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Abstract
Neurotoxicity induced by stress, radiation, chemicals, or metabolic diseases, is commonly associated with 
excitotoxicity, oxidative stress, and neuroinflammation. The pathological process of neurotoxicity induces 
neuronal death, interrupts synaptic plasticity in the brain, and is similar to that of diverse neurodegener-
ative diseases. Animal models of neurotoxicity have revealed that clinical symptoms and brain lesions can 
recover over time via neuroregenerative processes. Specifically, brain-derived neurotropic factor (BDNF) 
and gamma-aminobutyric acid (GABA)-ergic transmission are related to both neurodegeneration and 
neuroregeneration. This review summarizes the accumulating evidences that suggest a pathogenic role of 
BDNF and GABAergic transmission, their underlying mechanisms, and the relationship between BDNF 
and GABA in neurodegeneration and neuroregeneration. This review will provide a comprehensive over-
view of the underlying mechanisms of neuroregeneration that may help in developing potential strategies 
for pharmacotherapeutic approaches to treat neurotoxicity and neurodegenerative disease.

Key Words: brain-derived neurotropic factor; neurotoxicity; gamma-aminobutyric acid-ergic transmission; 
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Introduction
Exposure to neurotoxicity induced by radiation, chemical 
and neurotoxic agents is common in today’s modern soci-
ety. Many people suffer from neurodegenerative diseases, 
including Alzheimer’s disease (AD), Parkinson’s disease 
(PD), Huntington’s disease (HD), and multiple sclerosis 
(MS). The causes of neurotoxicity and neurodegenerative 
diseases vary; however, these conditions commonly share 
pathological processes, including synaptic dysfunction, neu-
rovascular dysfunction, neuroinflammation, and neuronal 
death (Mattson and Duan, 1999; Mattson, 2000; Bito and 
Takemoto-Kimura, 2003; Amor et al., 2010).

To study neurotoxicity and neurodegenerative diseases, 
several models using neurotoxins have been developed. 
Kainic acid (KA), an analog of excitotoxic glutamate, can 
elicit selective neuronal death in rodent brain, resulting 
in pathological changes that partially mimic neurodegen-
eration in the central nervous system (CNS) (Wang et al., 
2005). KA-induced neurodegeneration in rodents has been 
used as a model to explore the pathogenesis of excitotox-
icity in neurodegenerative diseases (Zheng et al., 2011). 
Trimethyltin (TMT), a neurotoxic organotin compound, 
selectively affects neurons in the limbic system, particular-
ly in the hippocampus, and is a useful agent for studying 
hippocampal neurodegeneration (Chang and Dyer, 1983; 
Balaban et al., 1988; Ishida et al., 1997; Ishikawa et al., 

1997; Lee et al., 2016). Dopaminergic neurotoxins, such as 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), that 
stimulate the expression of inducible nitric oxide synthase 
are used to induce pathogenic neurodegeneration that mim-
ics PD (Liberatore et al., 1999; Blum et al., 2001). In addi-
tion to neurotoxin treatment, genetically modified animal 
models are widely used to study human neurodegenerative 
diseases. For example, transgenic (Tg) mice overexpressing 
human tau protein have consistently demonstrated neuro-
logical deficits and neuronal loss linked to the appearance of 
neurofibrillary tangles (NFTs). NFTs are a common neuro-
pathological feature found in AD, and have been implicated 
in mediating neurodegeneration and dementia in AD and 
other tauopathies (Arriagada et al., 1992; Gomez-Isla et al., 
1997; Guillozet et al., 2003). MitoPark mice, which have a 
disruption in the gene encoding mitochondrial transcription 
factor A in dopaminergic neurons, showed diverse features 
of PD, such as progressive motor deficits, neuronal loss, and 
protein inclusion (Langley et al., 2017). In addition, diverse 
types of genetic HD models, including R6/2, YAC 128, and 
BACHD mice, exhibited pathological hallmarks of HD, such 
as chorea, psychiatric disturbance, gradual dementia, and 
death. Thus, these models are generally used to study HD 
(Heng et al., 2008; Liang et al., 2014).

