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We demonstrate how a single-celled organism could undertake associative learning.
Although to date only one previous study has found experimental evidence for such learning,
there is no reason in principle why it should not occur. We propose a gene regulatory network
that is capable of associative learning between any pre-specified set of chemical signals, in a
Hebbian manner, within a single cell. A mathematical model is developed, and simulations
show a clear learned response. A preliminary design for implementing this model using
plasmids within Escherichia coli is presented, along with an alternative approach, based on
double-phosphorylated protein kinases.
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1. ASSOCIATIVE LEARNING IN A SINGLE CELL

Associative learning is traditionally thought to be
confined to animals with nervous systems (Walters
et al. 1979; Kandel et al. 2000; Fanselow & Poulos
2004). The most famous example is Pavlov’s dog, which
learned to associate the sound of a bell (the conditioned
stimulus) with the smell of food (the unconditioned
stimulus) and so salivate when the bell was rung. In
multi-cellular organisms, the memory trace is stored as
a modification of the connectivity between cells, for
example as changes in the synaptic strengths between
neurons. However, recent work in systems biology
reveals molecular circuits that are rather similar to
neural networks (Bray 2003) and logic gates (Buchler
et al. 2003) within individual cells. Because chemical
kinetics is Turing universal (Magnasco 1997) and can
therefore at least in principle implement arbitrary
neural networks (Hjelmfelt et al. 1991) and finite state
automata (Hjelmfelt et al. 1992), there is no reason for
biological mechanisms that sustain associative learning
to be confined to neural systems.

Hennessey (1979) showed that the single-celled
ciliate Paramecium caudatum might possibly be
capable of being classically conditioned. A paramecium
was successfully trained to exhibit an avoidance
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response to a conditioned vibration stimulus, using an
electric shock as the unconditioned stimulus. This
response persisted over the entire lifetime of the
paramecium, although no inheritance of this response
was studied. Associative sensitization and pseudo-
conditioning were not ruled out in the experiment,
the repetition of which we would welcome.

Although adaptive sensitization and habituation
(non-associative learning) have been demonstrated in
bacteria (Yi et al. 2000), associative learning within a
single lifetime has not. An example of sensitization is
the autocatalytic upregulation of phoA and phoB after
prior phosphate limitation, resulting in a stronger
response to subsequent phosphate limitation (Hoffer
et al. 2001). Associative learning is distinct from
sensitization because it requires learning a correlation
between two different stimuli.

A plausible proof of principle of associative learning
in single cells, based on autocatalytic RNA, has been
recently proposed (Gandhi et al. 2007). The motivation
of that paper was to demonstrate an important
potential function for regulatory RNA networks. One
of the mechanisms uses RNA polymerases to replicate
RNA strands capable of reversible ligation and clea-
vage. Our paper differs in three respects. Firstly,
Gandhi et al’s mechanism is associative, but, interest-
ingly, it does not use a Hebbian process (Gerstner &
Kistler 2002). It is analogous to a hypothetical single
symmetric bidirectional synapse, whereas our model is
analogous to a single-layer perceptron (Haykin 1998).
Secondly, Gandhi et al’s motivation is not to devise a
system primarily for ease of synthesis using standard
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Table 1. Parameter values used in circuit simulations.
(Concentrations are in nmol per litre, and time is in seconds.
These values are based on the results of using the SBMLevolver
tool, a program that estimates the values of parameters for
molecular circuits with known behaviour (Lenser et al. 2007).)

vp 1.0 production rate for p
vw 1.0 production rate for w
dp 0.005 degradation rate for p
dw 0.0001 degradation rate for w
3 0.05 basal production rate for w1,

unconditioned stimulus
Kw 50 Michaelis constant for w promoting p
Kr 0.05 Michaelis constant for r repressing p and w
Kp 50 Michaelis constant for p promoting w
R 10 total level of repressors r
k 10 equilibrium ratio for reaction rCr5ur
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molecular biology techniques, although certainly a
distinct Hebbian (deoxy-)ribozyme circuit is poten-
tially within the scope of constructability using
AND-gates (Stojanovic et al. 2002). Thirdly, Ghandi
et al. (2007) use composite variables consisting of the
sum of two species concentrations to represent the
responses to learning (e.g. naZ[A]C[AB]), where na is
the variable considered to represent the output of
learning, and A and AB are individual chemicals.
The outputs of our system are not composite variables,
but the concentrations of single transcription factors.
Our circuit also exhibits extinction as observed in
Pavlovian conditioning. We use realistic units (see
table 1), which allow us to predict the time scales
over which conditioning would be expected to occur in
the laboratory.

