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Abstract 20 
Large-scale scATAC-seq experiments are challenging because of their costs, lengthy 21 
protocols, and confounding batch effects. Several sample multiplexing technologies aim 22 
to address these challenges, but do not remove batch effects introduced when performing 23 
transposition reactions in parallel. We demonstrate that sample-to-sample variability in 24 
nuclei-to-Tn5 ratios is a major cause of batch effects and develop MULTI-ATAC, a 25 
multiplexing method that pools samples prior to transposition, as a solution. MULTI-ATAC 26 
provides high accuracy in sample classification and doublet detection while eliminating 27 
batch effects associated with variable nucleus-to-Tn5 ratio. We illustrate the power of 28 
MULTI-ATAC by performing a 96-plex multiomic drug assay targeting epigenetic 29 
remodelers in a model of primary immune cell activation, uncovering tens of thousands 30 
of drug-responsive chromatin regions, cell-type specific effects, and potent differences 31 
between matched inhibitors and degraders. MULTI-ATAC therefore enables batch-free 32 
and scalable scATAC-seq workflows, providing deeper insights into complex biological 33 
processes and potential therapeutic targets. 34 
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Introduction 40 
 Single-cell genomics techniques allow for the composition and state of complex 41 
systems to be compared across time, space, individual, and perturbation. Fundamental 42 
challenges of these methods include the high reagent costs, time, and technical artifacts 43 
(e.g. batch effects) associated with their complex workflows. Sample multiplexing 44 
technologies circumvent these challenges, reducing the complexity of experiments and 45 
eliminating batch effects by pooling samples and processing them together through 46 
downstream molecular biology steps. Such methods are now widely used to generate 47 
high throughput single-cell RNA-seq (scRNA-seq) datasets and enable transcriptomic 48 
profiling of dozens to hundreds of samples at once1–4. Analogous multiplexing methods 49 
have also been described recently for single-cell assay for transposase-accessible 50 
chromatin (scATAC-seq)5–11, an epigenomic analysis technique that measures regions of 51 
open chromatin in individual cells using Tn5 transposase loaded with sequencing 52 
adapters. Notably, the majority of existing scATAC-seq sample multiplexing methods 53 
require each sample to be transposed independently or even split across many individual 54 
reactions, limiting assay scalability and increasing experiment costs.  55 

Beyond these limitations of parallel transposition workflows, variability in the 56 
nuclei:Tn5 ratio between samples can introduce significant batch effects that confound 57 
downstream analysis (Fig. 1A). Tn5 is a single-turnover enzyme, so the stoichiometric 58 
ratio of Tn5 to nuclei dictates the average number of fragments generated per nucleus in 59 
a reaction; this can even bias the proportions of genomic features detected12–14. While 60 
this phenomenon is well-established in bulk ATAC-seq workflows, how variable 61 
nuclei:Tn5 ratios contribute to batch effects in scATAC-seq analysis has not been 62 
thoroughly explored. 63 

Here, we describe MULTI-ATAC, a scATAC-seq sample multiplexing technology 64 
that improves scATAC-seq sample throughput and optimizes scATAC-seq data quality 65 
through doublet detection and the mitigation of batch effects caused by variable 66 
nuclei:Tn5 ratios. First, we re-analyzed publicly-available scATAC-seq datasets and 67 
identified the presence of significant batch effects that arise due to variable nuclei:Tn5 68 
ratios. Second, we demonstrate that MULTI-ATAC is compatible with pooled transposition 69 
workflows and enables the generation of multiplexed scATAC-seq data with minimal 70 
batch effects. Finally, we leverage MULTI-ATAC to perform a 96-plex multiomic drug 71 
perturbation experiment measuring how primary human immune cells respond to diverse 72 
inhibitors and proteolysis targeting chimeras (PROTACs) targeting chromatin remodeling 73 
enzymes. From these data we identify tens of thousands of immune- and drug-responsive 74 
chromatin regions and genes and discover that MS177 accentuates NF-κB signaling, 75 
while SWI/SNF perturbation induces a potent type I interferon response.  76 
 77 
 78 
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Results 79 
Transposition batch effects detected in published datasets 80 
 To determine if batch effects are linked to nuclei:Tn5 ratio in large-scale and multi-81 
sample scATAC-seq experiments, we re-analyzed 12 publicly-available datasets 82 
representing a variety of species and library preparation methods (Table 1) and assessed 83 
the magnitude of batch effects between independent transposition reactions in each 84 
dataset5,7,8,10,11,15–20 (Methods). Importantly, we made the assumption that the number of 85 
nuclei in the dataset associated with each Tn5 reaction was correlated to the number of 86 
nuclei used as input. The range of nuclei per sample varied greatly within a single 87 
experiment, spanning a range of 2-fold to 66-fold (Fig. 1B; Table 1), and thereby offered 88 
the opportunity to quantitatively measure batch effects between samples. Notably, 89 
datasets generated from experiments where low numbers of samples were split across 90 
many transposition reactions – a situation where nuclei counts are easiest to control – 91 
had minimal nuclei count variability. Conversely, datasets from experiments with high 92 
numbers of unique samples or where nuclei were isolated from tissue samples – a 93 
situation where nuclei counts are challenging to control – had far greater nuclei count 94 
variability between transposition reactions. These observations across 12 datasets 95 
suggest that nuclei count variability in transposition reactions is an intrinsic feature of 96 
complex scATAC-seq experiments. 97 
 We next asked whether data quality-control metrics correlated with the number of 98 
nuclei processed per reaction. scATAC-seq methods can be divided into two classes 99 
depending on whether they utilize Tn5 loaded with barcoded adapters (‘indexed 100 
transposome’) or universal adapters (‘standard transposome’). In standard transposome 101 
datasets, we observed that the median number of fragments per cell was negatively 102 
correlated with the number of transposed nuclei (Fig. 1C, Fig. S1A), mirroring results in 103 
bulk ATAC-seq12. Interestingly, indexed transposome datasets exhibited the opposite 104 
trend, yielding more fragments per cell in batches with greater nuclei counts (Fig. 1C, Fig. 105 
S1A). While the mechanism underlying this trend reversal remains unclear, ‘index 106 
hopping’ between transposition products due to the presence of free adapters could play 107 
a role10,11.  108 

Regardless of the mechanism or direction of the relationship, a correlation between 109 
transposition batch size and fragment yield could be detrimental to analysis as previously 110 
described in bulk ATAC-seq data. We therefore investigated how this technical artifact 111 
impacted downstream analyses and biological interpretation. Dimensionality reduction is 112 
commonly used during scATAC-seq analysis and provides the foundation for 113 
unsupervised clustering, cell type annotation, and differential accessibility analysis. Due 114 
to the inherent sparsity of chromatin accessibility data, Latent Semantic Indexing (LSI) is 115 
the predominant algorithm applied to scATAC-seq data21,22. In practice, the first LSI 116 
component correlates strongly with per-cell fragment counts, and is thus customarily 117 
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excluded to avoid technical bias10,18,21–24. However, by separating cells by subtype, we 118 
find that many more LSI components covaried in absolute magnitude with per-cell 119 
fragment counts, indicating that simply excluding the first LSI component is not sufficient 120 
to abrogate depth-related effects on clustering (Fig. S1D-E). 121 