Use of the aforementioned animal models in numerous 
studies has revealed some of the mechanisms and pathol-

http://orcid.org/0000-0003-2451-0374
http://orcid.org/0000-0003-2451-0374
http://orcid.org/0000-0002-4748-6007
http://orcid.org/0000-0002-4748-6007


1734

Kim et al. / Neural Regeneration Research. 2017;12(10):1733-1741.

ogies of neurotoxicity and neurodegenerative diseases. 
Brain-derived neurotropic factor (BDNF) and gamma-ami-
nobutyric acid (GABA) are well known to be related to neu-
ronal survival, neuronal protection, and synapse recovery 
(Levine et al., 1995; Ganguly et al., 2001; Baydyuk and Xu, 
2014). BDNF and GABAergic transmission are thus believed 
to contribute to the etiology and regenerative processes of 
neurodegenerative diseases. However, the regulatory mech-
anisms and interactions between BDNF and GABA in neu-
rodegenerative diseases are not yet fully understood.

This review summarizes prior studies that have elucidated 
the role of BDNF and GABAergic transmission in neuro-
toxicity and neurodegenerative disease, and the potential 
interactions between BDNF and GABAergic transmission in 
neuroregenerative processes. This review will provide a com-
prehensive overview of the underlying mechanisms of neu-
roregeneration to help develop pharmacotherapeutic strate-
gies to treat neurotoxicity and neurodegenerative diseases.

BDNF 
BDNF plays pivotal roles in maintaining neuronal func-
tion and structure, and supports cellular functions, such 
as growth, differentiation, and survival in neurons (Mai-
sonpierre et al., 1990). BDNF is synthesized and released 
in an activity-dependent manner (Lu, 2003), and binds to 
high-affinity receptors, namely tropomyosin receptor kinase 
B (TrkB) (Klein et al., 1993). Binding of BDNF to TrkB re-
ceptors activates diverse intracellular signaling, including 
Ras and extracellular signal-regulated kinase (Erk)1 and 2, 
phospholipase C-γ (PLC-γ), phosphatidylinositol 3-kinase 
(PI3K), and protein kinase C (PKC) (Nakagawara et al., 
1994; Zirrgiebel et al., 1995). Several transcription factors, 
including c-Jun, c-Fos, and early growth response 1 (Egr-1), 
are then induced, and cyclic adenosine 3′,5′-monophosphate 
(cAMP) response element binding protein (CREB) is acti-
vated (Nakagawara et al., 1994; Gaiddon et al., 1996; Finkbe-
iner et al., 1997). In addition to the high-affinity TrkB recep-
tors, BDNF binds to low-affinity receptor p75 neurotrophin 
receptor (p75NTR) (Berg et al., 1991; Casaccia-Bonnefil et 
al., 1996), which is known to potentiate Trk-induced surviv-
al activity via nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) activation (Maggirwar et al., 1998; 
Chittka and Chao, 1999; Hamanoue et al., 1999).

Several studies have reported that changes in BDNF lev-
els occur during neurotoxicity and in neurodegenerative 
diseases (Ballarin et al., 1991; Lee et al., 2016; Tanila, 2017). 
Clinical human studies as well as genetic and experimental 
animal studies have suggested that decreased BDNF levels 
are associated with synaptic and neuronal loss and cognitive 
impairment in aging and AD (Tanila, 2017). In patients 
with AD, the expressions of the precursor form of BDNF 
(proBDNF) and mature BDNF decreased in the parietal 
cortex and hippocampus (Phillips et al., 1991; Holsinger et 
al., 2000; Michalski and Fahnestock, 2003; Peng et al., 2005). 
Systemic administration of BDNF is not considered to be a 
suitable approach due to its short plasma half-life and poor 
blood-brain barrier penetration (Nagahara and Tuszynski, 

2011). However, neural stem cell injection, which leads to 
upregulation of hippocampal BDNF, rescues the cognitive 
phenotype in aged amyloid-β precursor protein (APP)/
presenilin (PS)1/tau Tg mice via increased synaptic den-
sity and restoration of hippocampal-dependent cognition 
(Blurton-Jones et al., 2009). Therefore, the indirect elevation 
of BDNF levels in the CNS is considered to be a novel treat-
ment strategy for AD.

