computed

Table 2. Set of newly produced raysφi in Example 2.1.

r0 � r5 ! φ
0
¼ x̂0 þ x̂5, r1 � r5 ! φ

1
¼ x̂1 þ x̂5, r2 � r5 ! φ

2
¼ x̂2 þ x̂5

r0 � r6 ! φ
3
¼ x̂0 þ x̂6, r1 � r6 ! φ

4
¼ x̂1 þ x̂6, r2 � r6 ! φ

5
¼ x̂2 þ x̂6

Rays produced by the intersection of H14 with every pair in X− × X+ that is colaminar, ρ0 * ρ.

https://doi.org/10.1371/journal.pone.0175819.t002
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by function X in Algorithm 2 do not survive as extreme rays of the target cone DZðpÞ, the

standar slicing function F has to apply the test of colaminarity (either (b) or (c) in lemma 2.1)

to every pair in the current set X− × X+ and at every step in the chain leading to XZðpÞ. The

standard incremental slicing procedure, Algorithms 2 and 1, gets bogged down in applying

an excess of colaminarity tests.

Unfortunately, we do not have a method to avoid the tests of colaminarity during the slic-

ing procedure. What we have is a method to reduce the number of times the test is applied.

The method is simple but improves considerably the CPU time of the slicing procedure. The

idea is to combine a record of pairs of rays we know are colaminar, as to avoid a re-testing of

pairs, with a necessary condition of colaminarity. If the necessary condition is not fulfilled,

the pair is rejected and that is it. Otherwise, the pair is searched in the record. If it is not

found, then the colaminarity test is applied to the pair. After a positive test, a new ray is pro-

duced and the pair is included in the record of colaminar pairs. This improvement is imple-

mented in Algorithm 3.

Algorithm 3 Incremental cone slicing with 2-face recording and rejection test.

def X0 (B, B0):
1 X ¼ XB // Lemma1.1
2 L = X × X // Lemma 2.2
3 for H 2 B0:
4 producethe sets X+, X0, X−

5 X = X0 [ X+

6 for (ρ0, ρ)2X− × X+:
7 if jJ jðr0;rÞj < n � 2: // Lemma2.3
8 continue
9 if (ρ0, ρ)2L:
10 X = X [ {φH(ρ0, ρ)} // Formula(6)
11 replace(ρ, ρ0) in L by (ρ, φH)
12 continue
13 else if ρ0 * ρ: // Lemma2.1
14 X = X [ {φH(ρ0, ρ)} // Formula(6)
15 L = L [ {(ρ, φH)}
16 returnX

The record of pairs of colaminar rays in Algorithm 3 is initialized in line 2 to XB � XB

because the following.

Lemma 2.2 (For a basis all pairs are colaminar). Let B⊊ZðpÞ be a basis. The set of 2-faces
of cone DB is XB � XB.

Table 3. Colaminar pairs of rays (2-faces) being slashed by the insertion of half-space H18 in Example 2.2.

r
ðBÞ
7 r

ð14Þ

0 r
ð14Þ

1 r
ð14Þ

2 r
ð16Þ

2 r
ð16Þ

10 r
ð17Þ

2 r
ð17Þ

10

r
ð15Þ

2
* * * *

r
ð16Þ

4
*

r
ð16Þ

5
* * *

r
ð16Þ

7
*

r
ð17Þ

4
*

r
ð17Þ

5
* * *

r
ð17Þ

7
*

The set X+ runs along the top line and the set X− goes down along the left column.

https://doi.org/10.1371/journal.pone.0175819.t003
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The improved Algorithm 3 rejects a pair as colaminar when the following condition does

not hold.

Lemma 2.3 (A minimum is required). Let (ρ, ρ0) be a pair of extreme rays of cone DJ , for
some J � ZðpÞ of rankðJ Þ ¼ n. If ρ * ρ0, then jJ jðr; r0Þj > n � 3.

The minimum condition in Lemma 2.3 is tested in lines 7 and 8 of Algorithm 3.

The incremental method we have described for the enumeration of extreme rays of cones is

not effective when extended for the conversion of the complete system of linear inequalities. A

weakness of the method is that the number of intermediary vertices can grow exponentially as

compared to the number of true vertices. That is why we follow a pivoting method instead.