To better quantify the impact of variable Tn5 batch size (and thus variable 122 
nuclei:Tn5 ratio) on dimensionality reduction, we selected datasets where unique 123 
samples were transposed across many reactions and for which fragment data were 124 
readily available (SNU_A, DSCI, TXCI, and PLEX). We binned the nuclei of each dataset 125 
into terciles according to Tn5 batch size (Fig. 1D, Fig. S1A). We then used the Local 126 
Inverse Simpson’s Index algorithm25 (LISI) to score the degree of batch mixing of the 127 
terciles of each dataset across 30 LSI dimensions, and compared this value to the degree 128 
of mixing when bin assignments were permuted to represent perfect mixing (Fig. 1E). 129 
Two of the datasets, SNU_A and PLEX, seemed largely unaffected; these datasets also 130 
exhibited the weakest association with transposition batch size (Fig. 1C), likely due in part 131 
to experimental designs that facilitated consistent loading of transposition reactions. The 132 
two datasets with significantly impacted batch mixing, DSCI and TXCI, represent more 133 
complex experiments where nuclei from multiple heterogeneous primary samples (bone 134 
marrow mononuclear cells, human lung, mouse liver/lung) were isolated separately and 135 
transposed across many reactions – resulting in much stronger correlations between Tn5 136 
batch size and fragment counts (Fig. 1C, Fig. S1A). This supports the notion that only 137 
simple experimental designs that allow for precise control of nuclei counts can control for 138 
batch effects. Furthermore, excluding the first LSI component from this analysis yielded 139 
similar results, further supporting that bias from variation in per-cell library complexity is 140 
not uniquely captured by and removed with the first LSI component (Fig. S1B).  141 
 In addition to influencing dimensionality reduction, we also observed significant 142 
shifts in cell type composition between Tn5 batches (Fig. 1F, Fig. S1C). Specifically, 143 
across 5 datasets representing heterogeneous samples split across many individual 144 
transposition reactions, we observed that the proportions of highly-prevalent cell types 145 
(i.e., > 5% of the total) such as hepatocytes and sinusoidal endothelial cells in the TXCI 146 
dataset, varied considerably between Tn5 batch terciles (Fig. 1F, Fig. S1C). Importantly, 147 
the observed variation far exceeds differences in cell type proportions computed after 148 
permuting bin labels (Fig. 1G). One possible explanation for this result derives from 149 
differences in fragment yields among different cell types, in turn resulting in differential 150 
sensitivity to quality control filtering for cells with naturally lower fragment counts. Indeed, 151 
comparing the mean fragment count per cell type and its change in proportion between 152 
Tn5 bins revealed that cells with fewer fragments are selected against in Tn5 batches 153 
that yield fewer fragments (Fig. 1H). Collectively, these results suggest that the nuclei:Tn5 154 
ratio during transposition can dramatically influence two critical steps of scATAC-seq 155 
analysis and therefore biological interpretation. 156 
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 157 
MULTI-ATAC barcoding accurately classifies sample-of-origin and doublets 158 

A simple solution to avoid batch effects from variable nuclei:Tn5 transposition 159 
ratios would be a sample multiplexing strategy that enables all samples to be transposed 160 
in a single pool, additionally streamlining the workflow and minimizing reagent costs. In 161 
order for samples to be pooled during transposition, sample-specific DNA barcodes must 162 
be incorporated into or onto nuclei in a manner that survives the transposition incubation 163 
without interfering with the reaction itself. In pursuit of this goal, we adapted the previously 164 
described MULTI-seq1 barcoding strategy to be compatible with scATAC-seq. This new 165 
method, MULTI-ATAC, takes advantage of the same lipid-modified oligonucleotide (LMO) 166 
system to deliver a redesigned DNA barcode oligonucleotide to the nuclear membrane. 167 
Importantly, to minimize interaction with the transposome, the barcode complex was 168 
designed to ensure no direct hybridization with Tn5 adapter sequences (Fig. S2A-B). 169 

To first validate the efficacy and accuracy of MULTI-ATAC for pooling samples at 170 
the droplet microfluidics step, we performed a pilot experiment using peripheral blood 171 
mononuclear cells (PBMCs) from 3 unrelated donors. Nuclei from each donor were 172 
isolated separately, transposed, and uniquely barcoded, after which they were pooled 173 
and a single library was generated using the 10x Genomics scATAC-seq kit. We used 174 
deMULTIplex2 to identify doublets and assign cells to individual samples based on their 175 
MULTI-ATAC barcode counts, and then compared these classifications to those obtained 176 
by genotyping the cells using Vireo26,27. There was near perfect agreement between 177 
singlets identified through either method (Fig. 2A-B). The greatest degree of 178 
disagreement was in doublet classification, but we note that MULTI-ATAC-specific 179 
doublets were more similar to consensus doublets in both DoubletEnrichment scores and 180 
total fragment counts, suggesting they have a higher likelihood of being true doublets 181 
than false positives (Fig. S3A-B). We then compared these classifications against an 182 
orthogonal doublet prediction algorithm, AMULET, which is specifically designed to 183 
identify doublets in scATAC-seq data from fragment counts28. We note that MULTI-ATAC 184 
classifications agreed significantly with each of the other algorithms individually and in 185 
concert, and  there were no Vireo-AMULET consensus doublets missed by MULTI-ATAC 186 
(Fig. S3C). 187 
 188 
Pooled transposition with MULTI-ATAC eliminates transposition batch effects 189 

Having validated that we can accurately assign sample identities and remove 190 
doublets using MULTI-ATAC, we next sought to investigate whether pooled transposition 191 
could ameliorate the batch effects that arise from parallel transposition reactions.  To this 192 
end, we performed a “Parallel” multi-sample experiment comprising a range of nuclei 193 
yields. Specifically, we aliquoted a 50:50 mixture of K562 and Jurkat nuclei for parallel 194 
MULTI-ATAC labeling and transposition. Reactions were set up in triplicate at each of 195 
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high, medium, and low nuclei:Tn5 ratios spanning the recommended range of the 10X 196 
Genomics protocol (Fig. 2C, Methods). Nuclei were then combined after transposition for 197 
library generation. In a separate library consisting of the same cell populations, we 198 
performed a “Pooled” multi-sample experiment by combining each of the 9 barcoded 199 
samples into a single pooled transposition reaction to directly assess the impact of pooled 200 
transposition on batch effects (Fig. 2C, Methods).  201 

Mirroring our analyses of the publicly-available datasets, we observed that variable 202 
nuclei:Tn5 ratios were associated with divergent per-cell fragment yields in the Parallel 203 
library (Fig. 2D, left). In contrast, there was no density-dependent effect on fragment 204 
counts in the Pooled library (Fig. 2D, right). As demonstrated previously, variation in per-205 
nucleus fragment counts is a covariate that influences LSI dimensionality reduction (Fig. 206 
1E, S1B,D-E). Even when excluding the first LSI component, the 9 samples in the Parallel 207 
library clustered according to nuclei density in the reduced dimensionality space (Fig. 2E, 208 
Fig. S4A, left), a relationship that is lost when looking at cells from the Pooled library (Fig. 209 
2E, Fig. S4A, right).  210 