In PD, BDNF also has potent effects on the survival and 
morphology of dopaminergic neurons, and therefore the 
loss of BDNF is likely to contribute to the death of dopami-
nergic neurons (Howells et al., 2000). Clinically, reduction 
in BDNF mRNA and protein expression has been observed 
in the substantia nigra of patients with PD (Howells et al., 
2000). Laboratory animal models using MPTP, which in-
duces hallmark symptoms of PD including loss of dopami-
nergic neurons in the midbrain (Meredith and Rademacher, 
2011) showed decreased BDNF protein levels in the lesioned 
striatum when compared with the same brain regions on 
the intact side (Kaur and Prakash, 2017). Inversely, over-ex-
pression of BDNF in dopaminergic neurons recovers the 
striatal innervation, dendritic spines and motor behavior in 
a rat model of PD (Razgado-Hernandez et al., 2015). Degen-
eration of striatal neurons and reduction in cortical BDNF 
mRNA and protein levels were observed in a mouse model 
of HD (Group, 1993; Perez-Navarro et al., 1999; Perez-Na-
varro et al., 2000; Zuccato et al., 2001; Zuccato and Cattaneo, 
2007). The levels of transcripts encoding BDNF exons II, IV, 
and VI were reportedly to be reduced in R6/2 mice (Zuccato 
et al., 2005). In addition, previous studies regarding multiple 
sclerosis (MS), a major inflammatory demyelinating disease, 
also showed decreased plasma BDNF levels, with the excep-
tion of a transitory elevation during relapses (Lassmann et 
al., 1998; Azoulay et al., 2005; Blanco et al., 2005; Vacaras et 
al., 2017). Together, these reports suggest that reduction in 
BDNF levels is a common mechanism underlying the devel-
opment of diverse neurodegenerative diseases (Table 1).

To provide advanced insights into the detailed mecha-
nisms of neurodegeneration, animal models treated with 
diverse neurotoxins have been widely used (Geloso et al., 
2011). Neurotoxins such as KA and TMT induce significant 
cell death and neuroinflammation, which subsequently re-
sult in neurodegeneration. Previous studies have observed 
the rapid elevation of BDNF levels in neurotoxin-treated 
neurodegeneration models (Ballarin et al., 1991; Sathanoori 
et al., 2004; Kim et al., 2014; Lee et al., 2016). Although neu-
rotoxins induce rapid BDNF elevation, neurotoxin-treated 
models also showed a gradual decrease in BDNF levels over 
time (Kim et al., 2014), which is similar to the patterns ob-
served in many neurodegenerative models (as summarized 
in Table 1). The elevation of BDNF in the acute phase of 
neurotoxin administration is interpreted by two conflicting 
points of view. First, from a pathogenical view, increased 
levels of BDNF following neurotoxin administration might 
increase the severity of excitotoxicity by increasing synap-
tic activity (Bathina and Das, 2015). Another viewpoint is 
related to the protective effects of elevated BDNF against 
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neurotoxins (Casalbore et al., 2010; Corvino et al., 2013). 
Additionally, Lee et al. (2016) have reported that BDNF 
treatment significantly reduced neurotoxin-induced cell 
death via the activation of ERK signaling. Many in vitro 
and in vivo experiments have shown the protective effects 
of BDNF in striatal neurons and the therapeutic effects of 
BDNF or BDNF mimetics (Nakao et al., 1995; Ventimiglia et 
al., 1995; Bogush et al., 2007). Although further comprehen-
sive studies investigating the precise protective/pathogenic 
roles of elevated BDNF levels in the acute phase of neurode-
generative process are needed, BDNF seems to play mainly 
a protective role against neuronal insults. As summarized in 
Table 1, those studies could provide fundamental data on 
the role of BDNF in neurodegeneration, and could be useful 
for the development of novel strategies aimed at increasing 
BDNF levels in the aforementioned neurodegenerative dis-
eases to ultimately influence the clinical treatment of these 
conditions.

