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Abstract

Background: Proteins in organisms, rather than act alone, usually form protein complexes to perform cellular
functions. We analyze the topological network structure of protein complexes and their component proteins in the
budding yeast in terms of the bipartite network and its projections, where the complexes and proteins are its two
distinct components. Compared to conventional protein-protein interaction networks, the networks from the
protein complexes show more homogeneous structures than those of the binary protein interactions, implying the
formation of complexes that cause a relatively more uniform number of interaction partners. In addition, we
suggest a new optimization method to determine the abundance and function of protein complexes, based on
the information of their global organization. Estimating abundance and biological functions is of great importance
for many researches, by providing a quantitative description of cell behaviors, instead of just a “catalogues” of the
lists of protein interactions.

Results: With our new optimization method, we present genome-wide assignments of abundance and biological
functions for complexes, as well as previously unknown abundance and functions of proteins, which can provide
significant information for further investigations in proteomics. It is strongly supported by a number of biologically
relevant examples, such as the relationship between the cytoskeleton proteins and signal transduction and the
metabolic enzyme Eno2’s involvement in the cell division process.

Conclusions: We believe that our methods and findings are applicable not only to the specific area of proteomics,
but also to much broader areas of systems biology with the concept of optimization principle.

Background
High-throughput detection of protein-protein interac-
tions (PPIs) has long been one of the most intensively
studied areas in systems biology. Currently, recent pro-
gress in experimental techniques, such as the yeast two-
hybrid (Y2H) method or tandem-affinity-purification
method coupled to mass spectrometry (TAP-MS) [1-3],
has allowed the compilation of massive data set for pro-
tein interactions of the budding yeast, Saccharomyces cer-
evisiae (S. cerevisiae). From the vast amount of PPI data,
protein interaction networks (PINs) have been vigorously
investigated. In PIN, proteins are represented as nodes,
and two proteins are linked if they interact with each
other. Basic topological measures, such as a degree (the
number of neighbors a node has), and their correlations

are adopted to explain various properties of proteomes.
For instance, a degree in PIN is the number of partner
proteins with which an individual protein interacts. One
of the earliest achievements is the heavy-tailed degree
distribution (denoted as “scale-free” network) and its
importance in characterizing the essentiality of proteins
[4]. In addition, there have been further explorations on
the negative degree-degree correlation profile ("disassor-
tative” nature) related to the modular structure of protein
interactome [5,6]. Models for PIN have been developed
by incorporating such characteristics [7,8]. In this way, it
has been witnessed during the last decade that studies on
complex networks [9-12] play a great role in characteriz-
ing such interacting entities, and the term “network biol-
ogy” was coined to refer to networks whose nodes
correspond to proteins, metabolites, genes, etc [13].
In spite of such recent progress, there are shortcom-

ings of that type of simplified network representation of
PPI in that detailed mechanisms or higher structures of
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interactions are often neglected. Most of all, only the
pairwise binary interactions between two proteins are
considered in PPI, and they are not sufficient to capture
real biological processes involving a stable form of pro-
teins grouped according to their biological functions.
For instance, two proteins A and B can be involved in a
certain biological process by forming a linear chain with
another protein C, such as A-C-B, without any direct
contact between A and B. To overcome such problems,
it is crucial to consider protein complexes, which are
groups of proteins performing specific cellular tasks
[14-18]. In this paper, we focus on protein complexes
and their component proteins in S. cerevisiae whose
data set has been established through the recently devel-
oped TAP-MS technique [3]. We apply the concept of
bipartite network [9-12] to the protein complexes and
proteins associated with them. A bipartite network is
composed of two types of nodes, and there exist links
only between nodes of different types, as usually found
in social “affiliation” networks, where individuals are
joined by common membership of groups [9]. In our
case, protein complexes and their component proteins
are the two types of nodes, and a complex is connected
to a protein if the protein is one of the components of
the complex, as shown in Figure 1. We construct the
bipartite network and obtain its one-mode projections
[9], i.e., the weighted network of individual proteins
(protein-protein network) and the weighted network of
complexes (complex-complex network), where the

weight on each link is given by the number of shared
complexes or proteins, respectively.
The weighted network is an extension of complex net-

works, with additional information, weight, on each link,
and has been investigated in the context of network the-
ory [19], including the metabolic network analysis [20].
From this weighted network analysis, we can extract
quantitative topological characteristics of the interrela-
tionship among protein complexes and component pro-
teins. In this work, we analyze the distributions of degree
and strength (an “extension” of degree, which is defined
as the sum of weights on the links connected to each
node). For both bipartite and projection networks, the
distributions approximately follow the exponential distri-
bution, while most PINs in the literature are claimed to
show more inhomogeneous degree distributions
[4,5,13,21]. Furthermore, two classes of proteins denoted
as “core” proteins and “attachment” proteins are shown
to play different roles in the complex formation.
Besides the aforementioned preliminary analysis on the

structural properties of networks, as a main topic of our
work, we suggest a new method for the systematic esti-
mation on cellular abundance of protein complexes and
the assignment of biological functions to them, as well as
those of individual proteins. For further researches, such
as kinetic modeling of the cell, estimating the abundances
and functions of complexes and component proteins can
provide a much more quantitative description of beha-
viors in a cell than a list of protein interactions. However,
most of previous attempts about the assignment of
unknown functions to proteins or complexes usually rely
on local information. For example, there is a method
mapping the problem to the local-similarity-based Potts
model [22], which is an intrinsically stochastic method
and depends on a temperature-like parameter. Another
previous work is a statistical argument based on hyper-
geometric tests, as in Ref. [23], but it also requires a spe-
cific external threshold and additional corrections to fit
the data to biological reality. In contrast, our determinis-
tic method is based on the optimization problem related
to the global organization of protein complexes, and
yields a number of experimentally verifiable results. From
the results of the optimization, we cross-analyze the con-
dition-dependent abundance and functions of complexes,
which also supports the reliability of our method as well
as our extensive statistical validation process. All of these
examples clearly show the effectiveness of our method,
and we believe that this method has the potential to sig-
nificantly stimulate further experimental studies.