We additionally observed the expected density-dependent changes in relative 211 
proportions of each cell type in the Parallel library. Even under highly controlled conditions 212 
where equal numbers of each cell type were combined, increasing transposition batch 213 
size decreased the proportion of Jurkat nuclei from 48% to 44% and increased the 214 
proportion of K562 nuclei from 52% to 56% of the total (Fig. 2F, left). In contrast, cell type 215 
proportions remained constant across samples in the Pooled library (Fig. 2F, right). Jurkat 216 
nuclei yielded on average 36% fewer fragments than the K562 nuclei (Fig. S4B), 217 
consistent with our previous analysis that cell type proportion disparities linked to Tn5 218 
batch size are due to the differential sensitivity of cell types to quality-control filtering (Fig. 219 
1H).  220 
 221 
MULTI-ATAC empowers high sample throughput and reproducibility  222 

Sample multiplexing approaches minimize reagent costs and improve single-cell 223 
genomics data quality through doublet detection and batch effect minimization. Beyond 224 
these benefits, multiplexing techniques provide the flexibility to execute experimental 225 
designs that are sufficiently controlled and statistically powered to derive robust 226 
conclusions. For example, high-throughput chemical screening experiments that require 227 
large numbers of individual samples (i.e., doses, replicates, and controls) are infeasible 228 
using most standard single-cell genomics workflows but become possible with the use of 229 
sample multiplexing approaches8,29. 230 

To explore its utility for high-throughput single-cell genomic chemical screens, we 231 
used MULTI-ATAC to analyze the impact of perturbing the activity of 3 key epigenetic 232 
remodeling complexes (e.g., PRC2, SWI/SNF, and p300/CBP) with matched small 233 
molecule inhibitors and PROTACs in human PBMCs (Fig. 3A; Table S1). Specifically, we 234 
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measured immune perturbation responses to the EZH2 inhibitor EPZ-6438 and PROTAC 235 
MS177, the SMARCA2/4 inhibitor BRM014 and PROTAC AU-15330, and the p300/CBP 236 
inhibitor GNE-781 and PROTAC dCBP-1 all in the context of T-cell activation with anti-237 
CD3/CD28 tetrameric antibodies. Each drug was assayed at 3 doses (10nM, 100nM, and 238 
1µM) in quadruplicate along with DMSO +/- anti-CD3/CD28 antibody controls, for a total 239 
of 96 unique samples. Following 24 hours in culture, nuclei were isolated, labeled with 240 
MULTI-ATAC barcodes, and pooled for transposition prior to paired scATAC-seq and 241 
scRNA-seq profiling using the 10x Genomics Multiome platform (Fig. 3A). Notably, the 242 
same MULTI-ATAC barcoding reagents are additionally compatible with multiomic 243 
profiling30 (Fig S5A-B, Methods). 244 

Following next-generation sequencing, we performed quality-control filtering and 245 
MULTI-ATAC sample demultiplexing (Fig. 3B), resulting in a final dataset of 14,233 cells. 246 
We recovered on average 148 ± 87 nuclei per tissue culture well and 609 ± 135 nuclei 247 
per drug dose, with many drugs exhibiting clear dose-dependent epigenetic 248 
reprogramming (Fig S6A-C). After unsupervised clustering and differential gene 249 
expression analysis, we identified the expected immune cell types including T cells 250 
(naïve, CD4+ and CD8+ memory, and Tregs), B cells, NK cells, and myeloid cells 251 
(monocyte and DC; Fig. S7A). Notably, a subset of treatments elicited such strong 252 
epigenetic and transcriptional responses that precluded linkage back to the subtype of 253 
origin (Fig. 3C, Fig. S6C, S7A).  254 

The technical limitations and costs of single-cell sequencing methods typically bias 255 
study design against the inclusion of multiple biological and technical replicates. As a 256 
consequence, differential expression and accessibility analysis methods often treat 257 
individual cells as replicates or create pseudo-replicates from within individual samples, 258 
tactics which have been shown to increase the rate of false discoveries31,32. In contrast, 259 
using sample multiplexing to include dose regimes and true experimental replicates 260 
allows for more powerful statistical analyses that protect against artifacts (Fig. S8A-D), all 261 
increasing confidence in hypotheses emerging from experiments without increasing costs 262 
or significantly complicating workflows. We used these features of the dataset to identify 263 
high-confidence activation- and drug dose-responsive marker features for T and myeloid 264 
cells by fitting a linear regression model to the average expression or accessibility of each 265 
feature per replicate (Fig. 3D-E, Fig. S9A-F). 266 

Effect sizes between treatments varied greatly; immune activation (particularly of 267 
T cells) almost exclusively upregulated the accessibility and expression of thousands of 268 
genes, whereas the SWI/SNF degrader AU-15330, SWI/SNF inhibitor BRM014, and 269 
p300/CBP degrader dCBP-1 mostly elicited the opposite response (Fig. 3E, Fig. S9A-F, 270 
Fig. S10A). Of note, many of the peaks that were downregulated by these drugs 271 
overlapped with the set of peaks remodeled by immune activation, predominantly 272 
reversing or inhibiting the increase in accessibility (Fig. S10B). Additionally, a large 273 
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fraction of these downregulated peaks was significantly enriched for enhancer regions 274 
relative to their upregulated counterparts, particularly in myeloid cells (Fig. S10C). In 275 
contrast, the smaller subset of upregulated peaks for these drugs showed a significant 276 
enrichment for CTCF binding sites (Fig. S10D). Myeloid cells were particularly sensitive 277 
to this effect, perhaps in part because a greater fraction of the accessible chromatin in 278 
these cells was associated with annotated distal enhancer regions (Fig. S10E-F). 279 
Because CTCF acts to insulate regions of the genome as topologically-associated 280 
domains to promote enhancer-gene interactions, the concurrent loss of enhancer 281 
accessibility and increase in CTCF site accessibility may reflect a mechanism by which 282 
these drugs impact 3D chromatin organization. 283 
 284 
Epigenetic perturbations elicit drug- and cell-type specific effects 285 

We next analyzed the differential impact of drugs targeting the same complex by 286 
direct inhibition or degradation. To visualize the overlapping and varied impacts of these 287 
drugs on immune cells we developed a two-dimensional scoring system that decomposed 288 
the drug effects into two components reflecting influences on immune activation versus 289 
all other effects on chromatin accessibility (Fig. 4A, Methods). We then used this scoring 290 
system to compare PROTAC-inhibitor pairs across a 3-order of magnitude dose regime 291 
(Fig. 4A). The analysis revealed divergent responses in distinct immune cell populations 292 
linked to both drug target and mechanism of action. For example, we found that SWI/SNF 293 
disruption was highly dose-responsive and that equimolar treatments with either the 294 
PROTAC AU-15330 or inhibitor BRM014 elicited similar responses in T and myeloid cells 295 
(Fig 4A, center). By contrast, the PROTAC dCBP-1 produced a much stronger response 296 
in both T and myeloid cells than the inhibitor GNE-781 from which it is derived, supporting 297 
previous findings about the potency of p300/CBP degradation over inhibition33 (Fig. 4A, 298 
right). Finally, we observed a cell-type-specific ‘bell-shaped’ dose-response pattern in T 299 
cells treated with the EZH2 PROTAC, MS177, where the 100nM dose induced increased 300 
activation before dropping back down at 1µM (Fig. 4A, left). This result was not observed 301 
in cells treated with the EZH2 inhibitor EPZ-6438, which exhibited little overall phenotype. 302 
Notably, this trend coincides with a set of “amplified” activation-associated peaks noted 303 
for this drug in T cells, lending credence to this scoring metric (Fig. 3E, Fig. S10B).  304 