GABAergic transmission
GABA is the major inhibitory neurotransmitter that acti-
vates GABAergic systems (Watanabe et al., 2002; Jin et al., 
2003a; Wu et al., 2007b). The GABAergic system plays a 
pivotal role in maintaining equivalent neurotransmission in 
the CNS (Barbin et al., 1993; Behar et al., 1996; Taketo and 
Yoshioka, 2000; Pallotto and Deprez, 2014). Moreover, neu-
ronal networks, including neural migration, differentiation, 
proliferation, and neurite outgrowth facilitation, are mod-
ulated by GABA synthesis, transport, release and reuptake, 
and GABA receptor composition (Jin et al., 2003b; Wu et 
al., 2007a). The synthesis of GABA is catalyzed by glutamic 
acid decarboxylase (GAD), which plays a key role in the 
regulation of GABAergic transmission (Wu et al., 2007b). 
GABA transporters, including the GABA transporter (GAT) 
and the vesicular GABA transporter (VGAT), act to store 
synthesized GABA and mediate the release and reuptake 
of GABA from synapses (Nelson and Blaustein, 1982). The 

action of GABA is terminated by its reuptake from the 
synaptic cleft via membrane-bound GATs, which has been 
observed in both presynaptic and postsynaptic membranes 
of differentiated neurons and in the surface of glial cells (Mi-
nelli et al., 1995, 1996). 

GABAergic transmission is mediated by two distinct re-
ceptor classes: ionotropic GABA A receptors (GABAARs) 
and metabotropic GABA B receptors (GABABRs) (Couve et 
al., 2000; Sieghart and Sperk, 2002; Bettler and Tiao, 2006). 
GABAARs are hetero-pentameric chloride channels that 
mediate fast synaptic inhibition. GABAARs are composed 
of five subunits selected from at least 19 GABAAR subunits. 
Interestingly, there is accumulating evidence that individu-
al GABAAR subunits are associated with distinct neuronal 
structures and subcellular distributions, and that their differ-
ential activation is closely correlated with distinct pharma-
cological and behavioral phenotypes (Rudolph et al., 2001; 
Kittler et al., 2002; Sieghart and Sperk, 2002). GABAARs are 
relevant drug targets for anti-convulsant, anxiolytic, and 
sedative-hypnotic agents (Monteleone et al., 1990; Olsen 
and Avoli, 1997; Sieghart and Sperk, 2002). GABABR is a G 
protein-coupled receptor in the CNS that is implicated in 
neurological and psychiatric disorders (Barnard et al., 1998; 
Bowery et al., 2002; Calver et al., 2002). Therefore, elucidat-
ing the modulatory mechanisms of the GABAergic system 
should be prioritized to understand the inhibitory role of 
GABA in diverse neurologic conditions. However, the mod-
ulation of GABA signal-related molecules in neurodegener-
ation is not completely understood.

The balance between neuronal excitation and inhibition 
in neuronal networks is crucial for normal brain function. 
The dysfunction of neuronal electrical excitability may play 
an important role in neurodegenerative disease. GABAergic 
systems have recently become an increasing area of interest 
in AD research (Rossor and Iversen, 1986; Andrews-Zwill-
ing et al., 2010). In the human APP Tg mouse, inhibitory 
hippocampal circuits are altered by the sprouting of collat-

Table 1 The modulation of BDNF in various neurodegenerative models

Model Modulation of BDNF References

AD Patients with AD BDNF mRNA, proBDNF, BDNF ↓ Michalski and Fahnestock (2003); Peng et al. (2005) 
BDNF mRNA ↓ (parietal cortex) Holsinger et al. (2000)
BDNF mRNA ↓ (hippocampus) Phillips et al. (1991)

Aged Tau/PS1/APP 3xTg mice Hippocampal BDNF (NSC treatment) ↑ Blurton-Jones et al. (2009)
PD Patients with PD BDNF mRNA, BDNF ↓ (substantia nigra) Howells et al. (2000)