Methods
Bipartite Network Representation of Protein Complexes
Figure 1 is a schematic diagram of our bipartite network
representation of protein complexes and their

(b) Protein−mode projection (c) Complex−mode projection
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Figure 1 An example of bipartite network representation of
protein complexes and component proteins. (a) Complex A is
composed of protein a, b, and c, complex B of protein b, d, and e,
and complex C of protein b and e. (b) In protein-mode projection,
two proteins are linked if they share a complex and the link’s
weight is assigned as the number of complexes they share. (c)
Similarly, in complex-mode projection, two complexes are linked if
they share a component protein and the weight is given by the
number of proteins they share.
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component proteins. The bipartite network shown in
Figure 1(a) consists of two types of nodes, i.e., complex
and protein, where a complex is linked to a protein if
the protein is a component of the complex. In the pro-
tein-mode projection or protein-protein network [Figure
1(b)] whose nodes are individual proteins, two proteins
are connected if both of them are used to form at least
one complex. The number of complexes they share in
this manner is assigned as the weight of each link. The
complex-mode projection (complex-complex network)
described in Figure 1(c) is obtained similarly, where
complexes are linked if they include at least one protein
in common, and the number of such shared proteins is
the weight.
Note that the bipartite network itself is not a weighted

network, while the protein-protein and complex-com-
plex networks are weighted ones, based on the informa-
tion provided by the bipartite network. Similar
approaches have been presented in previous works
[24,25], with older datasets [14,15]. For instance, Masha-
ghi et al. [24] used a similar approach, but we consider
all three kinds of networks, while Ref. [24] dealt only
with the bipartite network and the complex-mode pro-
jection. In addition, we use a weighted version of one-
mode projections in this work, while the unweighted
one-mode projection networks were considered in the
previous work [25].
We analyze the basic statistical characteristics of these

three networks, using the methodology derived from a
decade of complex network studies [9-12,19]. The data-
set of protein complexes and their component proteins
in S. cerevisiae is listed in Ref. [16], where significant
overlaps (shared component proteins) among protein
complexes make it possible for us to analyze the inter-
connected network structure, and determine the abun-
dance and functions. In Ref. [16], Gavin et al. use the
TAP-MS technique [3,14] to generate the list of protein
complexes and their component proteins. The proteins
in each complex are classified as cores and attachments,
according to their significance in the formation of speci-
fic complexes. We will discuss the different roles of core
proteins and attachment proteins later on. The datasets
consist of 491 protein complexes and 1,491 component
proteins, among which 1,147 proteins participate in
complexes as cores and 1,134 proteins as attachments.
Therefore, 790 proteins are used as both cores and
attachments.

Estimation of Complexes’ Abundance Based on
Optimization
Proteins interact with each other and form complexes in
order to perform specific biological functions. Naturally
each protein complex executes specific biological func-
tions with its characteristic composition of component

proteins, and the identification of such functions and
abundance in terms of complexes is important. Unfortu-
nately, such exact identification of complexes’ functions
and estimation of their abundance is far from being
complete. Only heuristic methods, using local (binary)
interaction of proteins, were used in previous studies
[16,22,23], and there were some limitations, such as the
arbitrarily specific values of threshold. In this section,
we present our new optimization method to determine
the abundance and function of protein complexes, based
on the information of their global organization. Estima-
tion of abundance would be especially crucial, and is
directly applicable to various works, such as setting up
kinetic models that involves proteins, by providing reac-
tion coefficients.
Suppose that the copy number of protein i (i = 1,...,N;

N is the number of proteins) and the number of com-
plex j (j = 1,...,M; M is the number of complexes) are
given by pi and cj, respectively. Also, let us denote the
number of protein i in the complex j as Sij, where Sij =
0 if the complex j does not harbor the protein i as its
component. Then, in an ideal situation where all the
abundances or concentrations of proteins in a cell corre-
spond to the exact amount to be used in forming a com-
plex, similar to the approach used for kinetic modeling
in [26], the variable sets {pi} and {cj} satisfy

pi =
M∑
j=1

Sijcj. (1)

The question is how to determine {cj} (variables) with
known values of {pi} and {Sij} (constants). However,
since the number of proteins N is larger than the num-
ber of complexes M, the set of linear equations above is
over-determined, and we assume that in reality it is not
feasible to satisfy all the equations in Eq. (1). In practice,
therefore, we assume that the number of proteins in a
cell should be greater than or equal to that necessary to

form complexes, i.e., pi ≥
M∑
j=1

Sijcj , which is the basic

constraint of our optimization scheme. Therefore,
instead of looking for an exact solution satisfying Eq.
(1), we try to minimize the deviation from the ideal
situation in Eq. (1), given by

DA =
N∑

i=1

⎡
⎣1 −

M∑
j=1

(
Sijcj

)
/pi

⎤
⎦ (2)

where the summation is only for indices i where pi >
0. Now, for the given values of pi and {Sij}, our basic
strategy is to determine cj values that minimize DA in
Eq. (2), and this problem is numerically solved by the
linear programming (LP) technique. Moreover, after the
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determination of cj values, if some values of pi are
unknown, we can assign those values of pi using Eq. (1)
for the ideal situation. This optimization is based on an
assumption that organisms have been evolved in a way
that increases efficiency by reducing wasted resources.
We use the abundance data of yeast proteins {pi}, in
Ref. [27], because the datasets for both rich (YEPD) and
minimal (SD) media are available, and we exploit those
conditional changes of abundance later on for our analy-
sis. The values of {Sij} are given by the list of protein
complexes used in this work.

Inference of Complexes’ Biological Functions Based on
Optimization
For a functional annotation of complexes, we consider
the following optimization scheme. Suppose Fpik = 1 if
protein i performs a function k (k = 1,...,F; F is the num-
ber of functions) and Fpik = 0 otherwise. Similarly, Fcjk
= 1 if complex j performs a function k and Fcjk = 0
otherwise. The organization of protein complexes is
given by Uij, where Uij = 1 if protein i is a component
of complex j and Uij = 0 otherwise (note that Uij = 1 if
Sij > 0 and Uij = 0 if Sij = 0). In this case, the constraint
is given by

Fpik ≤
M∑
j=1

UijFcjk, (3)

meaning that every function assigned to a protein must
be assigned to at least one of the complexes in which the
protein participates, which is reasonable, based on the
assumption that each biological function is usually
expressed cooperatively in the form of protein com-
plexes. We are aware that our dataset of proteins and
Munich Information Center for Protein Sequences
(MIPS) database [28] are not exhaustive, so the outcome
is not a perfect functional catalogue. However, since our
method itself is stable and resilient, as we demonstrate
later on the validation part, the result will become more
accurate as the input dataset becomes more reliable.
Even if there are some errors and exceptions, such as
single proteins not being included in our complex data-
sets, we emphasize that, based on notable examples pre-
sented later, our method clearly produces biologically
significant results.
Our criterion used for the optimization process is to

assign the most definite functions to each complex. In
other words, we try to find functions that are inevitably
assigned among all the other solutions satisfying the
constraint (3), in the “safest” way. In the spirit of parsi-
mony, we minimize the number of complexes assigned
with each function. Mathematically, this corresponds to
minimizing the following quantity for each k:

DFk =
N∑

i=1

⎡
⎣ M∑

j=1

(
UijFcjk

) − Fpik

⎤
⎦. (4)