A recent paper has described how in silico evolution
could be used to produce gene regulatory networks
(GRNs) capable of ‘predictive behaviour’ (Tagkopoulos
et al. 2008). The environmental affordance that such a
mechanism exploits is the existence of environmental
temporal regularities that persist for several bacterial
generations, for example in marine ecosystems a
temperature change may precede a change in O2

concentration, and photon flux may precede tempera-
ture changes. In the gut, the need to switch from
aerobic to anaerobic respiration may be signalled by
increasing temperature. In Tagkopoulos et al’s task,
signal A or B when present alone always preceded
a resource. However, when A and B appeared together
a resource never followed. This is a nonlinear
classification problem known as the XOR problem
(Haykin 1998). Circuits capable of solving a classi-
fication problem that remains unchanged over many
generations are distinct from those circuits capable of
associative learning within a lifetime. Consider this
example—lifetime learning would be adaptive if,
within the lifetime of a single bacterium, signal A
(not B) predicted a resource, but, at other times within
the lifetime, signal B (not A) predicted the same
resource. If costly protein synthesis were required to
exploit this resource, then a cell capable of learning
the correct predictor out of many possible signals
would be at a selective advantage because it could
synthesize the proteins only after the correct predictor
signal appeared.
J. R. Soc. Interface (2009)
To summarize Tagkopoulos et al’s important and
distinct contribution, we clarify what they mean by
‘predictive behaviour’. Whereas metazoan nervous
systems (and our proposed circuits) are capable of
learning to predict temporal contingencies that vary
within lifetimes, i.e. they are capable of learning
conditioned stimuli, Tagkopoulus’s mechanism
depends on evolution and the fixity of the relationships
between lifetimes, i.e. their mechanism is capable of
evolving responses to unconditioned stimuli, but not of
learning to predict a contingency within a lifetime.
Their ‘predictive’ and ‘anticipatory’ behaviour is
predictive and anticipatory in the sense that the
evolutionary system causes salivation to ‘predict’ or
‘anticipate’ the presence of food after the smell of food.

Our work demonstrates that there exists sufficient
variation in intra-cellular circuits to sustain Hebbian
learning, the results of which can be epigenetically
inherited. There is no doubt that epigenetic inheritance
occurs in bacteria, single-celled fungi and protests
(Jablonka & Lamb 2005). However, in nature, associ-
ative learning may not be observed in bacteria for any
of the following reasons. The cost of maintaining
associative learning machinery may be too high, and/
or environmental affordances may be lacking (Rando &
Verstrepen 2007). However, the circuits we propose
may in future have medical applications, and therefore
warrant a synthetic biological investigation. Synthetic
biology was initially concerned with purely reactive
behaviours (Endy 2005). Taking a significant step
forward, recent work has dealt with state-dependent
processing or ‘sequential logic’ gene circuits (Fritz et al.
2007). These circuits are capable of storing a binary
memory vector representing the concentration of
dimerizable proteins. Our work is similarly motivated,
and adds the potential for Hebbian learning of such
continuous vectors. We present designs of biochemical
networks capable of associative learning, using GRNs
and protein kinase signalling networks. We use
mathematical models and simulations of the GRN,
with biologically realistic parameters, to demonstrate
not only that the system learns but also that it
would be possible, in principle, to construct such a
system in bacteria.
2. GENE REGULATORY NETWORK
IMPLEMENTATION

The genetic circuit shown in part of figure 1b is in two
halves, by analogy with the classical Hebbian neural
circuit in figure 1a. One-half (on the left in the diagram)
represents the known response to the unconditioned
stimulus, and the other (on the right) the response to
the conditioned stimulus that is to be learned. In
practice, circuits could consist of more than two
unconditioned stimuli, in which case the circuit could
learn to associate any one of these unconditioned
stimuli with a conditioned stimulus. Two stimuli are
the minimum number required to demonstrate the
principle of Hebbian learning.