MPTP-induced model BDNF ↓ (lesioned striatum) Kaur and Prakash (2017)
Rotenone-induced model BDNF ↓ (plasma), BDNF ↑ (colon) Johnson et al. (2015)

HD QA-induced HD model BDNF, striatal neurons ↓ Perez-Navarro et al. (2000)
R6/2 Tg mice Bdnfexon II, IV, VI, BDNF ↓ Zuccato et al. (2005)

MS Patients with MS BDNF ↓ (plasma) Vacaras et al. (2017)
Patients with rrMS BDNF ↓ (serum and CSF) Azoulay et al. (2005)

Others KA-induced model BDNF mRNA ↑(acute phase) Sathanoori et al. (2004)
TMT-induced model BDNF mRNA PI 1–2 d↑, PI 4–8 d ↓ Kim et al. (2014)

AD: Alzheimer’s disease; APP: amyloid-β precursor protein; BDNF: brain-derived neurotrophic factor; HD: Huntington’s disease; KA: kainic acid; 
MS: multiple sclerosis; MPTP:1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NSC: neural stem cell; PD: Parkinson’s disease; PI: post-injection; 
proBDNF: precursor form of BDNF; PS1: presenilin 1; QA: quinolinic acid; rrMS: relapsing-remitting MS; Tg: transgenic; TMT: trimethyltin.
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eral mossy fibers onto GABAergic basket cells (Palop et al., 
2007). Tau/PS2/APP 3xTg mice demonstrated significant 
neurodegeneration of GABAergic septo-hippocampal pro-
jection neurons as well as that of their target cells, GAB-
Aergic hippocampal neurons (Bowery and Brown, 1974). 
APP-induced impairment of GABAergic interneurons 
suggests that dysregulation of the excitatory/inhibitory neu-
rotransmitter balance contributes to neurodegeneration in 
AD (Wang et al., 2014; Villette and Dutar, 2017). Oyelami et 
al. (2016) reported the functional and transcriptional deficits 
in GABAergic pathways in prefrontal cortex in aged APP/
PS1 Tg mice. They observed significant decreases in various 
GABA-related genes, such as Gabra1, 3, 4, 5, Gabrb2, 3, Ga-
brg2, Gabarapl1, and Gabarap, and the changes in synaptic 
function in the prefrontal cortex of 8-month-old APP/PS1 
Tg mice (Oyelami et al., 2016). However, VGAT and GAD 
are not altered in patients with AD or in APP/PS1 Tg mice 
(Mitew et al., 2013). Therefore, understanding the molecular 
details involved in the alteration of GABAergic transmission 
may provide insight into the pathogenesis of AD. 

Similarly, patients with PD exhibited significantly de-
creased levels of GABA in the cerebrospinal fluid (CSF) (de 
Jong et al., 1984). A (3-chlorophenyl)[3,4-dihydro-6,7-di-
methoxy-1-[(4-methoxyphenoxy)methyl]-2(1H)-isoquin-
olinyl]-methanone (CIQ)-induced PD model also showed 
depressed GABAergic transmission via a cholinergic mech-
anism in medium spiny projection neurons in the striatum 
(Feng et al., 2014). In addition, HD caused by expansion of 
the CAG repeat in exon 1 of the huntingtin gene induced 
loss of GABAergic medium spiny neurons in the striatum 
(Kremer et al., 1994; DiFiglia et al., 1997). Furthermore, a 
pattern of neurodegeneration of GABAergic striatal efferent 
projection neurons observed in patients with HD, are closely 
correlated with increasing clinical neuropathological HD 
grade (Glass et al., 2000). Following quinolinic acid (QA)-in-
duced degeneration of the striatonigral pathway, there was 
marked loss of GABA immunoreactivity and 59% increase in 
the density of GABAARs in the substantia nigra pars reticu-
late (Nicholson et al., 1995). Moreover, QA injection rapidly 
induced an increase in GABABR subunit 1 or 2 immunore-
activity in the lesioned striatum, despite the neuronal loss 
(Rekik et al., 2011), indicating that it may be upregulated by 
reactive astrocytes. GABA insufficiency has also been identi-
fied in MS patients. The sensorimotor GABA concentration 
was abnormally lower in individuals with the secondary 
progressive form of MS, suggesting that decreased GABA 
levels are involved in worse motor function (Demakova et 
al., 2003; Cawley et al., 2015).