Therefore, our strategy of determining each protein
complex’s functions is determining {Fcjk} which mini-
mizes either Eq. (4) under the constraint (3), with the
given values of {Fpik} and {Uij}. Note that all variables
and constants in this case are integer values, in contrast
to the abundance estimation. This optimization problem
is numerically solved with the mixed integer program-
ming (MIP) technique. After determining the {Fcjk} set,
similar to the case of abundance case, we can conjecture
the function of protein i as k, if ∑j Uij Fcjk ≥ 1 while Fpik
= 0, because the protein i is considered to perform the
function k by participating in at least one of the com-
plexes to which the function is assigned.
The function assignment of proteins, i.e., {Fpik} is

available from various sources, such as MIPS [28] or the
Yeast Genome Database [29], and the values of {Uij} are
given by the list of protein complexes used in this work
so far [16]. We use the MIPS database for the initial
function assignment of individual proteins, which is set
{Fpik}, because its hierarchical organization of Functional
Catalogue (FunCat) [28] helps the systematic interpreta-
tion of results in different hierarchical levels. We would
like to emphasize that our method, for the first time,
systematically assigns multiple numbers of functions to
all the complexes in the genome-wide scale, without any
free parameter or initial condition dependency, in con-
trast to other previous methods [22,23].
There is a certain degree of resemblance between our

method and the message passing algorithm, such as the
belief propagation (BP) [30,31], in inferring or assigning
(previously unknown) properties to variables in bipartite
graphs. For instance, the message from a variable node
v to a factor node u in BP is analogous to assigning
function or abundance of complexes (factor nodes in
the complex-protein bipartite network), and the follow-
ing process of message passing from u to v corresponds
to assignment to proteins with previously unknown
functions or abundance. We can even consider the con-
figuration of object functions in Eqs. (2,4) as the “energy
landscape” of constraint optimization problems, where
methods like BP play important roles. In spite of this
analogy, there are significant differences as well. First,
our method is designed to deal with a specific type of
problems composed of the set of factor nodes with no a
priori information and the set of variable nodes with
information except for a small fraction of unknown
cases. Second, and more importantly, in contrast to BP,
where the local flow of inference is used, our method is
based on global optimization of object functions. In this
respect, the previous works using local or Bayesian
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inference to assign protein functions [22,23] are similar
to the message passing algorithm than our method. Of
course, finding deeper mathematical analogy between
our method and such traditional inference algorithms
would be certainly interesting, but that would be beyond
the scope of this paper.

Results
Statistical Properties of the Bipartite and One-Mode
Projection Networks
First, we construct the bipartite network without distin-
guishing between core and attachment proteins. As
mentioned in the ‘Methods’ section, the bipartite net-
work consists of 491 complexes and 1,491 proteins as
its two different types of nodes. The average degree of
complexes (the average number of proteins that a com-
plex includes) is 13.41 (with standard deviation of
14.03), and the average degree of proteins (the average
number of complexes in which a protein participates) is
4.42 (with standard deviation of 4.05). Figure 2 shows
the degree distributions of the bipartite network, where
we separate the distributions for complexes and proteins
since they are different types of nodes. As shown from

the fitted curves in Figure 2, the degree distributions for
both kinds of nodes are much closer to the exponential
distribution p(k) ~ exp(-k/k0) (except for the “tail” part
from the finite-size effect) than the power-law distribu-
tion, because the cumulative distribution P(k) of the
exponential distribution p(k) ~ exp(-k/k0) also follows
the exponential distribution from the relation

P(k) =
∞∫
k

dk′p(k′) ∼ exp(−k/k0), in the continuum limit.

Two complexes, denoted as Complexes 27 and 56 in
Ref. [16], include prominently many component pro-
teins, especially including proteins affiliated to the ribo-
some, as shown in Table 1. The two proteins, with the
maximum connectivity 24 in the bipartite network, are
Rps22a and Rpl36b, which are ribosomal proteins [29].
One-mode projections of our bipartite network repre-

sent interactions or relatedness among complexes and
individual proteins. In the complex-mode projection,
intuitively, two complexes are considered to be related if
they share proteins, and the “intensity” of their related-
ness, the number of proteins they share, is quantified as
the weight. Similarly, in the protein-mode projection,
two proteins are thought to be related if they participate
in common complexes, due to the fact that proteins per-
form a biological function as a unit of the protein com-
plex. Because more than two proteins can be
cooperatively involved in the protein interactions, inves-
tigating protein interactions from the formation of com-
plexes has its own advantages over other methods using
only the pairwise interactions, such as the Y2H method
[1,2]. The degree distributions of the complex-mode
projection shown in Figure 3(a) and the protein-mode
projection in Figure 3(b) show the exponential distribu-
tion. The strength si of a node i in a weighted network
is defined as [19]

si =
∑
j∈Vi

wij, (5)

where wij is the weight of the link connecting the
node i and j, and Vi is the set of neighbor nodes of i. It
can be considered as a natural extension of the degree
of a node in weighted networks, and the strength distri-
butions of our weighted complex-complex and protein-
protein networks are shown in Additional file 1, Figure
S1. The strength distributions are also closer to the
exponential form, rather than the power-law distribution
observed in many other biological and other real-world
weighted networks [19,20]. It is true that the maximum
degree (163) of complex-mode projection network is
very large, considering the number of nodes (491), but
this is merely due to the large connectivity (average
degree) of distribution, not to the “scale-free” functional
shape.

10-3

10-2

10-1

100

 0  10  20  30  40  50  60  70  80  90  100

P
(k

)

degree k

(a) Complexes

10-3

10-2

10-1

100

 0  5  10  15  20  25

P
(k

)

degree k

(b) Proteins

exponential fit
power-law fit

Figure 2 Degree distributions of the bipartite network, for (a)
complexes and (b) proteins. Here, the degree in (a) corresponds
to the number of component proteins for each complex, and the
degree in (b) corresponds to the number of complexes in which a
protein participates as a component. The blue squares correspond
to the cumulative degree distribution P(k) = ∑k′ ≥ k p(k′), and the
pink lines and gray curves are the best exponential and power-law
fittings, respectively.
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Although the notion of hub, referring to nodes with
many connections to others, in the exponential degree
distribution is not as strong as in the power-law degree
distribution, we can still identify nodes with relatively