The two halves of the circuit are structurally identical,
with one exception: there is a non-zero basal concen-
tration of the ‘weight’ molecule corresponding to the
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Figure 1. (a) The neural network implementation of Hebbian learning for two inputs u 1 and u 2. The orange circles represent pre-
synaptic neurons that project onto a single post-synaptic neuron (blue). The simultaneous firing of the input neurons causes the
synaptic weights w1 and w2 to increase, reinforcing their association. The blue curved lines show how this Hebbian positive
feedback works, e.g. the weight w1 increases as a product of the output firing rate p and the input firing rate u 1. (b) The equivalent
gene circuit implementation using three genes is shown. The two input molecules (enhancers) are shown as orange circles, u1 and
u2. They bind to the repressors (red circles) r1 and r2 and this results in activation of transcription of w1 and w2 molecules (in
conjunction with transcription factor p) and activation of transcription of the p molecule (in conjunction with w1 and w2). To
correspond to (a), the output molecule p is shown in blue. (c) Plasmid structures that could implement one half of the circuit. The
first plasmid contains fnr and tetR. The second plasmid contains orfP (cI ) and gfp; see text for details. (d ) Alternative
implementation using phosphorylation cycles. The inputs are again shown as orange circles u1 and u 2; here they represent
kinases that do one of two phosphorylation steps on the weight molecules w1 and w2 again shown in grey. The first
phosphorylation step is done by a double phosphorylated output molecule p. Phosphorylation state is represented as yellow
stars; one star means single phosphorylated, and two stars means double phosphorylated. Reversible and irreversible reactions
are shown. The dotted arrow from w��

1 to w�
1 and from w��

2 to w�
2 indicates that this reaction is slow, i.e. that memory persists in

the form of double phosphorylated w��
1 .
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unconditioned stimulus (denoted w1). When the corre-
sponding input molecule u1 enters the cell, it binds with
the repressor molecule r1, leading to loss of repression.
Together with the background supply of w1, an activator
of gene expression, this has the effect of producing the
output response molecule p. Moreover, the generation of
p then feeds back and allows further production of the
w1 molecule. This is a molecular implementation of
J. R. Soc. Interface (2009)
Hebbian learning in which pairing of output activity and
input activity strengthens the coupling between the two
(Hebb 1949; Gerstner & Kistler 2002). The use of the
repressor in the genetic circuit (which does not appear in
the neural implementation) is simply because the input
molecule will be small (so as to quickly cross the cell
membrane) and would not typically be a direct activator
of gene expression.



0

100

200

300

p
 r

es
po

ns
e

(n
M

)
0

500

1000

1500

w
ei

gh
t

(n
M

)

0 1 2 3 4 5 6
0

20

40

60

80

100

time (× 104) time (× 104)

in
pu

t u
1

(n
M

)

in
pu

t u
2

(n
M

)

0 1 2 3 4 5 6
0

20

40

60

80

100

(a) (b)

(c) (d )

Figure 2. (a) The concentration of p. (b) The ‘weight’ molecule concentrations, w1 (thin line) and w2 (thick line). (c) The
(unconditioned) u1 input concentration. (d ) The (conditioned) u2 input concentration. The circuit responds by producing an
output p (see the first peak of (a)) to input u1 at 2000 s (see the first peak of (c)). This demonstrates that u1 is the unconditioned
stimulus. The circuit does not respond to the conditioned stimulus input u 2 (see the first peak in (d )) at 6000 s when it is
presented alone before pairing. Both u 1 and u 2 are presented paired together at time 10 000 s, resulting in an output of p (see the
second peaks in (c) and (d ) and the corresponding output p in (a)), and an increase in w2 from baseline to approximately 1000 nM
in concentration (see (b)). The circuit then responds to u2 occurring 30 000 s later (third peak in (d )) by expressing p (see the
third peak in (a)), where, before pairing, it had not responded to u 2 at all (see absence of peak in (a) at 6000 s when u2 is presented
for the first time). This demonstrates associative learning has indeed taken place.
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In the other half of the circuit, however, there is no
background level of the w2 molecule. This means that
the corresponding input molecule, u2 (corresponding
approximately to the bell in Pavlov’s experiment),
while binding to the repressor r2, is insufficient to
generate the output response p. However, presenting
the two inputs u1 and u2 simultaneously (the ‘smell’
and the ‘bell’) will produce sufficient quantities of p so
that the molecule w2 will be produced in abundance.
Moreover, a relatively slow decay rate for w2 will then
ensure that, for some subsequent time period, the
circuit can produce p in response to u2 alone. The
circuit has learned to associate the two inputs together,
through a (temporary) increase in the concentration
of the w2 molecule.