3 Getting the neighbouring extreme points

The rays in the set XZðpÞ (computed by Algorithm 3) define the directions to scan around p,

looking for its neighboring extreme points. Assuming the feasible region P is compact,

the positive linear span of every r 2 XZðpÞ necessarily intersects one of the hyperplanes in

InZðpÞ: the set of hyperplanes N pðrÞ ¼ ft 2 InZðpÞ : at � r > 0g is not empty. Then, for

t 2 N pðrÞ the hyperplane @Ht is pierced by ρ at the point qt = p + ρλt, with

lt ¼ ðbt � p �atÞ=ðr �atÞ > 0: ð9Þ

The point qt with the smallest (positive) λt is the neighboring extreme point of p along ρ.

Lemma 3.1 (Pivoting around p [7]). For every r 2 XZðpÞ let N pðrÞ be as defined above. The
set of neighboring extreme points of p is

Vp ¼ q ¼ pþ lr : r 2 XZðpÞ; l ¼ min
t2N pðrÞ

fltg

� �

:

The unordered pair {p, q}, for every q 2 Vp, is an element of the set of edges of p, denoted by

Ep. Lemma 3.1 is the core of the pivoting function P that returns the set Vp of neighbors and

the set Ep of edges of p. The function P is defined by the pseudo-code listed in Algorithm 4.

Algorithm 4 Pivoting to get the neighbours.

def P (B, B0):
1 Vp = ;; Ep = ;
2 X = X0(B, B0) // Algorithm3 either2
3 for ρ 2 X:
4 N ≔ ft 2 InZðpÞ : r � at > 0g

5 l ¼ mint2N fðbt � p �atÞ=ðr �atÞg // Lemma3.1
6 q = p + λ ρ
7 Vp = Vp [ {q}; Ep = Ep [ {(p, q)}
8 returnVp, Ep

3.1 Example (A neighbouring extreme point)

The extreme point p = 0 of PNS has active set ZðpÞ ¼ f0; . . . ; 19g. The hyperplanes not going

thorough p are in the complement InZðpÞ ¼ f20; 21; 22; 23g. For the ray r ¼ x̂0 2 XZðp¼0Þ

we have that a23 � x̂0 ¼ 0 while for i 2 N p¼0ðx̂0Þ ¼ f20; 21; 22g we have that ai � ρ = 1. Using

Eq (9) we obtain λ20 = λ21 = λ22 = 1, so that the three hyperplanes in N p¼0ðx̂0Þ intersect with

the positive span of ray x̂0 at the point q ¼ pþ lx̂0 ¼ x̂0.
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4 Assembling the skeleton graph

The traversal of extreme points starts from a known extreme point p of P, which becomes the

first vertex of the skeleton graph G(P). The set of vertices V is initialized as {p}. The connectiv-

ity of p in G(P) is determined by function P in Algorithm 4 by providing us with two sets: the

set of neighboring vertices Vp and the set of edges Ep. The set of edges E of the skeleton is ini-

tialized as Ep. All the neighboring vertices of p are awaiting to be scanned. They take a place in

the queue Q, initialized with the set Vp. With this provision, an exhaustive search proceeds by

applying repeatedly the following three steps, finishing when there are no vertices awaiting in

the queue.

1. Pick the next vertex v that is available in Q and remove v from Q.

2. Apply function P to vertex v in order to generate the sets Vv and Ev.

3. Update the set of edges E = E [ Ev, the set of scanned vertices V = V [ {p}, and the queue of

vertices awaiting to be scanned, Q = Q [ (Vv \ V).

When the procedure stops, the pair (V, E) is the graph G(P). The procedure defines func-

tion G, which is shown in Algorithm 5.

Algorithm 5 Assembling the skeleton graph G(P).

def G (B, B0):
1 Vp, Ep ¼ PðB;B0Þ // Algorithm4
2 Q = Vp; E = Ep; V = {p}
3 whileQ 6¼ ;:
4 Pop out next v 2 Q and updateQ = Q \ {v}
5 Choosea basisBv and letB0

v
¼ ZðvÞnBv

6 Vv, Ev ¼ PðBv;B
0

v
Þ // Algorithm4

7 E = E [ Ev; V = V [ {v}; Q = Q [ {Vv \ V}
8 returnV, E

4.1 Example

Function G in Algorithm 5 starts at the extreme point p = 0 to produce the skeleton graph

G(PNS). The output graph has 108 vertices and 1,548 edges, which represent a 27% of the edges

of the complete graph K108. Two thirds (72) of the 108 vertices are sparsely connected, having

degree 16. The other 36 vertices are densely connected, having degree 54 (connecting with a

half of all the vertices in the graph). To appreciate how densely connected is the output graph

G(PNS), compare the 108 vertices it has against the upper bound 16,016 for regular polytopes

described by the same number of half-spaces and in the same Euclidean space [30].