Additionally, other neurodegenerative models using 
neurotoxins, such as KA, induce loss of GABA and GAD 
when injected into rodent striata (Young et al., 1988). The 
mRNA levels of GABAAR subunits γ2 and δ also decrease 
significantly in the hippocampus following TMT-induced 
seizure (Kim et al., 2015). In 4-aminopyridine-induced exci-
totoxicity, GABA-mediated transmission may paradoxically 
boost neuronal hyperexcitation (Pena and Tapia, 2000). As 
summarized in Table 2, the number of GABAergic neurons 

is decreased in neurodegenerative stimulation. Thus, the de-
crease in the number of GABAergic neurons induces an im-
balance of excitatory/inhibitory neurotransmission, which is 
considered a main causal factor in many neurodegenerative 
diseases. This suggests that the stable maintenance of GAB-
Aergic transmission may be a protective/therapeutic solu-
tion in neurodegenerative disease.

Correlation between the BDNF and 
GABAergic systems
BDNF is synthesized by both neurons and glia and is in-
volved in survival, differentiation, and regeneration of neu-
rons via TrkB binding. BDNF is one of the crucial mediators 
of long-term potentiation at glutamatergic and GABAergic 
synapses in the CNS (Korte et al., 1995; Figurov et al., 1996; 
Lu, 2003). BDNF is attributed to mostly increased presynap-
tic transmitter release. Specifically, the acute effects of BDNF 
enhance glutamatergic transmission and reduce GABAergic 
transmission in the CNS (Zafra et al., 1991; Tanaka et al., 
1997). Thus, BDNF could influence GABAergic transmis-
sion positively or negatively through various intracellular 
signaling pathways triggered via TrkB or p75NTR.

BDNF may affect GABAergic transmission, subsequently 
modulating CNS function, neuronal survival, and plasticity. 
BDNF binds to TrkB, which couples to the PLC-γ/PKC-δ and 
ERK/mitogen-activated protein kinase (MAPK) pathway. Ac-
tivated PLC-γ could induce PI3K activation which increases 
intracellular Ca2+ concentrations (Yamada et al., 1991); con-
sequently, BDNF disrupts GABAAR function through elevat-
ed intracellular Ca2+ concentration (Tanaka et al., 1997). BD-
NF-TrkB signaling also affects the presynaptic concentration 
of GABA through the activation of GAT-1 (Vaz et al., 2011). 
These alterations are presumably caused by the upregulation 
of GAD67 mRNA and neuronal GAT-1. GATs are located 
in the plasma membrane of neurons and astrocytes and are 
responsible for the termination of GABAergic transmission. 
BDNF enhances GAT-1-mediated GABA transport in astro-
cytes and/or neurons, which requires an active A2A receptor. 
In primary hippocampal neurons, BDNF reduces GABAergic 
miniature inhibitory postsynaptic currents and causes re-
duction in GABAAR subunit α2, β2, β3, and γ2 immunore-
activity (Brunig et al., 2001). Moreover, BDNF upregulates 
the expression of GABAAR α4 by Egr-3 stimulation related to 
PKC pathway activation (Roberts et al., 2005, 2006). BDNF 
has been shown to selectively regulate GABAAR transcription 
through activating the Janus kinase (JAK)/signal transducer 
and activator of transcription (STAT) pathway and BDNF 
treatment of hippocampal neurons stimulated phosphory-
lation of STAT3, induced increases in inducible cAMP early 
repressor (ICER) expression, and decreased transcription of 
Gabra1 (Lund et al., 2008). BDNF increased GABAAR subunit 
α4 expression, but decreased GABAAR subunit α1 levels in 
hippocampal neurons, suggesting that BDNF has a potential 
role in differentially regulating the expression of extrasynaptic 
and synaptic GABAARs (Roberts et al., 2006). The influence 
of BDNF on GABAergic transmission is not only limited to 
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direct regulatory mechanisms, but also includes indirect ionic 
concentrations.