large degrees and strengths by examining the “tail” part
of the distributions. Table 1 lists the complexes and pro-
teins with the ten largest degree and strength values in
both the bipartite and projection networks. Again, the
ribosome-associated complex (RAC) is a notable exam-
ple annotated in the datasets [32]. Other unknown com-
plexes with large degrees and strengths also include
many ribosomal proteins (denoted as ‘Rpl-’) as their
components. Some ribosomal proteins have the largest
degrees and strengths in the protein-mode projection as
well, e.g., Rpl33a, Rpl30, Rpl16b, and Rpl26b [29]. The
fact that many complexes and proteins with largest
degrees and strengths are affiliated to the ribosome can
be interpreted in two ways. One hypothesis is that
because the ribosome is involved in the production of
proteins, ribosomal proteins might be promiscuously
attached to many unspecific complexes. The other is
that ribosomal complexes are usually large and com-
posed of many ribosomal proteins, which implies the
genuine property in this case. To determine which
hypothesis is more plausible, we have manually checked
the complexes in which those proteins are involved and
found that most component proteins of those complexes
are also ribosomal proteins, which supports the latter
hypothesis. For instance, complexes 27, 55, 56, which
have the three largest degree (number of component
proteins) in the bipartite network, are all assigned with
‘ribosomal proteins’ from our optimization method. We
note that in some previous works, the ribosomal pro-
teins are considered as non-specific contaminants
involved in promiscuous interactions and filtered out,
for example, in Ref. [17]. However, our dataset from
Ref. [16] already passed the stringent test based on
socio-affinity index, taking into account the frequency of
proteins within the dataset and naturally discriminating
true from spurious interactions [16]. We believe that the

Table 1 List of complexes and proteins with ten largest degree/strength in bipartite/projection networks

Complex in bipartite
network (degree)

Protein in bipartite
network (degree)

Complex in
projection network

(degree)

Complex in projection
network (strength)

Protein in projection
network (degree)

Protein in projection
network (strength)

27• (94) Rps22a (24) 27• (163) 56• (1047) Rpl33a (326) Utp20 (860)

56• (94) Rpl36b (24) 56• (162) 27• (994) Rpl30 (323) Rpl33a (815)

37 (65) Rpl11b (22) 10••• (154) 55• (722) Rpl16b (322) Nop1 (800)

55• (65) Rpl26b (21) 32** (152) 37 (680) Utp20 (318) Rpl26b (790)

1* (61) Nop1 (21) 58 (148) 18•• (669) Rps14a (295) Rps22a (721)

18•• (58) Rps14a (20) 37 (147) 23 (656) Rps22a (294) Rpl11b (711)

23 (57) Rp130 (20) 45†† (147) 331 (640) Nop1 (292) Mpp10 (698)

39 (56) Rp12b (20) 18•• (146) 371 (581) Sro9 (281) Rpl36b (678)

80† (55) Utp20 (20) 331 (145) 39 (577) Rrp12 (276) Rpp2b (675)

10••• (52) Rpl33a (16) 41 (136) 211 (530) Rpl6b (275) Rps14a (673)

The annotated complexes in Ref. [16] are following: *U1 snRNP complex, †Prp19-associate complex, **ribosome-associate complex (RAC), ††Translation initiation
factor eIF3 complex, •complexes assigned as ‘ribosomal proteins’ function, ••tRNA modification function, and •••fatty acid metabolism and aromate anabolism
predicted by our optimization method (Additional file 5, Table S1).
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Figure 3 Degree distributions of (a) complex-mode projection
(complex-complex network) and (b) proteins-mode projection
(protein-protein network). Here, the degree in (a) corresponds to
the number of complexes which share at least one component
protein with each complex, and the degree (b) corresponds to the
number of proteins which participate in at least one complex with
each protein. The blue squares correspond to the cumulative
degree distribution P(k) = ∑k′ ≥ k p(k′). The pink lines and gray curves
are the best exponential and power-law fittings, respectively.
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criterion used in Ref. [16] can be more systematic and
reasonable than the “3% rule” used in Ref. [17], so the
statistics related to the ribosomal proteins may actually
be reflective of the biological reality. However, it would
also be meaningful to mention some non-ribosomal
complex/proteins with such large degree/strength values.
Therefore, we have identified other examples such as
complexes assigned with tRNA modification function,
fatty acid metabolism, and aromatic anabolism from our
optimization method among the top 10 largest com-
plexes and indicated in Table 1.
The exponential distribution is different from the ear-

lier notion of the power-law degree distribution of PIN
[4,5,13,21], but the power-law distribution for PIN has
been contested by number of researches as well [33-35].
Statistically, the diversity of degrees and strengths in the
complex-complex and protein-protein networks is less
than that of PIN. Therefore, we conclude that the exis-
tence and strength of interactions with other proteins
for each protein in terms of participation in protein
complexes are less diverse than those for the pairwise
interactions. These exponentially-decaying distributions
are in contrast to the results from earlier works on bio-
logical networks [13], but recent studies suggest the dif-
ferent frameworks of assessing the protein interactions.
It turns out that these homogeneous distributions corre-
spond to the stable complex formation. For example, in
a recent “benchmark” paper by Yu et al. revealed the
intrinsically different natures of detected interactions
from the Y2H for detecting more transient and condi-
tion-specific interactions and mass spectrometry (MS)
methods for detecting stable protein complexes [34],
which can support our findings of the exponential distri-
bution of degrees, in contrast to the power-law distribu-
tion for PIN from the Y2H method. To be more
specific, the detection of complexes with TAP-MS
method used in our data corresponds to the MS techni-
que, which is basically to detect “prey” proteins with the
“bait” proteins so the collection of prey proteins is con-
sidered as an entity of interactome, in contrast to Y2H
method using 1:1 pairwise screening. The differences
between the “spoke model” (only the direct bait-prey
relation is considered as interactions) and “matrix
model” (all the protein pairs in bait and prey sets are
interconnected) described in Ref. [35] are also a good
mechanism causing the different kind of distributions.
Interestingly, there are lots of proteins having more
than 100 neighbors in the projection network as shown
in Figure 3(b), while the recent PIN analysis shows the
maximum degree less than 100 in spite of their power-
law distribution [34]. Here we do not claim that our
finding is in conflict with the previous studies on the
binary PPI, but that this projection network based on
TAP-MS complex data clearly reflects fundamentally

different type of interactions in the yeast proteome, as
well-documented in Ref. [34].
The exponential or at least “bounded” degree distribu-

tion of complexes in the bipartite network can be
thought to originate from, for example, the “crowding
effect” in a cell. Cytoplasm of a cell is occupied by var-
ious macromolecules such as enzymes, whose concen-
tration cannot be further increased without affecting
protein-protein association or transport dynamics [36].
Specifically, there should be a limit in the available cyto-
plasmic volume a complex can take, and thus the num-
ber of component proteins it can bear within the
limited physical space. Also, it is empirically observed
that the number of complexes a protein can participate
in (= the protein’s degree in the bipartite network) is
limited as well. For the exponential degree distributions
for both parties in the bipartite network, the projected
networks’ degree distributions actually turn out to be
exponential-like unless there are nontrivial correlations,
because each party’s degree distribution mainly deter-
mines the projected network’s degree distribution as
shown in Ref. [37]. We have derived more rigorous
proof of this fact by adopting a similar technique to Ref.
[38], where the generating function for the degree distri-
bution is used to derive the degree-degree correlation
for projected networks. It is straightforward to calculate
the generating function of the projected protein net-
work’s degree distribution given by