5 Computational practice

Algorithm 5 converts systems of linear inequalities into the skeleton graph G(P) of the feasible

polytope P. The combinatorial complications introduced by degeneracy are explored compu-

tationally on a wealth of systems of linear inequalities, organized in four families of varying

complexity.

In our scheme the input systems to Algorithm 5 are sized by the product variable z =

nmhZi, which includes (a) the dimension (or number of constrained variables) n, (b) the num-

ber m of half-spaces (or constraints) and (c) the average number hZi = n + hσi of active hyper-

planes of the extreme points of the feasible region P. The size of the output graph G(P) is

measured by (a) the number of vertices |V| of the graph and (b) its connectivity κ = hXi/|V|,

where hXi is the average number of edges attached to a vertex of G(P). The number of vertices
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|V| weights the bulk of the graph and the connectivity κ< 1 is a simple measure of the com-

plexity of the graph’s topology. The two output variables, κ and |V|, and the input size z pro-

vide a practical characterization of the complexity of a conversion problem, including

degeneracy and its consequences.

Algorithm 5 translates the input size into some form of complexity of the output graph.

Extreme simplicity is reached by the family of non-degenerate half-space descriptions that

converts into regular graphs. The regular systems we are including in our practice have m con-

straint hyperplanes tangent to the (n − 1)-sphere in the Euclidean space En. The points of tan-

gency were generated at random and equally distributed on the positive ortant of the sphere.

The family of regular systems labeled k0 in Fig 1 (represented by hollow diamonds) covers the

ranges 7� n� 20 and 16�m� 64. The random systems so produced are regular with proba-

bility 1. For any value of the input size z, the non-degenerate systems of linear inequalities pro-

duce the bulkiest, Fig 1B, and most sparsely connected, Fig 1A, output graphs. The trend

followed in Fig 1A by the non-degenrate k0 family implies that degenerate half-space descrip-

tions have combined output-input size values κz2� 2 × 104.

The zones of intermediate complexity in Fig 1A and 1B are populated by bipartite no-sig-

naling system [7], represented by circular dots. The star is the tripartite no-signaling binary

system [6]. The bipartite system with the smallest input size z corresponds to Bell’s experimen-

tal setup [1] and the hollow dot is the heuristic example in Table 1. The upper sequence of no-

signaling systems in Fig 1A (red online) |referred to as the k2 family| emerges from Bell’s

setup by increasing the number v of outcomes for one of the parties only. The output graph

has |V| = 2v2(2 + (v − 1)2) [7].

The lower sequence of no-signaling systems in Fig 1A (green online) |referred to as the k1
family| emerges from Bell’s setup by increasing the number of input options available to one of

the parties. The degenerate systems in the k1 family produce the bulkiest but most sparsely

connected class of no-signaling graphs.

Each sequence of no-signaling systems in Fig 1 (red and green online) constitutes a one-

parameter family. The blue dots dispersed between the two border sequences correspond to

binary systems differing from Bell’s setup in at least two parameters. Fig 1 confirms that the

Fig 1. Output-input features of the systems of linear inequalities used in the computational practice. The variable κ is the average

connectivity of the output graph, |V| is the number of vertices and ζ is the input size, which includes the amount of degeneracy.

https://doi.org/10.1371/journal.pone.0175819.g001
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no-signaling polytopes constitute a good example of highly degenerate half-space descriptions

that produce output graphs with a large volume |V| and a moderately dense connectivity κ.