BDNF indirectly modulates GABAergic transmission 
through the postsynaptic regulation of Cl− transport (Wardle 
and Poo, 2003). Previous studies suggest that the acute post-
synaptic downregulation of K+-Cl− cotransporter 2 (KCC2) 
activity may decrease the efficacy of inhibitory transmis-
sion. Moreover, BDNF contributes to the differentiation of 
striatal GABAergic neurons during development (Mizuno 
et al., 1994). BDNF injections into the cerebral ventricles 
of neonatal rats induced an increase in GABA content in 
the striatum (Mizuno et al., 1994). The elevation of GABA 
levels mainly resulted from the elevation of GAD activity 
and GABA uptake activity (Mizuno et al., 1994). Therefore, 
BDNF could alter diverse intracellular mechanisms, which 
might modulate pre/postsynaptic GABAergic transmission, 
as summarized in Table 3. The organization of evidence for 
the correlation between BDNF and GABA during neurode-
generation may be important to understand their underlying 
mechanisms of neurotoxicity and neurodegenerative diseases. 

Based on its role in diverse neurodegenerative process-
es, BDNF typically enhances the release of presynaptic 

transmitters, including GABA; in general, its expression is 
downregulated, except during the acute phase, when it is 
upregulated. BDNF exhibits an acute excitatory effect via 
suppression of chloride-dependent fast GABAergic inhibi-
tion (Rivera et al., 2002; Canas et al., 2004). In pathological 
processes including chronic pain and seizure, BDNF/TrkB 
signaling contributes to downregulation of KCC2 protein 
expression and its transport function, leading to hyper-ex-
citability (Kong et al., 2014; Tao et al., 2015). Thus, it was 
suggested that a temporary increase in BDNF during the 
acute phase of neurodegenerative processes involves hy-
per-excitability via suppression of chloride transport and 
decreased efficacy of inhibitory transmission. Additionally, 
increased BDNF likely disrupts the function of GABAAR by 
elevating the intracellular Ca2+ concentration (Yamada et 
al., 1991) during the acute phase, resulting in abnormally 
regulated GABAergic transmission. During the neurodegen-
erative period, decreased BDNF levels may cause decreases 
in the intracellular Ca2+ concentration, Egr-3 signaling in 
the post-synapse, as well as GAD65/67 in the pre-synapse 
(Brunig et al., 2001; Roberts et al., 2005, 2006; Lund et al., 
2008; Vaz et al., 2011). Thus, downregulation of intracellu-

Table 2 Modulation of the GABAergic system in various neurodegenerative diseases

Model Modulation of the GABAergic system References

AD Tau/PS2/APP 3xTg mice GABAergic septo-hippocampal projection neurons and 
GABAergic hippocampal neurons ↓

Bowery and Brown (1974)

Aged APP/PS1 Tg mice Gabra1, 3, 4, 5, Gabrb2, 3, Gabrg2,Gabarapl1, Gabarap ↓ Oyelami et al. (2016)
PD Patients with PD GABA ↓ (CSF) de Jong et al. (1984)

CIQ-induced model GABAergic transmission ↓ (striatum) Feng et al. (2014)
HD Patients with HD Neurodegeneration of GABAergic striatal efferent 

projection neurons
Glass et al. (2000)

QA-induced model GABA ↓, GABAAR, GABABR subunit 1, 2 ↑ Nicholson et al. (1995); Rekik et al. (2011)
MS Patients with MS GAD, GABA ↓ (blood) Demakova et al. (2003)

Patients with rrMS GABA ↑ (sensorimotor cortex) with worsening of 
performance

Bhattacharyya et al. (2013)

Patients with spMS GABA ↓ (sensorimotor cortex) Cawley et al. (2015)
Others KA-induced model GAD, GABA ↓ Young et al. (1988)