To further contextualize these results, we investigated drug-specific effects on 305 
immune cells using pathway analysis. We ranked genes by the strength and direction of 306 
their response to drug treatment (both in terms of accessibility and RNA expression) and 307 
performed gene set enrichment analysis34 on the ranked lists (Fig. 4B, Fig. S11A). As 308 
expected, terms related to immune activation and differentiation were downregulated 309 
specifically in the dCBP-1, AU-15330, and BRM014 samples that also exhibited the 310 
greatest inhibition of immune activation. Notably, many of these same terms were 311 
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upregulated in MS177-treated T cells (Fig. 4B & Fig. S11A, red box), underscoring that 312 
this drug may uniquely amplify the activation state of the cells.  313 

 Of the gene sets upregulated by MS177 in T cells, the most significantly enriched 314 
is TNFα signaling via NF-κB. In aggregate, these genes exhibited a dose-dependent 315 
increase in RNA expression relative to positive controls in both T cells and myeloid cells, 316 
whereas their gene accessibility only increased noticeably in T cells (Fig. 4C). We 317 
hypothesized that this deviation between RNA and ATAC data was due to myeloid cells 318 
having higher baseline expression and gene accessibility of these genes relative to T 319 
cells (Fig. S11B, left). To test this notion, we profiled the accessibility of NF-κB binding 320 
sites genome-wide and observed that while MS177 treatment increased the accessibility 321 
of these sites in T cells, in myeloid cells these sites were highly accessible at baseline 322 
and insensitive to treatment despite the increase in target gene expression (Fig. 4D).  323 

Beyond cell-type-specific chromatin remodeling near NF-κB binding sites, 324 
hierarchical clustering of MS177 and activation marker peaks in T cells revealed that most 325 
MS177-responsive peaks seemed to cluster into three main groups (Fig. S11C, brown, 326 
purple, blue): two that increased in accessibility sharply with MS177 dose and were 327 
unrelated to activation, while the third included activation-associated peaks and reached 328 
maximum accessibility at the 100 nM dose and dropped thereafter, mirroring the 329 
activation score analysis. These peak sets were strongly enriched with binding sites for 330 
NF-κB family members, AP-1 family members, and other transcription factors critical to T 331 
cell function (Fig. 4E)35. To better ascertain which exact transcription factors may drive 332 
the response to MS177, we looked specifically at factors whose RNA expression and 333 
motif accessibility both increased in response to MS177 treatment. This analysis 334 
highlighted a variety of genes involved in T-cell activation, differentiation, and exhaustion 335 
such as NFKB1, NFAT5, STAT5A, HIVEP2, and IKZF1 (Fig. 4F)36–39. 336 

We next sought to characterize the epigenomic and transcriptomics responses to 337 
SWI/SNF and p300/CBP inhibition in human PBMCs. While SWI/SNF- and p300/CBP-338 
targeting drugs largely decreased both chromatin accessibility and gene expression 339 
relative to activated controls (Fig. S9A-F, Fig. S10A), these samples exhibited enrichment 340 
for gene sets associated with type I interferon signaling, the innate immunity pathway 341 
largely responsible for mounting early responses to pathogenic infection (Fig. 4B & Fig. 342 
S11A, blue box)40–42. In particular, the SWI/SNF-targeting drugs AU-15330 and BRM014 343 
demonstrated a clear and dose-dependent increase in both the expression and 344 
accessibility of interferon-stimulated genes (ISGs) and upstream regulators, irrespective 345 
of cell type (Fig. 4C,G-H, Fig. S11B, Fig. S12A). Specifically, we observed upregulation 346 
of terms and genes pertaining to antiviral response and detection of foreign RNA and 347 
DNA (Fig. S12A-B). In line with these results, we observed that these drugs induce 348 
concurrent increases in expression and motif accessibility for transcription factors 349 
involved in interferon signaling, notably IRF7 and STAT2 (Fig 4I). Finally, other 350 
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upregulated terms related to transcription, splicing, and DNA-nucleosome interactions, all 351 
of which exhibited increased accessibility without a corresponding increase in RNA 352 
expression (Fig. 4B, Fig. S11B, Fig. S12B). Among these dysregulated genes were the 353 
replication-dependent histones — for instance, the HIST1 gene cluster on chr6 showed 354 
a dose-dependent increase in accessibility that was most pronounced in the SWI/SNF-355 
targeting drugs (Fig. S13A-B). While the cause of this is unknown, one possible 356 
explanation is that SWI/SNF inhibition in particular prevents expression of genes 357 
necessary for progression through the cell cycle43,44.  358 
 359 
Discussion 360 
 Despite efforts to increase the scalability of scATAC-seq methods using 361 
multiplexing or combinatorial indexing, enzymatic transposition remains a limiting step, 362 
requiring that many separate parallel reactions be run simultaneously. Perhaps more 363 
concerningly, we identified previously unappreciated technical batch variation in publicly 364 
available datasets that use parallel transposition reactions that can be traced back to 365 
variable nuclei inputs across reactions – a finding we confirm experimentally. While this 366 
type of batch effect is not wholly unexpected considering similar findings in bulk ATAC-367 
seq data, it is either rarely addressed or thought to be removed during pre-processing 368 
steps of typical analysis pipelines. Instead, we demonstrate that transposition batch 369 
effects are readily detectable across many publicly available datasets, are not easily 370 
removed using current data processing best practices, and impact downstream biological 371 
interpretation.  372 
 A key finding is that transposition batch size biases compositional analyses for or 373 
against certain cell types. Variation in cell type composition between individuals or in 374 
response to treatments can be biologically impactful and is thus important to understand 375 
and report accurately. For example, a decrease in cancer cells and increase in infiltrating 376 
immune cells in response to a new immunotherapy drug would be an indicator of clinical 377 
response. We find that variation in nuclei per sample can generate precisely this type of 378 
shifts in data. When aggregated and averaged across dozens of transposition batches 379 
such as in some sci-ATAC-seq3 datasets, these effects may become less severe. 380 
However, when the number of transposition reactions per sample is low or a sample is 381 
transposed in a single reaction, common for droplet microfluidics workflows, the risk of 382 
analyses being influenced by nuclei counts and per-nucleus fragment yield is significant. 383 
 To overcome this technical hurdle, we developed MULTI-ATAC, a method for 384 
labeling nuclei with sample-specific DNA barcodes that can be sequenced alongside 385 
scATAC-seq libraries. Using genotypically-distinct donor samples, we demonstrate the 386 
ability of MULTI-ATAC barcoding to reliably and accurately assign sample identities to 387 
nuclei pooled during library preparation. While almost no cells were misassigned to the 388 
wrong sample-of-origin, we did note increased rates of doublet-calling compared to two 389 
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in silico methods. While we cannot rule out if these were false-positive doublet 390 
assignments, we observed that these particular cells shared similarities with bona fide 391 
doublets. Additionally, whereas the two other classification methods, AMULET & Vireo, 392 
rely on the sequenced chromatin fragments as input to classify each cell, MULTI-ATAC 393 
barcode counts represent an orthogonal modality that does not necessarily depend on 394 
per-nucleus ATAC data quality. It is therefore possible that MULTI-ATAC classifications 395 
are closest to ground truth.  396 
 We next utilized MULTI-ATAC barcoding to explicitly demonstrate how pooled 397 
transposition removes batch effects. We processed 9 samples, either in parallel or in a 398 
pooled format, at different nucleus-to-Tn5 ratios spanning the range recommended by 399 
commercially available scATAC-seq kits from 10X Genomics. By quantifying batch effects 400 
at the levels of data quality, clustering, and sample composition, we found that pooled 401 
processing enabled by MULTI-ATAC eliminates batch effects present in the parallel-402 
processed samples. These findings demonstrate that realistic variability in transposition 403 
conditions could easily impact sample comparisons within and between individual 404 
experiments if inputs are not carefully controlled.  405 
 Finally, to demonstrate the scope of experimental designs made possible by 406 
MULTI-ATAC, we performed a 96-plex drug screen of epigenetic inhibitors and degraders 407 
in human immune cells. Single-cell drug assays are typically challenging and expensive 408 
to perform due to the inherently high number of samples, and researchers must often 409 
compromise either the number of replicates or the number of doses assayed. The facility 410 
of MULTI-ATAC barcoding and pooled transposition means the number of samples one 411 
can assay is limited primarily by the nuclei isolation step and the number of unique MULTI-412 
ATAC barcode sequences one has. With MULTI-ATAC we were able to include both a 3 413 
order-of-magnitude dose regime as well as four replicates for each dose of 6 different 414 
drugs. This enabled downstream analyses that are robust to technical and biological 415 
variation between replicates without inflating p-values from treating each cell as an 416 
individual replicate.  417 
 Analysis of the drug responses revealed numerous drug-, target-, and cell type-418 
specific effects. Most apparent was the differential response to the EZH2 degrader 419 
MS177 and inhibitor EPZ-6438. Specifically, we found that the EZH2 inhibitor EPZ-6438 420 
showed little impact on the transcriptomes and epigenomes of the cells in culture at any 421 
dose. This is likely because the primary mechanism of clearance of H3K27me3, the 422 
repressive histone modification catalyzed by EZH2/PRC2, has been shown to be 423 
replicative dilution45. We would therefore expect that a longer culture period and multiple 424 
population doublings would be required for EPZ-6438 to start exhibiting effects.  425 