f (x) =

[e2/N(1 − e−1/N)2(1 − e−1/M)2(1 − xe−1/N)4(e1/N − 1)]/,

{(e1/N − x)3[1 − 2xe−1/N + x2e−2/N − e−1/M

+2e−(N+M)/(MN) − e−(N+2M)/(MN)]2}

where the degree distributions of proteins and com-
plexes in a bipartite network are given by pprotein(k) ~
exp(-k/M) and pcomplex(k) ~ exp(-k/N) and there is no
degree-degree correlation (ejk = pjpk, i.e., the joint degree
distribution of the vertex pair j and k is given by the
product of each vertex’s degree distribution), which we
have checked that as a reasonable assumption from our
dataset, by the way. The resultant degree distribution of
proteins in the projected network is calculated with the

formula p(k) =
1
k!

(
dk

dxk
f (x)

)
x=0

and we numerically

check that the distribution is indeed very close to expo-
nential one for k ≫ 1, as shown in Additional file 2, Fig-
ure S2.
One may argue that it is hard to tell something about

the distribution with the limited number of datasets, but
in any case, we can safely exclude the power-law distri-
bution from fitted curves from Figures 2, 3 and S1.
Also, we emphasize that our dataset from the TAP-MS
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method, modified to successfully overcome the mem-
brane protein under-representation problem [16], is
fairly genome-wide. Even if there might be missing pro-
teins or complexes as a result of experimental limitation
of detecting heterodimer complexes, the degree distribu-
tion would not be severely affected by sampling. In a
previous work including PIN data [39], we showed that
the functional form of degree distribution is conserved
under sampling up to quite a low sampling fraction. In
this respect, we conclude that the different type of dis-
tribution in this case reflects the actually different char-
acteristics of the binary interaction and the interaction
as forming complexes.
To check this property of network statistics in case of

other organisms, we use the list of protein complexes of
Escherichia coli (E. coli) data [40] and Human Protein
Reference Database (HPRD) [41]. First, since the E. coli
dataset defined in Ref. [40] does not provide any over-
lapped component protein between complexes, we
observe only the degree distribution of complexes,
meaning the number of component proteins each com-
plex has. It is difficult to reach a definite conclusion of
the distribution’s functional form with a very small
range of degree values, but the maximum degree is less
than 40 and the argument of crowding effect seems to
hold here as well (Additional file 3, Figure S3). In HPRD
datasets, there are both the list of protein complexes
and binary PPI, which allows the comparative analysis.
As a result, the degree distributions of complexes and
proteins in the bipartite network are less broad than the
ones in the binary PPI (Additional file 4, Figure S4),
which indicates a similar result to our S. cerevisiae data-
set. The degree distributions of the bipartite network of
HPRD themselves do not seem to follow the exponential
distribution, though, and we suspect that this difference
may stem from the fact that HPRD dataset is basically
manual literature mining of small-scale experiments, not
the result from a systematic high-throughput experi-
ment. On the other hand, if the degree distribution
from HPRD reflects biological reality rather than such
sampling biases, we suppose that the relatively large size
of mammalian cells may “relax” the aforementioned
macromolecular crowding effect, thereby enriching the
tail part of the degree distribution, compared to the case
of yeast cells.

Distinction between Core and Attachment Proteins
The list of component proteins for each protein com-
plex is divided into two groups, cores and attachments
in Ref. [16]. The “standard” complex-protein dataset is
selected in terms of best accuracy and coverage in a set
of manually-curated complexes, but there can be other
possible variations of complex-protein sets if the thresh-
old of accuracy and coverage for clustering becomes

more flexible. These variations in reasonable ranges are
denoted as “isoforms,” and whether a protein is core or
attachment is determined by the participation ratio in
the isoforms. In other words, proteins present at a cer-
tain complex in a significant portion of the isoforms are
classified as core proteins of that complex, and denoted
as attachment proteins of that complex otherwise. Note
that the entire set of proteins is not exactly partitioned
into two groups, because a core protein for a complex
can be an attachment protein in another complex. In
fact, as mentioned in the ‘Methods’ section, 790 proteins
among the total number of 1,491 proteins act as both
cores and attachments. Core proteins seem to bind
more rigidly, and form the basic unit of a given
complex.
If only the core proteins are considered to construct

the bipartite network for complexes and proteins, the
average degree of core proteins in the bipartite network
is 1.28, and most (about 80%) proteins participate in
only one complex, while the largest degree is only 5. On
the other hand, when considering only attachment pro-
teins, the average degree of attachment proteins in the
bipartite network is 4.83 and the largest degree is 24.
The average degree is 4.42 [between 1.28 (only core)
and 4.83 (only attachment)] in case of all proteins, and
from this comparative analysis we can observe that core
proteins are much less promiscuous than the attach-
ment ones. The degree distributions of proteins for both
cases are closer to the exponential distribution, as
shown in Figure 4. This quantitatively different partici-
pation pattern suggests that the core proteins in a pro-
tein complex act as its “skeleton” and the attachment
proteins play the role of “seasoning,” because attach-
ment proteins are likely to participate in the formation
of a relatively large number of complexes. One-mode
projections, when only core proteins or only attachment
proteins are considered, are shown to have exponential
degree and strength distributions for both complex-
mode and protein-mode projections, similar to the case
without the distinction between those two kinds of
proteins.
Different roles of core and attachment proteins are

also reflected in the clustering structure of complex-
mode projection network. If only the core proteins are
considered, the complex-mode projection network is
composed of 42 separate connected components, which
is a highly fragmented configuration. Thus, core proteins
are important as a stable component for individual com-
plexes, rather than a mediator which “binds” complexes
together. On the other hand, if only the attachment pro-
teins are used to bond complexes, one single giant com-
ponent emerges, except for a single tiny component
with only two complexes. This small component is also
merged into the single giant component if we consider
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both core and attachment proteins. As a representative
example, we present the exosome 3’-5’ exoribonuclease
complex (complex 326 in Additional file 5, Table S1)
which contains all the core components of SKI complex
(complex 364 in Additional file 5, Table S1) as attach-
ments, supporting previous works that the association is
necessary for cytoplasmic messenger RNA 3’-to-5’ decay
[16,42]. Therefore, the attachment proteins (core pro-
teins of SKI complex in this case) indeed specify a parti-
cular function for the exosome complex.