Birkhoff systems of half-spaces produce densely connected skeleton graphs, which appear

in the upper part of the output-input map of Fig 1A. They are referred to as the k3 family of

ℓ × ℓ doubly-stochastic matrices [pij] and are represented by square dots in Fig 1 (orange

online). The polyhedral region Pℓ of doubly-stochastic matrices is known as Birkhoff’s poly-

tope. It is a notable polytope in various branches of mathematics [27, 28]. A polytope Pℓ is the

feasible region, in Euclidean space of dimension n = (ℓ − 1)2, of the non-negativity constraints

pij� 0, subjected to the normalization conditions
P‘

i¼1
pij ¼

P‘

i¼1
pji ¼ 1. The graph G(Pℓ) has

|V| = ℓ! vertices [27]. The output-input maps in Fig 1 show that Birkhoff’s polytopes have a

highly degenerate half-space description and for high values of the input size z their output

graphs become bulky while keeping a dense connectedness (the diameter of G(Pℓ) is 2 for

every ℓ [27]). The one-parameter k3 family of Birkhoff’s polytopes constitute our most com-

plex exemplar.

Fig 2A shows the practical estimate of complexity of the output graph G(P) that is afforded

by volume |V| and connectivity κ. Each family follows a well defined “complexification path”.

The arrows in the figures indicate the direction the input size z of the half-space descriptions

becomes greater. The general trend, as the input size gets bigger, is an increase of the volume

|V| at the cost of loosing the connectivity κ: degeneracy at the input is converted into connec-

tivity at different rates per family. This fact is better appreciated in Fig 2B by using the com-

bined output-input size κz, instead of simply κ. The output graphs of the k1 family of systems

exhibit a considerable increase in volume but degeneracy is not producing a dense connectiv-

ity. Fig 2B shows that family k2 exhibits the slowest growing rate of the volume of the graph

and the combined output-input size κz is maintained around the value κz * 2.1 × 103. This

constant value of κz presents itself as a boundary between families.

The time Algorithm 5 takes to output the graph of a regular system is orders of magnitude

longer than the time needed to produce the graph of a degenerate system of the same input

size z. For large values of z the CPU time for regular systems is Oðz9:6
Þ, shown as a solid seg-

ment in Fig 3A.

Fig 2. Complexity of the output graphs. A.- By volume size |V| and connectivity κ. B.- By volume size |V| and combined output-input

size κζ. The arrows—in all figures—point to larger values of the input size ζ.

https://doi.org/10.1371/journal.pone.0175819.g002
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In Fig 3A Algorithm 5 shows the best performance for the k2-family of no-signaling sys-

tems. The k2 family reaches in our exploration the biggest values of the input size z * 106 and

the CPU time fits the law Oðz3
Þ exactly. At z * 104, Algorithm 5 consumes a CPU time to pro-

duce the skeleton graph of a k2-family degenerate system that is five orders of magnitud

shorter than the CPU time needed for a regular system. The CPU times for the k1 and k3 fam-

ilies go, for large values of z in Fig 3A, as Oðz7:2
Þ and Oðz5

Þ, respectively.

Differences in performance of Algorithm 5 are better appreciated in terms of the combined

output-input variable κz. Fig 3B shows a clear distinction between the four families of systems.

Families k0 and k1 produce the most sparsely connected graphs and exhibit a similar growing

rate of the CPU times as the combined variable κz gets smaller. Algorithm 5 shows the oppo-

site behavior on systems of family k3: the CPU time grows with κz. In conoclusion, Algorithm

5 has a better performance on degenerate families with densely connected graphs |families k2
and k3.

The conversion algorithm involves two procedures that manage complex inputs. One is in

line 6 of Algorithm 5 that resolves degeneracy to determine (a) the extreme rays of cones and

(b) the neighboring extreme points. The other procedure is the exhaustive traversal of extreme

points. The traversal procedure is Algorithm 5 itself, excluding the time employed by line 6.

Next test decides whether the CPU time consumed by Algorithm 5 is either employed in the

resolution of degeneracy or in traversing the set of extreme points.

The fraction of total CPU time employed to traverse the set of extreme points is shown in

Fig 4A as a function of the input size z. Degenerate systems with a densely connected graph

are the dots following the lower slashed line in Fig 4A. For systems with large values of z but

with a sparse connectivity κ, the traversal of extreme points takes longer than to resolve degen-

eracy. The systems following the upper slashed line in Fig 4A have a huge amount of sparsely

connected vertices.

Considering the combined variable κz, the fraction of time employed in the traversal is

shown to decreases monotonously in Fig 4B, the arrows point to larger values z. The traversal

time is not greater than a 10% of the CPU time for systems with values of κ z ≳ 100. For sys-

tems of the k2-family Algorithm 5 takes only a 0.17% of the time to complete the traversal:

Fig 3. CPU time taken by Algorithm 5 to output the skeleton graph. A.- As a function of the input size ζ. B.- As a function of the combined output-

input product κζ.

https://doi.org/10.1371/journal.pone.0175819.g003
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99.83% of the time is taken by degeneracy. The conclusion is that complexity rests entirely

upon the degeneracy of the conversion problem when κz> 100, regardless of the number of

vertices |V|.