The equations governing the circuit are

dp

dt
Z
XN
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For the two stimulus case in figure 1, NZ2. Notice that
the equations are symmetrical in w1 and w2, with the
exception of the basal rate 31 that is non-zero for
weights representing unconditioned stimuli, i.e. w1. We
assume all binding sites bind dimers: this creates a
relatively sharp switching behaviour. In addition, the
binding of the weight molecules w1 and w2 as promoters
for p require two dimers to be bound cooperatively
(as indicated by the Hill coefficient of four). The
purpose of this (along with the relatively high Michaelis
J. R. Soc. Interface (2009)
constant Kw) is to create a small delay in the start of
the p response. This is necessary to create a clear
separation between the ‘on’ and ‘off’ responses to u2,
so that the response to the conditioned stimulus will
not accidentally be switched on by a few stray
molecules. This means that the circuit will be robust
to small fluctuations in the numbers of protein
molecules. We use a relatively high production and
degradation rate for p to give a strong response to the
presence and absence of the input molecules. The
weight molecules, on the other hand, degrade slowly.
The model that we describe is deterministic and thus
describes the average behaviour of a population of
bacterial cells. It would be possible to formulate
the model in a stochastic form that could capture the
fluctuations in the numbers of proteins between
individual cells in the population (Swain et al.
2002). While such a model would have the value of
added realism, the structural properties of the system
that give rise to associative learning are more clearly
expounded and analysed with the small number of
differential equations that we present.

We simulate this system by numerically integrating
the above equations, for various input sequences. The
parameter values we use are shown in table 1. It should
be noted, however, that the behaviour of the circuit is
robust to variations (of up to 25%) in these values.

It is assumed that there is a fast reversible reaction
between the input molecules and the repressors. This
means we can approximate the level of a repressor r as a
function of the corresponding input u as

rðtÞZ R

1CkuðtÞ ; ð2:3Þ

where R is the total amount of r in the system and k is
the ratio of the forward to backward reactions.
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3. MODEL BEHAVIOUR

The results of a typical simulation are shown in figure 2.
A series of input spikes of both u1 and u2 are presented.
The spikes are of concentration 100 nM, and last for
20 min. (A duration of at least 5 min is necessary to get
a response.) The system starts in the steady state with
no inputs (this is [p]Z0 nM, [w1]Z500 nM, [p]Z0 nM,
[w1]Z500 nM, [w2]Z0 nM). The first (unconditioned)
input u1 is presented at tZ2000 s and there is an
immediate corresponding output spike of p, which
almost attains the equilibrium level of 200 nM, and
then swiftly disappears when the input spike finishes.
A corresponding increase in the level of w1 can also be
seen at this time. The presentation of a spike of u2 at
tZ6000 s produces no response at all. However, when
spikes of u1 and u2 are presented simultaneously at
tZ10 000 s, we get a large (double) output response.
This is because copies of w2 are now being rapidly
produced, which enables p to be produced in response to
both inputs. More importantly, the level of w2 is so large
that, even when the inputs are switched off, it remains
in the system for a considerable time. This means that
when u2 is presented alone at tZ40 000 s (that is, over
8 hours after the simultaneous presentation of u1 and
u2), the circuit can still respond and produce a
corresponding p spike.

A mathematical analysis of the equilibrium states of
the system, when u2 is presented (but u1 is not), reveals
a bistable switch. One stable state, the off state, has
[p]Z0.005 nM and [w2]Z0.0001 nM. The other stable
state, the on state, has [p]Z200 nM and [w2]Z
9412 nM. They are separated by an unstable inter-
mediate state with [p]Z2 nM and [w2]Z15.82 nM. The
level of w2 dominates the switch from one state to the
other. If this is below the switching threshold, then
there is no response by the circuit. Levels of w2 above
the threshold are able to produce a significant p
response. In the simulation shown, w2 has a concen-
tration of 56 nM at the time of the final u2 spike; more
than enough to generate a full p spike. With the
given set of parameters, the conditioned response
continues for approximately 10.5 hours, by which
time [w2]Z22.8 nM. Any longer and it is lost, as the
level of w2 goes below the threshold. In practice, the cell
would have divided before this time, with the possi-
bility that the offspring can inherit the learned
association from the parent (depending on how much
w2 is diluted by the split).

It should be noted that, although the increase in the
w1 and w2 molecules is dramatic, it would take a long
time (over 8 hours with the input molecules present) to
get close to the equilibrium level of 9412 nM. Again, the
cell would have divided before this occurs.
4. EXPERIMENTAL DESIGN

A preliminary design for the implementation of one-half
of this genetic circuit is shown in figure 1c. This
design makes use of two extrachromosomal plasmid
replicons, within an Escherichia coli host, to maximize
modularity and facilitate ‘mix and match’ mutagenesis.
The plasmid replicons employed would need to be
J. R. Soc. Interface (2009)
compatible and carry different antibiotic resistance
genes. There are many possible combinations of
activator and repressor proteins which could be used.
An example set-up is as follows.