Inference of Abundance and Functions: Statistical
Validation
There are core and attachment proteins, as stated and
analyzed in the previous subsection. To make our pre-
dictions as conservative as possible, we adopt the follow-
ing scheme about selecting core and attachment
component proteins. For the abundance estimation, we
consider only the core proteins as components of com-
plexes, based on the fact that the core proteins play the
role of the skeletons as previously mentioned, i.e., unlike
the attachment proteins shared by relatively large

number of complexes which can overestimate the num-
ber of complexes. In other words, we expect that utiliz-
ing only the core proteins leads us to a more accurate
estimate of the abundance. In contrast, both the core
and attachment proteins are used in function assign-
ment of complexes. In this way, it allows more alterna-
tive ways of function assignments, and if a function is
assigned in spite of all those possibilities, we can con-
sider it to be a genuine function, with more certainty.
However, in case of assignment of previously unknown
functions to proteins after the function assignments for
complexes, only core proteins are considered instead,
reflecting the fact that the proteins’ main biological
functions are achieved by participating as core compo-
nents. Finally, we remark that the {Sij} matrix for abun-
dance estimation is approximated by {Uij} matrix, due to
the limitation of available information. However, note
that more and more accurate datasets will become avail-
able in the future, and applying our method for those
new datasets would be straightforward.
With the LP and MIP method, we have numerically

solved the optimization problems to obtain the abun-
dance [minimizing Eq. (2)] and functions [minimizing
Eq. (4)] of complexes and their component proteins.
As the input datasets for individual proteins, we use
condition-dependent abundance (arbitrary units) of
proteins [27] and the MIPS functional database for
individual proteins [28]. In total, 325 different MIPS
FunCat functions are assigned to our individual protein
set. Since the MIPS FunCat classifications are hier-
archically organized [28], we can divide the set of
functions into more coarse-gained “functional cate-
gories” from their higher level hierarchy to observe
more general trends, as demonstrated in the next para-
graph. Before we apply the method for the main result,
we have divided the known input datasets into several
training and test sets and verified its effectiveness for
various settings. The full results for our function
assignments for both complexes and proteins are avail-
able (Additional file 5, Table S1 and Additional file 6,
Table S2). Note that we also present an alternative
optimization method in Additional files, denoted as
‘Gavin_2nd’ in Additional file 5, Table S1 and Addi-
tional file 6, Table S2, minimizing the number of pro-
teins for each newly assigned function, instead of the
number of complexes described in Eq. (4) (denoted as
‘Gavin_1st ’). The MIP method does not produce a
unique solution in general, and there can be multiple
numbers of solutions. Among those solutions, we
select high confidence (HC) outcomes among the ori-
ginal outcomes (denoted as “raw outcomes”) from our
method. In other words, HC outcomes contain only
the functions which are assigned to complexes and
proteins, in all the multiple solutions.
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Figure 4 Degree distributions of proteins for the bipartite
network if (a) only core proteins are considered and (b) only
attachment proteins are considered. Here, the degree in (a)
corresponds to the number of complexes in which a protein
participates as a core component, and the degree in (b)
corresponds to the number of complexes in which a protein
participates as an attachment component. The blue squares
correspond to the cumulative degree distribution P(k) = ∑k′ ≥ k p(k′).
The pink lines and gray curves are the best exponential and power-
law fittings, respectively.
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To check the accuracy of our method, we first divide
the set of proteins with known values of abundance into
training and test sets. Assuming that the values of abun-
dance for the proteins in the test set are unknown, we
estimate the abundance for those proteins in case of
rich media (YEPD) [27] and compare them with real
values. We define the relative deviation as

α = |[estimated abundance] -

[real abundance]|/[real abundance]
. (6)

Then, we plot the ranked a values, compared to the
ones for random pairing of estimated abundance and
real abundance in Additional file 7, Figure S5. The real
deviation values are always significantly smaller than
those of random counterparts outside the error range,
demonstrating the statistical significance of our results.
We have also observed the similar result for minimal
media (SD) [27] as well.
For the function assignment, we also divide the set of

proteins with already-known functions into training and
test sets. Assuming all the protein functions in the test
set are unknown, we assign those functions based on
our function assignment method; the results are shown
in Table 2. We measure two complementary quantities
to show both sensitivity and specificity, for both the raw
outcomes and HC outcomes. From the results, we con-
clude that our method works reasonably well, especially
for HC outcomes, considering the noise level of this
kind of high-throughput dataset. One remarkable thing
is that our method works quite well for a very small
fraction of training set such as 20% for both abundance
estimation and function assignment, and this fact
implies that highly interconnected relationship among
proteins via complex membership greatly helps us to
correctly assign functions. To compare our results with
a recent function assignment scheme, we adopt the
hypergeometric test used in Ref. [23] (’CYC2008’

dataset) and applied the method with the same thresh-
old (E-value = 0.05) to our dataset. Note that the result
obviously depends on the threshold value, and also the
original CYC2008 method does not include the “re-sub-
stitution” process of copying functions from complexes
to their components. Therefore, we have to combine
our re-substitution process after the CYC2008 proce-
dure for function assignment for complexes. The com-
pared results (shown in Additional file 8, Table S3)
clearly show that the performance of our method is bet-
ter than or at least comparable to that of CYC2008 in
many cases, and especially the number of predicted
functions itself is much smaller for CYC2008 method.
To be more specific, ‘fraction of proteins for our high-
confidence (HC) result’ shown in the third column is
always better than the CYC2008 result in the fourth col-
umn, and even our raw result in the second column is
better than CYC2008 in case of large values of training
set fraction p or at least comparable to each other for
small p. The only case worse than CYC2008 is the ‘frac-
tion of functions for our raw result’ in the fifth column
for small p, but this can also be overcome by using HC
dataset in the sixth column. Therefore, we conclude that
our global optimization method is much better at gues-
sing the unknown protein functions, in terms of sensi-
tivity or recall rate, let alone the problem of dependence
on an arbitrary parameter, which is the wholesale E-
value threshold for the CYC2008 method.