TMT-induced model GABAAR subunit γ2, δ ↓ Kim et al. (2015)

AD: Alzheimer’s disease; APP: amyloid-β precursor protein; CIQ: (3-chlorophenyl)[3,4-dihydro-6,7-dimethoxy-1-[(4-methoxyphenoxy)methyl]-
2(1H)-isoquinolinyl]-methanone; CSF: cerebrospinal fluid; GABA: γ-aminobutyric acid; GABAAR: GABA A receptor; GABABR: GABA B receptor; 
GAD: glutamic acid decarboxylase; HD: Huntington’s disease; KA: kainic acid; MS: multiple sclerosis; PD: Parkinson’s disease; PS1: presenilin 1; 
PS2: presenilin 2; QA: quinolinic acid; rrMS: relapsing-remitting MS; spMS: secondary progressive MS; TMT: trimethyltin.

Table 3 The mechanisms underlying BDNF modulation on the GABAergic system

Altered pathway induced by BDNF Modulating target References

Elevated intracellular Ca2+ concentration by TrkB activation GABAAR Tanaka et al. (1997)
Enhanced GABA transport in astrocytes through ADORA2A signaling GATs Vaz et al. (2011)
Egr-3 stimulation related to PKC-MAPK pathway activation GABAAR α4 Roberts et al. (2005, 2006)
JAK/STAT, Gbara1 GABAAR α1 Lund et al. (2008)
Increased GAD activity/elevated GABA uptake activity GABA content Mizuno et al. (1994)
Downregulated K+-Cl− cotransporter 2 (KCC2) GABA receptors Wardle and Poo (2003)

ADORA2A: Adenosine A2A receptor; BDNF: brain-derived neurotrophic factor; Egr: early growth response protein; GABA: γ-aminobutyric acid; 
GABAAR: GABA A receptor; GAD: glutamic acid decarboxylase; GAT: GABA transporter; JAK: Janus kinase; MAPK: mitogen-activated protein 
kinase; PKC: protein kinase C; STAT: signal transducer and activator of transcription; TrkB: tyrosine receptor kinase B.
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lar signaling affecting GABA-related signaling may reduce 
the inhibitory efficacy of GABAergic transmission, leading 
to hyper-excitability. Therefore, the altered BDNF levels in 
neurodegenerative processes may perturb the balance in po-
tentiation between glutamatergic and GABAergic synapses 
in the CNS. An imbalance in excitatory/inhibitory neuro-
transmission may be one of the key factors for neurode-
generation (as shown in Figure 1). Consequently, targeting 
the increased levels of BDNF in neurodegenerative diseases 
could result in a balance in neurotransmission and may 
further be used as an effective therapeutic strategy in diverse 
neurodegenerative conditions.

Conclusion
BDNF and GABAergic systems are involved in critical CNS 
functions, ranging from neuronal development and neu-
ronal survival to learning and memory. In addition, BDNF 
and GABAergic systems have significant physiological and 
pathological roles in neurotoxicity and neurodegenerative 
diseases. In many neurodegenerative diseases, the levels of 
BDNF are generally decreased, although rapid elevation of 
BDNF levels occur in the acute phase in response to neuro-
nal insults which may contribute to protective/regenerative 
processing. The overall reduction of BDNF results in diverse 
intracellular signalings, leading to an imbalance in excitato-

ry/inhibitory neurotransmission, including dysregulation of 
GABAergic transmission. Therefore, the reduction of BDNF 
and the subsequent dysregulation of GABAergic transmis-
sion may be one of the major mechanisms of neurodegener-
ation. However, the relationship between BDNF and GAB-
Aergic systems remains largely unknown; therefore, further 
studies investigating the precise interactions between BDNF 
and GABAergic transmission are needed. Nevertheless, 
the substantial progress that has been made in the last few 
decades in elucidating the mechanisms of BDNF and GAB-
Aergic systems, may not only further extend our knowledge 
of normal CNS functions, but may also help to develop 
potential strategies for pharmacotherapeutic approaches in 
neurodegeneration.
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