The first plasmid, pW1, contains the genes for the
repressor (TetR) and for the weight molecule (FNR).
The input stimulation would be sub-antibiotic concen-
trations of tetracycline, which alleviates repression by
TetR and thereby induces FNR expression. The second
plasmid, pRep1, will contain the gene for the output
(orfP). This synthetic gene will encode a fused
combination of cI activator protein, which activates
the expression of the weight gene FNR, and a GFP
reporter protein that causes fluorescence, thus enabling
the output to be measured empirically. This gene is
activated by FNR and repressed by TetR.

The output gene for p will also have a second pro-
moter upstream, pBAD, which may be induced by ara-
binose, which activates the pBAD promoter via AraC
protein and switches on expression of p. This is useful
as a manual ‘switch’ for training and testing purposes.

The second half of the circuit would have the
same structure, but make use of the lac repressor (to
be modulated by the input) and CRP (cAMP receptor
protein) as the second weight w2. The only structural
difference between the two halves is in the basal
concentration of the ‘weights’. This can be achieved
by having either a leaky promoter for w1 or a sep-
arate gene on pW1 for generating the required back-
ground levels.

Extension of the circuit to N inputs requires a
systematic approach constructing plasmid modules
that can rapidly be structured into any desired topology
of interactions, such as described in the framework of
‘programmable cells’ (Kobayashi et al. 2004). With our
modular design, one can add more new inputs or
associations—by adding extra copies of the P gene
(i.e. on plasmids pRep2, pRep3 or more probably on
the chromosome) with different promoters that have
the required binding sites for new circuits. Of course
this might be limited by finding new pairs of regulators
with the desired characteristics, but sooner or
later these may be available to order as part of
coordinated approaches such as the BioBricks project
(Knight 2003).

It should be noted that the relevant characteristics of
the circuit components can often be readily adjusted by
mutagenesis in order to attain an optimal response. In
addition, further adaptations may be directed by
artificial evolution in vivo, see electronic supplementary
material for descriptions of in silico and in vivo
evolution of Hebbian learning circuits.
5. PHOSPHORYLATION CYCLE
IMPLEMENTATION

An alternative method for implementing the same
associative learning process within a single cell is to
make use of phosphorylation cycles. The basic design is
shown in figure 1d. The design requires proteins that
can be single- and double-phosphorylated (such as
MAPK protein kinases). The output response is given
by the double-phosphorylated p protein. This then
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promotes the phosphorylation of the weight proteins,
which are then further phosphorylated by the input
molecules. The weights and inputs are both required to
produce the outputs. All rates are assumed to be fast,
except the decay of the double- to single-phosphory-
lated w proteins. This slow decay again preserves the
conditioned learning response. To ensure sensitivity to
the input u1, there needs to be a background rate for
phosphorylating the w1 protein.

This implementation of the circuit is interesting as it
illustrates an alternative mechanism by which associ-
ative learning could occur naturally in individual cells,
see electronic supplementary material for a simple
model of the MAPK system. Moreover, one would
expect the response rates using phophorylation cycles
to be much faster than for a GRN implementation.
However, for experimental purposes, GRNs on plas-
mids are easier to synthesize and have the added
advantage that they can be further evolved in the
laboratory to optimize the behaviour.

We note that combinations of gene circuits and
protein–protein interactions may be used to implement
sequential logic operations as described by Fritz et al.
(2007). Similar techniques could be used to modify
our Hebbian circuits; see electronic supplementary
material. The construction of novel GRNs is central
to the synthetic biology project and there are many
published examples of circuits designed to confer novel
desired functions on micro-organisms, some of which
have been constructed and tested (Elowitz & Leibler
2000; Kobayashi et al. 2004). ‘Toggle-switch’ circuits
have been synthesized, conferring a form of memory on
bacteria—a prolonged response to transient signals
(Gardner et al. 2000).
6. CONCLUSIONS

We have presented a mathematical model of a GRN
that is capable of associating two (or more) input
signals in a Hebbian fashion. A design for implementing
this circuit on plasmids in E. coli has also been
described, along with an alternative implementation
using phosphorylation cycles. The circuit could be
tuned by directed evolution. Moreover, one would also
expect to see inheritance of the learned association if
the cell divides sufficiently soon after the learning takes
place. See Jablonka & Lamb (2005) for a discussion of
other mechanisms of epigenetic inheritance.