Inference of Abundance and Functions: Condition-
Dependent Abundance with Regard to Functional
Categories
First, we show the average change of complexes’ abun-
dance depending on the condition (rich or minimal
media), classified as each MIPS functional category in
Figure 5. Note that a complex can be assigned with
multiple functions, so there are overlaps among different

Table 2 Statistical validation of the function assignment

p Fraction of functions* (raw) Fraction of functions* (HC) Fraction of proteins† (raw) Fraction of proteins† (HC)

0.20 33.5% (641/1912) 50.4% (502/996) 61.6% (278/451) 73.5% (219/298)

0.40 25.8% (645/2500) 40.0% (532/1330) 64.3% (270/420) 71.4% (227/318)

0.50 26.7% (608/2275) 41.6% (480/1153) 62.4% (232/372) 72.1% (191/265)

0.60 28.2% (583/2068) 44.0% (497/1129) 68.3% (213/312) 74.2% (187/252)

0.80 19.3% (274/1418) 32.7% (231/706) 66.3% (110/166) 75.8% (97/128)

0.90 23.3% (147/630) 37.5% (135/360) 71.3% (57/80) 78.8% (52/66)

0.95 18.2% (78/429) 32.8% (67/204) 59.2% (29/49) 65.8% (25/38)

0.98 23.1% (30/130) 39.2% (29/74) 56.3% (9/16) 75.0% (9/12)

0.99 10.6% (14/132) 18.6% (11/59) 63.6% (7/11) 60.0% (6/10)

Here p is the fraction of training set. *Among all the newly assigned functions to the entire test set proteins, fraction of functions which are also on the original
MIPS functional datasets. †Fraction of test proteins with at least one function assigned, which has at least one assigned function on the original MIPS functional
datasets. Raw outcomes correspond to the original outcomes from our method, and high confidence (HC) outcomes are the selected subset of them whose
function assignments are invariant even if the multiple solutions are considered.
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functional categories. We believe that this cross-analysis
of abundance and function assignment strongly supports
the reliability of our method, in addition to the statisti-
cal test presented in the previous subsection.
From Figure 5, one can check that each functional

category shows a unique pattern of the condition-depen-
dent abundance changes. The most notable case is the
increased abundance of complexes doing metabolism in
the minimal media compared to the rich media, indicat-
ing that many proteins induced in minimal medium are
involved in the production of small molecules that can-
not be taken up from the surrounding environment.
Another notable category of increased abundance in the
minimal media is the cellular communication. For
instance, the protein kinase complex 312 in Additional
file 5, Table S1 is significantly more abundant in the
minimal media, and this result can be interpreted from
the nutrient sensing role of component protein Tpk2
involved in the cell growth via the Ras-cAMP signaling
pathway, at facing the nutrient starvation [28]. Also, the
abundance of complex 77 in Additional file 5, Table S1
is increased in the minimal media and one possible
explanation is its component protein transketolase’s
(Tkl1’s) involvement in the pentose phosphate pathway
of processing glucose 6-phosphate to produce ribose-5-
phosphate, which can be demanded more in the mini-
mal media [28].
In contrast, many complexes with functions of cell

cycle and protein synthesis tend to show decreased
abundance in minimal media, indicating that many pro-
teins induced in rich media are involved in cell growth
and division. A fraction of the complexes with each
functional category, for three different ranges of

abundance ratio changes, shown in Figure 6, also shows
a similar trend. Our findings are consistent with the
argument in Ref. [27], which discusses such effects on
the individual protein level. Note that, however, the pre-
vious work in Ref. [27] is about individual proteins,
while our results are about complexes, by which the real
biological functions are expressed. It indicates that the
similar arguments are applied to abundance and func-
tions of complexes.

Inference of Abundance and Functions: Other Examples
From our results about the functional annotations for
complexes, we find a number of intriguing examples.
For instance, both the complex 276, whose core proteins
are Ste11 and Ste50, and the complex 312, whose core
proteins are Bcy1 and Tpk2, are assigned with the cytos-
keleton formation and signal transduction. The relation-
ship between the cytoskeleton proteins and the cell
signal transduction is discussed in recent literatures
[43,44], arguing that the filaments of the cytoskeleton
provide guiding tracks so that transport becomes more
focused. The core component proteins of those com-
plexes we have found, Ste11, Ste50, Bcy11, and Bcy1,
are also shown in Ref. [43]. Another example is related
to the shifting process from fermentation to respiration
in yeast [45], depending on the temporal order of envir-
onmental stimuli, such as osmotic pressure and heat
shock. As shown in Additional file 5, Table S1, there are
complexes co-assigned with those functions related to
the process such as complex 14, 121, 212 (carbohydrate
metabolism, and osmotic and salt stress response), and
complex 79 (aerobic respiration and heat shock
response).

Figure 5 Abundance ratio of complexes for each MIPS functional category, classified as (a) main functional categories and (b) coarser
classification. The abundance ratio in y-axes is defined as the ratio of the abundance in minimal (SD) media environment to the abundance in
rich (YEPD) media. High confidence (HC) outcomes are used.
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Our optimization scheme does not only give the sys-
tematic estimate of complexes’ abundance and function
assignment, but also conjecture previously unknown
new functions to individual proteins, as stated in the
‘Methods’ section. Table 3 shows biologically interesting
examples from our results with manually curated refer-
ences for validation. For instance, the metabolic enzyme

Eno2 was not assigned with any functions related to the
cell division, but assigned with the cell division func-
tions as a result from our optimization technique. An
important point here is that, as we will demonstrate
with Eno2 in the next paragraph, we know exactly
where the functions come from (at least in our optimi-
zation scheme), i.e., by actually tracing the complex to
which the function is assigned and looking for another
component protein participating in the complex, as the
“source” of the function.
In case of the protein Eno2, it participates in the com-

plex 289 (the same complex index is used as in Ref.
[16]) as a core component, and the complex is involved
in the cell division process (10.03.03 in the MIPS classi-
fication scheme). The function assigned to that complex
originates from another core component protein Chs1
in the MIPS datasets. The protein Eno2’s involvement in
the cell division is also supported by a recent experi-
ment [46], showing that the overexpression of the pro-
tein significantly delays the progression of yeast cell
cycle. Of course, the experimental results need to be
carefully interpreted, since G1 arrest can also be made
by perturbing proteins not directly involved in the cell
division process, as exemplified by Sko1 activating the
pheromone response pathway [46]. This type of evi-
dence, therefore, may not be a sufficient condition for
the direct involvement in the cell division process, but
can be a necessary condition which hints the candidate
targets for further investigation in a more elaborate way.
With such procedure, we find quite a number of exam-
ples indeed, as shown in Table 3, and suggest small-
scale experiments to confirm the functional annotations
of these proteins.
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Table 3 Some notable examples of proteins with newly assigned biological functions with our optimization method

Protein Known function Predicted function Reference

Eno2 Metabolism Cell division [46]

Pgk1 Metabolism Cell division [47]

Reg1 Metabolism/regulation/cell growth/morphogenesis Cell division [48]

Act1 Cell cycle/growth Mitochondrial biogenesis [49]

Gsg1 ER to Golgi transport Cell wall biogenesis [50]

Ydl203c Metabolism Cell wall biogenesis [46]

Ymr237w Metabolism Cell wall biogenesis [46]

Pep3 Protein targeting, sorting and translocations, vacuolar/lysosomal transport Cell wall biogenesis [51]