By contrast, the EZH2 degrader MS177 very potently altered the T and myeloid 426 
cells, inducing increased expression and/or accessibility of NF-κB associated genes and 427 
motifs. NF-κB signaling is a known contributor to signaling downstream of TCR activation, 428 
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which partially explains the augmented T cell activation exhibited by the 100 nM dose of 429 
MS177. The mechanistic relationship between MS177 treatment and NF-κB signaling is 430 
not yet understood; however, several avenues for further investigation are evident from 431 
the data. For instance, a pair of studies have demonstrated direct physical interactions 432 
between EZH2 and NF-κB factors that contribute to transcriptional regulation 433 
independently of methyltransferase activity46,47. NF-κB pathways invoke degradation of 434 
downstream mediators as part of the signaling cascade; therefore, one hypothesis is that 435 
MS177 amplifies NF-κB signaling activity by concomitantly degrading a negative NF-κB 436 
regulator associated with EZH2. Another notable finding regarding MS177 treatment is 437 
the upregulation of the IKZF1/Ikaros and IKZF3/Aiolos transcription factors, which are 438 
important regulators of lymphocyte function and development. Intriguingly, these proteins 439 
have been identified as neo-substrates of the CRBN ubiquitin ligase that is recruited by 440 
MS17733,48–51, and Ikaros has been shown to both associate with PRC2 and mediate T 441 
cell exhaustion through repression of AP-1, NFAT, and NF-κB target genes39,52. Taken 442 
together, it is possible that MS177 exerts these effects through off-target degradation of 443 
IKZF1/IKZF3, leading to upregulation of downstream targets related to T cell activation. 444 

The drugs targeting the SWI/SNF nucleosome remodeling complex and p300/CBP 445 
histone acetyltransferases primarily seemed to inhibit lymphocyte activation and led to 446 
variable decreases in both chromatin accessibility and gene expression. Despite this, two 447 
groups of gene sets exhibited pronounced upregulation during pathway analysis. Genes 448 
related to cell cycle and RNA processing became more accessible but were not 449 
upregulated transcriptionally; simultaneously, a pronounced type I interferon response 450 
was induced. Multiple studies have demonstrated that epigenetic dysregulation can 451 
stimulate a type I interferon response through the de-repression of human endogenous 452 
retrovirus (ERV) and other retrotransposons, and that this is likely to contribute to age-453 
related inflammation and disease53–56,56–61. More recently, mutations, deficiencies, and 454 
perturbations of several different SWI/SNF-family proteins have been shown to induce 455 
cell-intrinsic type I interferon responses in cancer cells that can improve the response of 456 
tumors to immune checkpoint blockade56,58,62–64. In these studies, interferon signaling is 457 
traced back to numerous mechanisms including ERV expression, R-loop formation, and 458 
excess cytoplasmic ssDNA production, with both DNA- and RNA-sensing pathways 459 
implicated.  Depletion of H1 linker histones has also been shown to induce interferon 460 
signaling, providing a possible link to issues with cell cycle progression65–67. The breadth 461 
of evidence supporting a more general mechanism linking innate immune activation to 462 
perturbed chromatin organization indicates this to be an exciting area for future 463 
investigation.  464 

While MULTI-ATAC barcoding stands to greatly improve scATAC-seq workflows 465 
by allowing pooled transposition, we note that other workflow bottlenecks still impede 466 
large scale experiments. Barcoding itself is fast and can be done at various scales without 467 
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significant optimization. Nuclei isolation, however, is a step that all investigators must 468 
contend with and optimize for their sample type. Scaling up to many samples carries 469 
inherent risk of introducing batch effect if lysis times are not properly controlled. However, 470 
we note that the ability to include many replicates enables hedging against such 471 
challenges. 472 

Finally, Tn5 transposition has been harnessed in a growing variety of sequencing 473 
assays, including mitochondrial DNA sequencing, proteomics, profiling of DNA-binding 474 
proteins, and 3D chromatin mapping68–73. Because most depend on capturing transposed 475 
fragments on the 10x Genomics platform, we hypothesize that, perhaps with only minor 476 
protocol adjustments, MULTI-ATAC barcoding could be successfully extended to many 477 
of these methods as well to great effect. 478 
 479 
Methods 480 
 481 
Design of MULTI-ATAC protocol and oligonucleotides 482 

LMO-based barcoding of nuclei was adapted from MULTI-seq1 using stand LMO 483 
Anchor and Co-Anchor components available from MilliporeSigma. To mimic gDNA 484 
fragments and enable single-cell barcoding by 10x Genomics scATAC-seq kits or similar 485 
technologies, the 5’ end of the ssDNA barcode begins with the full Nextera R1 sequence. 486 
This is followed by a unique molecular identifier (UMI) of 8 random bases (N’s), a 487 
predetermined 8-base sample-specific barcode (X’s), and a TruSeq R2 sequence to 488 
enable barcodes to be separately amplified from ATAC fragments. At the 3’ end is the 489 
TruSeq Small RNA R2 sequence which hybridizes to the LMO Anchor. The inclusion of 490 
the internal TruSeq R2 site for library amplification was intended to protect against 491 
degradation of the primer site by possible 3’-5’ exonuclease activity during in-GEM linear 492 
PCR, but this was not explicitly tested. 493 