Degeneracy is the source of a combinatorial explosion of the search universe of simplex-

based methods [25]. In contrast, degeneracy furnishes the incremental procedure with a huge

set of options for the input ðB; B0Þ in lines 5 and 6 of Algorithm 5. The alternatives consist in

choosing a basis B � ZðpÞ, an order for the n elements in B and an order for the σ elements

in B0 ¼ ZðpÞnB.

In our computational exploration we found that the incremental procedure is not sensitive

to the order given to the elements of any chosen basis B. While for highly degenerate systems

with less than moderately connected output graphs the choice of a basis B and the order

adopted for B0 are critical. The example system in Table 1 (in dimension n = 14) will be used

to illustrates the situation.

The extreme point p = 0 of the system in Table 1 has jZðpÞj ¼ 20 and σ = 6. At this moder-

ate level of degeneracy there is a set of 6144 bases, which represent a 16% of all possible

Fig 4. Fraction of CPU time consumed by Algorithm 5 to traverse the set of extreme points. A.- As a function of the input size ζ. B.-

As a function of the combined output-input size κζ.

https://doi.org/10.1371/journal.pone.0175819.g004
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( 20

14

� �
¼ 38; 760) choices and each basis may be accompanied by one of σ! = 720 different

orders of the half-spaces in B0. The 4,423,680 different choices of a basis B and an order for B0

distribute over the CPU times as shown in Fig 5C. The spread of the distribution is

T=T ¼ 2:32, where T and T are the CPU times for the worst and the best choices of a basis–

insertion-order for the input pair ðB; B0Þ in lines 5 and 6 of Algorithm 5. When choosing a

basis B from ZðpÞ there are good and bad choices. A good basis has a narrow spread T=T of

insertion orders over the CPU times. Fig 5A is example of a good basis, with T=T ¼ 1:27. Fig

5B is the distribution for a bad basis having T=T ¼ 2:10. The difference between a good and a

bad choice of the combination basis–insertion-order may represent in this example a factor

greater than 2 in the CPU time.

A similar treatment for the three families of degenerate systems produces the distribution

spreads T=T shown in Fig 6, plotted as a function of the combined variable κz. Degenerate sys-

tems that convert into densely connected graphs appear to have narrow spreads, T=T � 1:2

and T=T < 2:5 for the k3 and k2 families, respectively. The choice of an insertion order is

not an issue for them.

Fig 5. Distribution of insertion orders over CPU time. A.- Distribution for a “good” basis. B.- Distribution for a “bad” basis. The number of

insertion orders available is σ! = 720. C.- Distribution of the 4,423,680 combinations of basis–insertion-order over CPU time.

https://doi.org/10.1371/journal.pone.0175819.g005
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Degenerate systems that convert into bulky but sparsely-connected graphs show in Fig 6 a

much higher sensitivity to the election of basis and insertion order. The spread T=T of the dis-

persion of CPU times may be as wide as 24 for the cases used in our exploration and the spread

keeps growing with z. Choosing a suitable combination of basis B and insertion order of B0 is
an issue for the optimization of the execution times of degenerate systems that convert into

sparsely connected graphs.

The incremental slicing of cones may apply either a combinatorial or an algebraic test for

2-face cuttings. The results of a comparison of performance of the algebraic (T ) and the com-

binatorial (T) tests are shown in Fig 7. The combinatorial test shows a better performance on

systems that convert into densely connected graphs, the k2-family has the ratio T=T � 0:32.

For systems that convert into sparsely connected graphs the algebraic test is the best option,

specially for big input sizes. For the k3-family the combinatorial test is better for moderately

bulky graphs, but when they get bigger the algebraic test turns out to be the better choice.

Fig 8 compares the execution times of Algorithm 5 with the times employed by our own

implementation of the pure-simplex based Balinski’s algoritm [25]. Only systems that were

Fig 6. CPU time ratio of the worst (T ) and the best (T) choices of basis–insertion-order. Sparsely-connected graphs show a higher

sensitivity to the insertion order that those densely-connected.

https://doi.org/10.1371/journal.pone.0175819.g006
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converted by Balinski’s algorithm in lesser than 50 hours are shown. Algorithm 5 performs

several orders of magnitude better than Balinski’s. For instance the no-signaling system repre-

sented by the blue dot in Fig 8 was converted after 49 hours by Balinski’s algorithm, while

Algorithm 5 took 86 seconds for the conversion.