An important criticism is that the system is capable
of learning only associations between N pre-defined
dimensions of conditional stimuli, uj, and an uncondi-
tioned stimulus. We can give three responses.

Firstly, the inducer uj, which we have loosely been
talking of as the stimulus, can without loss of generality
be a downstream-regulated component or a second
messenger that is activated by a wide range of possible
signal transduction cascades. Any stimulus that
activates this cascade can be associated with the
unconditioned stimulus. The signal transduction cas-
cade that produces uj defines a perceptual class of
stimuli that can be associated. Although it may be
asking a lot of a bacterium that ‘a completely new’
association be learned, what would this mean? We
J. R. Soc. Interface (2009)
argue it would mean that the bacterium was capable of
creating a new perceptual class of stimuli to activate a
given uj molecule. One possible mechanism that would
be capable of generating a novel perceptual class,
within the lifetime of a cell, is intra-cellular natural
selection, a process proposed by Wills (2001). If there is
a source of sequence variation and heredity in an
autocatalytic element of the signal transduction cas-
cade, then natural selection can act between these
elements, within the lifetime of a cell. Less ambitious is
to propose that a random search process could establish
novel perceptual categories. An even simpler
mechanism would be if low sequence-fidelity transcrip-
tion or translation produced variations in the selec-
tivity and sensitivity of the components of a signal
transduction system within the lifetime of a cell. We
argue that signal transduction-based classifiers are
analogous to perceptual areas in nervous systems that
are responsible for defining classes of event by using
topographic maps that represent increasingly abstract
entities or Gestalts (Gibson 1986), rather than signal-
ling atomic stimulus events. Much of the flexibility of
an associative learning system depends on this trans-
duction/classification process.

Our second response is that no learning mechanism is
completely general, i.e. capable of associating any
conditioned stimulus with any unconditioned stimulus.
No neural network has the capacity to learn associations
between any two inputs within the lifetime of the
organism. The opposite belief was once held by the
behaviourists who claimed that any reinforcer could
strengthen any response (R) in the presence of any
stimulus (S), provided that the animal could sense the
stimulus and that a response was within its motor
capabilities (Watson 1930; Skinner 1976). R and S were
considered arbitrary, in effect symbolic items to be
manipulated by this general learning system. A classic
publication in psychology is ‘The misbehavior of
organisms’ that describes experiments showing
evolutionary constraints on what can and cannot be
conditioned in mammals (Breland & Breland 1961).
Later, Shettleworth denied that general laws of learning
existed, claiming that the learning abilities of different
species were specifically adapted to ecological con-
straints, i.e. learningwas contingent onparticular stimuli
and responses andnot independentof them(Shettleworth
1998). Further attempts to rectify a general theory of
learning were made by Dickinson who claimed that
particular features of ‘causes and effects’ in the ecological
theory of an animal’s lineage determined the properties of
an animal’s learning mechanism (Dickinson 1980).

Thirdly, the lack of flexibility serves to highlight
that, although associative learning is possible in a single
cell, nervous systems allow greater capacity for
constructing novel pathways between arbitrary stimuli,
because, instead of the network being defined by
unchanging nucleotide and amino acid sequences, the
spatial location of a synapse defines the pathway and
‘meaning’ of a signal. Nevertheless, one should point
out that spatial localization in single cells does
contribute to reaction specificity, and so could be
another basis for associative learning (Harold 2005).
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Finally, it is interesting to speculate about the
potential applications of such molecular circuits. One
idea is to use them as intelligent biomarkers for
reporting on existing associations between cellular
components. To do this, one constructs N plasmids as
described above, whereupon Hebbian learning is used
to train the resulting gene regulatory perceptron to
classify the observed input vector. Secondly, a thera-
peutic bacterial system might adaptively tailor the
anticipatory release of a drug to predict antecedents to
a toxin. The genetic engineering of ‘remote-controlled’
bacteria to secrete drugs is already underway (Rao
et al. 2005; Loessner et al. 2007). The circuit described
provides a potential basis for such systems to learn.

Thanks to Eva Jablonka, Eors Szathmary, Richard Goldstein
and Peter Lund for useful discussions and comment. This work
was funded by the FP6 EU project ‘Evolving Cell Signalling
Networks in Silico’ (ESIGNET), contract number 12789.
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