The 5’-3’ orientation of the ssDNA barcode prevents direct hybridization to the 494 
Nextera adapter oligos in the Tn5 transposome, and is not immediately compatible with 495 
the orientation of the capture oligos employed by 10x Genomics in v1 and v2 scATAC-496 
seq kits. To overcome this, a Barcode Extension primer is pre-annealed to the MULTI-497 
ATAC barcode before labeling. This primer is extended during the initial gap-fill reaction 498 
in droplets which produces the complement strand needed for in-GEM capture and linear 499 
amplification of barcode oligos alongside ATAC fragments. 500 

Because MULTI-ATAC barcodes are similar in size to the smallest ATAC 501 
fragments, they cannot be size-separated during scATAC-seq library preparation without 502 
loss of ATAC fragments. Thus, the barcode library is generated from a 1µL aliquot that is 503 
taken from each scATAC-seq library prior to the Sample Index PCR step.  This aliquot is 504 
amplified in a separate sample indexing PCR reaction using the same SI-PCR-B Fwd 505 
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primer (ordered separately to control concentration) as the scATAC-seq libraries and a 506 
custom TruSeq Rev primer with a unique library-specific i7 index.   507 
 508 
MULTI-ATAC barcode: 5’-509 
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNNXXXXXXXXAGATCG510 
GAAGAGCACACGTCTGAACTCCAGTCACCCTTGGCACCCGAGAATTCCA-3’ 511 
 512 
Barcode Extension primer: 5’-GTGACTGGAGTTCAGACGTGTGC-3’ 513 
 514 
TruSeq-# primer: 5’-515 
CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTCAGACGTGTGCTC516 
TTCCGATCT-3’ 517 
 518 
SI-PCR-B primer: 5’-AATGATACGGCGACCACCGAGA-3’ 519 
 520 
Cell culture 521 
 Cryopreserved PBMCs were thawed in a 37˚C water bath before gently 522 
transferring to a 50mL conical vial and adding 10x volume (10-20mL) of RPMI 1640 523 
culture media. Cells were pelleted at 400rcf, 4˚C, for 4 minutes, before resuspending in 524 
RPMI 1640 media supplemented with 10% fetal bovine serum and 1% penicillin-525 
streptomycin and seeding in an ultra-low attachment 10cm culture dish. PBMCs were 526 
allowed to incubate at rest for 24 hours prior to subsequent experimental steps. K562 and 527 
Jurkat cells were thawed in a 37˚C water bath, plated at 1M/mL, and cultured for several 528 
passages in RPMI 1640 media, supplemented with GlutaMAX, 10% fetal bovine serum, 529 
and 1% penicillin-streptomycin. All cells were incubated at 37˚C, 5% CO2. 530 
 531 
Nuclei isolation 532 
 Unless noted otherwise, cell suspensions were first washed once with chilled PBS. 533 
500k cells per sample were aliquoted into 1.5mL Eppendorf tubes and pelleted at 300rcf, 534 
4˚C, for 4 minutes. Cells were resuspended in 100 µL of chilled Lysis Buffer (10 mM Tris-535 
HCl pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 0.1% Nonidet P40 Substitute, 536 
0.01% Digitonin, 2% BSA in nuclease-free water), mixed, and incubated 5 minutes on ice. 537 
Then, 1 mL Wash Buffer (10 mM Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-538 
20, 2% BSA in nuclease-free water) was added and mixed. Nuclei were pelleted at 500rcf, 539 
4˚C, for 4 minutes and then resuspended in chilled PBS.  540 
 541 
MULTI-ATAC barcoding 542 
 Unless noted otherwise, MULTI-ATAC barcode complexes were assembled by 543 
combining LMO Anchor, barcodes, and BE primer in a 2:1:2 molar ratio in nuclease-free 544 
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water. We found that including excess LMO Anchor and BE Primer improved barcode 545 
capture (data not shown). Isolated nuclei were adjusted to a concentration of 750-1000 546 
nuclei per µL. Assembled barcode complex was added to each nuclei suspension at 547 
10nM, 25nM, or 50nM labeling concentration, followed by mixing by vortex pulse or 548 
pipette and incubation on ice. After 5 minutes, LMO Co-Anchor was added at twice the 549 
concentration of the full barcode complex (to account for excess LMO Anchor), mixed, 550 
and incubated another 5 minutes on ice. Barcoding was quenched by addition of 1.2mL 551 
2% BSA in PBS. Barcoded nuclei were pelleted at 500rcf, 4˚C, for 4 minutes, then 552 
resuspended in 100-200µL 2% BSA in PBS for counting and pooling with other samples. 553 
 554 
Multi-donor pilot experiment 555 
 Three distinct vials of PBMCs from different donors and vendors were thawed and 556 
cultured as described previously. After 24 hours, each batch of PBMCs was divided into 557 
multiple 500k cell aliquots for nuclei isolation as described previously. Isolated nuclei from 558 
each donor were concentrated to 7.5k nuclei/µL, from which 4 µL were added to PCR 559 
strip tubes containing 26 µL of transposition mix (15 µL 2X Tagment DNA Buffer, 5.9 µL 560 
PBS, 0.3 µL 10% Tween-20, 0.3 µL 1% Digitonin, 1.5 µL Tagment DNA Enzyme 1, 3 µL 561 
nuclease free water). The tubes were incubated at 37˚C in a thermocycler for 1 hour. 562 
Transposed nuclei were barcoded as described before except that barcode complexes 563 
were assembled at 1:1:1 molar ratio. Both barcode complex and LMO Co-Anchor were 564 
added at a final concentration of 25 nM. Barcoded, transposed nuclei from each donor 565 
were then pooled and resuspended to a density of 1k/µL in ATAC Buffer B before 566 
proceeding with scATAC-seq library generation with the 10x Genomics Single Cell ATAC 567 
v1.1 kit. 568 
 569 
Parallel vs pooled transposition batch effect experiment 570 

Nuclei were isolated from K562 and Jurkat cells, counted, and pooled at equal 571 
numbers. 9 aliquots were drawn from this pool for MULTI-ATAC barcoding as described 572 
previously. These 9 aliquots were diluted to 200 nuclei/µL, 1k nuclei/µL, or 3k nuclei/µL, 573 
and then 9 parallel transpositions were set up, combining 10 µL of each nuclei mixture 574 
with 20 µL transposition mix (15 µL 2X Tagment DNA Buffer, 0.3 µL 10% Tween-20, 0.3 575 
µL 1% Digitonin, 1.5 µL Tagment DNA Enzyme 1, 2.9 µL nuclease free water). 576 
Simultaneously, the same ratios of each of the 9 barcoded aliquots were combined and 577 
45 µL of this mixture was added to 90 µL of transposition mix. The 9 parallel transposition 578 
tubes and 1 pooled transposition tube were all incubated at 37˚C in a thermocycler for 1 579 
hour, after which the parallel tubes were pooled. Both barcoded, transposed nuclei 580 
suspensions were then counted and resuspended to a density of 1k nuclei/µL in a 1:2 581 
mixture of 1X Nuclei Buffer and ATAC Buffer B before proceeding with scATAC-seq 582 
library generation with the 10x Genomics Single Cell ATAC v2 kit. 583 
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 584 
Multiome pilot experiment 585 