6 Concluding remarks

The algorithm presented converts degenerate systems of linear inequalities into their skeleton

graphs. Algorithm 5 applies an improved version of the incremental method for the enumera-

tion of extreme rays to defeat degeneracy and a simple pivoting rule for a swift traversal of the

set of extreme points.

The results obtained by Algorithm 5 in the computational practice of Section 5 characterize

conversion problems in two classes, which are distinguished by the combined output-input

measure of complexity κz. Class A is constituted by systems of linear inequalities that convert

degeneracy into densely connected graphs. Systems that convert degeneracy into bulky but

Fig 7. Ratio of CPU times for the combinatorial (T) and the algebraic (T ) tests of 2-face cutting. The combinatorial test is the best

option for systems that convert into densely-connected graphs while the algebraic test is appropriate for systems converting into sparsely-

connected graphs.

https://doi.org/10.1371/journal.pone.0175819.g007
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sparsely connected graphs conform the second class B. The almost stationary value of κz

shown by the k2 family of no-signaling polytopes suggests that class B systems have values of

κz≲ 103.

The computational practice in Section 5 showed that Algorithm 5 performs better on sys-

tems of class A. For these systems, the incremental method is neither sensitive to the choice of

the input basis nor to the insertion order of the cutting half-spaces and there is a clear evidence

that favors the combinatorial over the algebraic 2-face test.

On the contrary, for class B systems the performance of the incremental method is highly

sensitive to the large number of combinatorial options introduced by degeneracy. The

selection of an “optimal” input basis and an “optimal” insertion order remains a problem

for the systems in class B. No solution to this problem is found in the literature, only

recommendations to achieve some technical easiness, such as keeping a fixed insertion

order and the remark that any dynamical reordering based on explorations consumes a lon-

ger CPU time [19, 29, 31]. The recommendation for class B derived from the computational

Fig 8. CPU time ratio TA5/TB. Algorithm 5 (TA5) is several orders of magnitud faster (polynomially) than our own implementation of Balinski’s algorithm

(TB) [25].

https://doi.org/10.1371/journal.pone.0175819.g008
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practice of Section 5 is to explore a few extreme points in advance as to find a good order of

the constraint vectors for the sample of points and then adopt the finding for the whole

procedure.

Concerning the 2-face test, the algebraic one is undoubtedly the best option for class B

systems. In practice, it is advisable to run a competition of the combinatorial and algebraic

tests on a small sample of extreme points and use the winning test to proceed with the full

conversion.

In the extensive practice of Section 5, Algorithm 5 showed a superior performance respect

the simplex-based pivoting algorithm by Balinski [25]. Our own implementation of Balinski’s

algorithm got stalled (did not finish) when trying to convert most of the systems studied in

Section 5.

In this paper we have used the combined output-input variable κz as the measure of com-

plexity for the output graphs. However, there exist other measures for characterizing such

complexity, as the graph entropy [13, 14] and the graph similarity [15]. Then, a future work

that involves such measures to characterize the output graphs produced by degenerate systems

of linear restrictions would be interesting.

The algorithm introduced in this paper aims to be a useful tool in applied problems that

require a conversion mechanism for an appropriate interpretation. We are aware that a theo-

retical analysis of its computational complexity is required. However, for an analysis of compu-

tational complexity to be of some significance, a precise and definite characterization of the

input descriptions is required. The problem is that, unlike regular input systems, degenerate

graphs cannot be described simply by their dimension and number of half-spaces, as shown in

Section 5. We did not find in the literature a standard characterization for the input descrip-

tions as to typify degenerate systems. The no-signaling and Birkhoff’s half-space descriptions

are candidates to consider, but first one of them should be characterized as the specific stan-

dard for degeneracy. On the other hand, the effect of implementations that optimize the per-

formance of the algorithm (such as the 2-face recording and the rejection test) must be

differentiated and evaluated too. The above considerations tells us that, even necessary, a sig-

nificant analysis of computational complexity is a very ambitious endeavor that lays beyond

the scope of this article.
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