Ubp15 Cytoplasmic and nuclear protein degradation Cell wall biogenesis [52]

Atg17 Cytoskeletal biogenesis Peroxisome biogenesis [53]

Gpi8 Lipid, protein modification Endoplasmic reticulum biogenesis [54]

Yol070c Unknown Bud/growth tip, cell cycle checkpoint [29]

Hda2 Transcriptional control Metabolic enzyme [55]

Iwr1 Meiosis Transcriptional control [29]

Reference [29] refers to the case that the predicted functions are not given by the MIPS data [28] so that the functions are not assigned initially, but found by
our method and on the Gene Ontology (GO) database [29]. In this case, we consider GO database as the validation source, similar to other references [46-55].
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Discussion
It is indispensable for the future of proteomics to
understand the composition structure and interactions
of protein complexes. However, relatively fewer works
about the protein complexes have been done in the
genome-wide level, except for a few cases [14-18],
compared to works about pairwise PPI. In this work,
we have investigated and shown the applications of the
interactions in the recently published protein complex
database of the budding yeast [16]. We have adopted
the notion of bipartite network, which is suitable for
the case where there are two kinds of elements and
one of them acts as the set of components of the
other. By constructing the bipartite network with pro-
tein complexes and their component proteins, we have
checked the degree distributions of complexes and
proteins.
As results of the analysis, the degree distribution of

the bipartite network asymptotically follows the expo-
nential distribution. The same is true for the degree and
strength distributions of the one-mode projection net-
works as well. Interestingly, the resultant exponential
degree distributions are different from the heavy-tailed
distribution observed in most pairwise PPI networks.
Many complexes and proteins with largest degrees and
strengths are affiliated to the ribosome, allowing for the
stable formation of large ribosomal complexes. Further-
more, we have shown that the core and attachment pro-
teins in the datasets show different participation
patterns in the formation of complexes, which illustrates
the different roles in the complexes.
The most valuable contribution of our work is pre-

senting the new optimization method without external
tuning parameters to determine the abundance and
function of protein complexes, along with the previously
unknown properties of individual proteins, based on the
information of their global organization. The effective-
ness of our optimization method is proved by various
biologically relevant examples compared with experi-
mental results. Since we provide the full results from
our results as Additional files, we hope our result can
encourage other researchers to utilize it as their new
dataset for deeper understanding of proteomics.

Conclusions
Thanks to the rich proteomics datasets of S. cerevisiae,
many genome-wide researches have been achieved. Ana-
lyses based on the protein complexes can open a door to
a new understanding of how proteins interact and work
in organisms. Important future works include more
investigation about our bipartite (and one-mode projec-
tions) network topology, along with more systematic
comparison with the conventional PIN to see the detailed

origin of the different form of the degree distribution.
Ultimately, it is essential to perform the small-scale
experiments to validate the results claimed by our new
optimization method. We hope this work can make a
substantial contribution to this direction of research.

Additional material

Additional file 1: Strength distributions of (a) complex-mode
projection and (b) proteins-mode projection (Figure S1). Here, the
strength in (a) corresponds to the sum of number of proteins shared
with the neighboring complexes for each complex, and the strength (b)
corresponds to the sum of number of complexes shared with the
neighboring proteins for each protein. The blue squares correspond to
the cumulative strength distribution P(s) = ∑s′ ≥ s p(s′), and the pink lines
and gray curves are the best exponential and power-law fittings,
respectively.

Additional file 2: Projected network’s degree distribution from the
generating function approach (Figure S2). Assuming that both protein
and complex’s degree distributions follow the exponential degree
distribution p(k) ~ exp(-k), the projected network’s degree distribution is
numerically calculated with the generating function approach mentioned
in the main text. One can clearly observe that the degree distribution
follows the exponential tail for k ≫ 1.

Additional file 3: Degree distribution of complexes in the bipartite
network for E. coli protein complex data in (a) semi-log scale and (b)
double-log scale (Figure S3). Here, the degree corresponds to the
number of component proteins for each complex. The blue squares
correspond to the cumulative degree distribution P(k) = ∑k′ ≥ k p(k′).

Additional file 4: Degree distribution of complexes and proteins in
the bipartite network for human protein complex data, in
comparison with the protein-protein interaction network (Figure S4).
Here, a complex’s degree (blue square) corresponds to the number of
component proteins for each complex, and a protein’s degree (red circle)
corresponds to the number of complexes in which a protein participates
as a component. The degree distribution of proteins in the binary protein-
protein interaction is shown as pink triangles, as a comparison.

Additional file 5: List of all the protein complexes with MIPS
functions assigned by our method (Table S1). List of all the protein
complexes with MIPS functions assigned by our method, where the core
and attachment components are taken from Ref. [16] (and the indices
are the same as Ref. [16]). We classify each function into the following
three categories. (1) Gavin_1st (light yellow): minimizing the number of
complexes for each newly assigned function, described as Eq. (4) in the
main text. (2) Gavin_2nd (light green): minimizing the number of
proteins for each newly assigned function, instead of that of complexes
(3) The functions assigned by both (1) and (2) (bright yellow). Note that
we only select high confidence (HC) outcomes among the raw
outcomes, whose reliability of function assignment considering the
multiple solutions is large.

Additional file 6: List of all the proteins with MIPS functions newly
assigned by our method (Table S2). List of all the proteins with MIPS
functions newly assigned by our method (bright yellow), along with the
ones from the MIPS database (sky blue) which is used as “input
function.” HC outcomes are selected as in Additional file 5, Table S1.
Sometimes the functions already annotated in MIPS and the ones
assigned by our method are quite similar, and very different in some
cases. Therefore, we suggest the latter case be worth investigating
further, as we did in the main text.

Additional file 7: Statistical validation of abundance estimation
(Figure S5). For each value of fraction of training set p, the relative
deviation

α = |[estimated abundance] -

[real abundance]|/[real abundance]
.
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is ranked and shown compared to its random counterparts (meaning that
the identity of proteins with estimated abundance is randomly paired with
the ones with real abundance values). The real deviation values are always
on the left side (smaller than) of the random counterparts outside the error
range, which implies its statistical significance.

Additional file 8: Statistical validation of the function assignment, in
comparison with the hypergeometric test in Ref. [23](CYC2008)
(Table S3). Here p is the fraction of training set. †Fraction of test proteins
with at least one function assigned, which has at least one assigned
function on the original MIPS functional datasets. *Among all the newly
assigned functions to the entire test set proteins, fraction of functions
which are also on the original MIPS functional datasets. Raw outcomes
correspond to the original outcomes from our method, and high
confidence (HC) outcomes are the selected subset of them whose
function assignments are invariant even if the multiple solutions are
considered.
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