Mouse hepatocytes were isolated by a two-step perfusion technique. Briefly, 586 
mouse was anesthetized by isoflurane (Piramal Critical Care). Mouse liver and heart were 587 
exposed by opening the abdomen and cutting the diaphragm away. The portal vein was 588 
cut and immediately the inferior vena cava was cannulated via the right atrium with a 22-589 
gauge catheter (Exel International, 26746). Liver was perfused with liver perfusion 590 
medium (Gibco, 17701038) for 3’ and then with liver digest medium (Gibco, 17703034) 591 
for 7’ using a peristaltic pump (Gilson, Minipuls 3). Pump was set to 4.4 mL/min and 592 
solutions were kept at 37°C. After perfusion the liver was dissected out, placed in a petri 593 
dish with hepatocyte plating medium (DME H21 [high glucose, UCSF Cell Culture Facility, 594 
CCFAA005-066R02] supplemented with 1x PenStrep solution [UCSF Cell Culture Facility, 595 
CCFGK004-066M02], 1x Insulin-Transferrin-Selenium solution [GIBCO, 41400-045] and 596 
5% Fetal Bovine Serum [UCSF Cell Culture Facility, CCFAP002-061J02]) and cut into 597 
small pieces. Liver fragments were passed through a sterile piece of gauze. Hepatocytes 598 
were separated from non-parenchymal cells by centrifugation through 50% isotonic 599 
Percoll (Cytiva, 17-0891-01) solution in HAMS/DMEM (1 packet Hams F12 [GIBCO, 600 
21700-075], 1 packet DMEM [GIBCO, 12800-017], 4.875 g sodium bicarbonate, 20 mL 601 
of a 1M HEPES pH 7.4, 20 mL of a 100X Pen/Strep solution, 2 L H2O) at 169 g for 15’. 602 
Isolated hepatocytes were frozen in BAMBANKER (GC LYMPHOTEC, CS-02-001) and 603 
stored at -80°C. 604 

On the day of the experiment, frozen hepatocytes were thawed, washed with PBS 605 
(Gibco, 10010-023) and fixed in 1% PFA (Electron Microscopy Sciences, 15714-S) for 10 606 
min at RT. Fixation was quenched by addition of glycine (125 mM final concentration) and 607 
washed with cold PBS supplemented with 1% BSA (Sigma, A1953). Hepatocytes were 608 
next permeabilized by resuspending 0.5 million fixed cells in 100 μL of lysis solution (0.5% 609 
n-Dodecyl β-D-maltoside, 45 mM NaCl, 10 mM Tris-HCl pH 8.0, 5 mM MgCl2, 10% 610 
dimethylformamide, 1U/µL Protector RNase inhibitor [MilliporeSigma, 3335399001]) and 611 
incubated on ice for 5 minutes. Permeabilization was stopped by adding 1 mL of wash 612 
buffer (45 mM NaCl, 10 mM Tris-HCl pH 8.0, 5 mM MgCl2, 1% BSA, 1U/µL Protector 613 
RNase inhibitor [MilliporeSigma, 3335399001]). Next, fixed, permeabilized cells were 614 
barcoded with both MULTI-seq and MULTI-ATAC reagents. LMO Anchor was assembled 615 
into complex with MULTI-seq barcodes (2:1 ratio) or with MULTI-ATAC barcodes and BE 616 
primer (2:1:2 ratio). Cells were divided into 5 aliquots, two were labeled with MULTI-ATAC 617 
barcodes as described, two were labeled with MULTI-seq barcodes following the same 618 
protocol, and the fifth aliquot was left unlabeled as a control. All 5 aliquots were pooled, 619 
resuspended in 1X Nuclei Buffer and adjusted to 5k cells/µL for processing with the 10x 620 
Genomics Single Cell Multiome ATAC + Gene Expression v1 kit. 621 
 622 
Multiome epigenomic drug screen 623 
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 PBMCs from a single donor were thawed and cultured as described. After resting 624 
for 24 hours, non-adherent cells and media were transferred to a 50 mL conical vial. Pre-625 
warmed TrypLE was added to culture dish and incubated 2 minutes at 37˚C to lift 626 
remaining cells before also transferring to conical vial. Cells were pelleted at 400rcf, RT, 627 
for 4 minutes, and resuspended in PBS to count and assess viability. After, cells were 628 
resuspended in media (RPMI 1640, 10% FBS, 1% Pen/Strep) to 1k cells/µL. 192.5 µL of 629 
cell suspension were deposited into each well of the outermost 6 columns of two 96-well 630 
ultra-low attachment round-bottom plates. To each well was then added 2.5 µL of 80X 631 
drug-media solution or 2.5 µL of DMSO-media solution, and 5 µL of ImmunoCult anti-632 
CD3/CD28 antibodies or equivalent volume of PBS. All wells were gently pipette-mixed 633 
5X with a multichannel p200 set to 150 µL. Plates were returned to the incubator and 634 
cultured 24 hours.  635 
 The following day, cells were gently pipette mixed to resuspend and then pelleted 636 
at 400rcf, 4˚C, for 5 minutes. Media was carefully aspirated and pellets were resuspended 637 
in 100 µL 2% BSA in PBS, before transferring cells to a set of new 96-well ultra-low 638 
attachment round-bottom plates on ice. To recover remaining adhered cells, 100 µL of 639 
pre-warmed TrypLE was added, followed by 2 minute incubation at 37˚C, and transfer of 640 
the full 100 µL to the new plates on ice. 100 µL from each well was aliquoted into a new 641 
set of standard 96-well round-bottom plates and pelted at 400rcf, 4˚C, for 5 minutes. 95 642 
µL were carefully removed from each well. Then pellets were resuspended in 45 µL chilled 643 
lysis buffer (10 mM Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 0.1% 644 
Nonidet P40 Substitute, 0.01% Digitonin, 1 mM DTT, 1 U/µL Protector RNase inhibitor 645 
(MilliporeSigma, 3335399001), 1% BSA in nuclease-free water) and pipette-mixed 3X. 646 
Lysis was allowed to proceed 2.5 minutes, with the timer being initiated after addition of 647 
buffer to the first column. At the end of incubation, 150 µL wash buffer (10 mM Tris-HCl 648 
pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 1 mM DTT, 1 U/µL Protector RNase 649 
inhibitor (MilliporeSigma, 3335399001), 1% BSA in nuclease-free water) was added 650 
without mixing. Plates were pelleted at 600rcf, 4˚C, for 5 minutes, after which 195 µL of 651 
supernatant was carefully removed and discarded. 652 
  Pellets were resuspended in 95 µL chilled PBS, after which 50 µL of one of each 653 
96 unique pre-assembled 75 nM MULTI-ATAC barcode complexes (2:1:2 molar ratio) 654 
was added to each well and gently pipette-mixed, for a final labeling concentration of 25 655 
nM. Plates were left on ice for 5 minutes, before addition of 50 µL of 200nM LMO Co-656 
Anchor, gentle pipette-mixing, and another 5 minutes on ice. Plates were pelleted at 657 
600rcf, 4˚C, for 5 minutes, before aspirating 195 µL of supernatant and resuspending 658 
each well in 195 µL chilled 2% BSA in PBS to quench labeling.  659 
 100 µL from each well were pooled by row, pelleted, and resuspended in 50 µL 1X 660 
Nuclei Buffer for counting. The row pools were merged together, adjusted to 3-5k 661 
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nuclei/µL, and processed with the 10x Genomics Single Cell Multiome ATAC + Gene 662 
Expression v1 kit. 663 
 During analysis, we noted a significant separation in the UMAP embedding 664 
between cells originating from the left and right side of the 96-well plates they were 665 
cultured and lysed in. Deeper inspection of the data revealed that LSI component 4 666 
seemed to capture the bulk of this variance. Additionally, marker analysis between 667 
matched “left-side” and “right-side” cells predominantly showed differences in promoter 668 
accessibility (data not shown), which correlates with slight but statistically significant 669 
differences in QC metrics. Therefore, this variance was deemed to likely be a technical 670 
artifact from either culture or lysis, and this component was excluded from downstream 671 
embedding. Importantly, this decision primarily affected visualization and did not influence 672 
later marker analyses. 673 
 674 
scATAC-seq library preparation 675 
 Unless otherwise noted, pooled, barcoded nuclei were transposed and 676 
subsequently processed into scATAC-seq libraries according to manufacturer’s 677 
recommendations (10x Genomics), with only minor modifications. Briefly, at step 3.2o, a 678 
1 µL aliquot is taken from each individual library to be used in producing accompanying 679 
MULTI-ATAC barcode libraries. This left only 39 µL to be carried into the subsequent 680 
Sample Index PCR reactions (step 4.1), where we also exchanged the SI-PCR Primer B 681 
with an equivalent volume of a 100 µM SI-PCR-B primer with the same sequence, ordered 682 
separately (IDT).  683 
 684 
Multiome library preparation 685 
 Barcoded nuclei or fixed permeabilized cells were transposed and subsequently 686 
processed into paired single-cell GEX and ATAC libraries according to manufacturer’s 687 
recommendations (10x Genomics), with only minor modification. Briefly, after Pre-688 
Amplification PCR (step 4.2) completed, a 1 µL aliquot was taken from each PCR reaction 689 
to be used in producing accompanying MULTI-ATAC barcode libraries.  690 
 691 
MULTI-ATAC barcode library preparation 692 
 1 µL aliquots from each scATAC-seq or Multiome library preparation were taken 693 
at the appropriate step (see above) and incorporated into a PCR reaction with 2.5 µL 694 
10µM SI-PCR-B primer, 2.5 µL TruSeq-# indexing primer, 26.25 µL Kapa HiFi HotStart 695 
ReadyMix, and 17.75 µL nuclease-free water. The reaction was run with the following 696 
protocol: 1. 95˚C/5:00, 2. 98˚C/0:20, 3. 67˚C/0:30, 4. 72˚C/0:20, 5. repeat steps 2-4 x13, 697 
6. 72˚C/1:00, 7. 4˚C/hold. Afterwards, 100 µL SPRIselect were added, pipette-mixed 10x, 698 
and incubated 5’ at RT. Tubes were placed on a magnet rack and beads washed with two 699 
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successive additions of 200 µL fresh 80% EtOH, with 30” pauses between. EtOH was 700 
aspirated and libraries were eluted from beads for 2’ at RT in 20 µL Buffer EB. 701 
 702 
MULTI-seq barcode library preparation 703 
 MULTI-seq barcodes were prepared for the Multiome Pilot Experiment similarly to 704 
as described previously1, with minor modifications. 10 µL of Pre-Amplification SPRI 705 
Cleanup product (step 4.3p of Multiome protocol) were transferred into a fresh PCR strip 706 
tube, to which 40 µL Buffer EB were added. 30 µL SPRIselect reagent (0.6X) were added, 707 
pipette mixed, and incubated 5’ at RT. Strip tube was placed on a magnet rack, and the 708 
supernatant containing MULTI-seq barcodes was transferred to a fresh 1.5 mL tube. 130 709 
µL SPRIselect (3.2X) and 90 µL fresh isopropanol (1.8X) were added to this supernatant, 710 
mixed, and incubated 5’ at RT. After placing on magnet rack and discarding supernatant, 711 
MULTI-seq library preparation was carried on from step 15 as normal.   712 
 713 
Sequencing & library pre-processing 714 
 All scATAC-seq and Multiome libraries were sequenced on NovaSeq 6000 SP, 715 
NovaSeq 6000 S4, or NovaSeq X 10B flow cell lanes according to manufacturer’s 716 
recommendations (10x Genomics). Briefly, for scATAC-seq (and Multiome ATAC) 717 
libraries, a minimum of 25,000 reads/nucleus was targeted. Multiome GEX libraries were 718 
targeted to a minimum 20,000 reads/nucleus. MULTI-ATAC and MULTI-seq barcode 719 
libraries were each sequenced to a target depth of at least 5,000 reads/nucleus. 720 
 FASTQs from the Multiome pilot experiment were aligned with Cell Ranger ARC 721 
(v2.0.1) to a mm10 reference assembly modified as described previously74 to properly 722 
align mitochondrial reads. FASTQs from all other experiments were aligned with Cell 723 
Ranger ATAC (v2.0.0, v2.1.0) or Cell Ranger ARC (v2.0.1) to the refdata-cellranger-arc-724 
GRCh38-2020-A-2.0.0 reference assembly provided by 10x Genomics.  725 
 FASTQs from MULTI-ATAC and MULTI-seq barcode libraries were processed, 726 
aligned, and quality-controlled using deMULTIplex226 before downstream sample-727 
demultiplexing using the same software.  728 
 729 
scATAC-seq analysis pipeline 730 
 All scATAC-seq experiments were processed through a similar analytical pipeline 731 
before performing ad hoc analyses pertaining to each experimental design. In brief, each 732 
fragment file output by Cell Ranger ATAC or Cell Ranger ARC was processed with 733 
ArchR21 to produce an Arrow file containing a TileMatrix and GeneScoreMatrix. Single or 734 
multiple Arrow files from the same experiment were accessed and manipulated through 735 
an ArchRProject, allowing quality-control filtering based on per-cell metrics like TSS 736 
enrichment and fragment counts. Iterative Latent Semantic Indexing (iLSI) was used to 737 
produce a dimensionality reduction from the TileMatrix, and then typically dimensions 2-738 
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30 were used to generate a UMAP embedding for visualization purposes. The cell 739 
barcodes that passed QC were then fed into deMULTIplex2 and classified to their sample 740 
of origin utilizing the barcode counts tabulated from MULTI-ATAC reads. deMULTIplex2 741 
classifications were then integrated into the ArchR project, and the project was subset to 742 
keep only the high-quality singlets identified from the MULTI-ATAC data before repeating 743 
iLSI and UMAP embedding. Downstream analyses typically included peak-calling via 744 
MACS2, motif deviation scoring via ChromVAR, and cell type annotation via marker 745 
analysis. 746 
 747 
Re-analysis of published datasets 748 
 For each of the 12 published datasets re-analyzed in this study, available pre-749 
processed scATAC-seq data and metadata were downloaded from online repositories or 750 
as supplemental attachments in the form of fragment files, Seurat objects, or various per-751 
cell or per-sample spreadsheets. When transposition batch information was not directly 752 
annotated, it was deduced based on the methods, computational tools, metadata, and 753 
experimental design information provided by authors in the accompanying publication and 754 
published analysis code. 755 
 When fragment files were readily available, datasets were processed with the 756 
standard ArchR pipeline (iLSI, clustering, and UMAP embedding), and were filtered to 757 
either only include high quality singlets, or only include cell barcodes identified by authors 758 
in supplementary files. 759 
 760 
PBMC donor genotypic demultiplexing 761 
 A list of cell barcodes and a BAM file containing position-sorted read alignments 762 
were fed into cellsnp-lite to genotype each cell based on a master list of 36.6M SNPs 763 
from the 1000 Genomes project (minMAF = 0.1, minCOUNT = 20). The resulting VCF file 764 
contained the variants detected in each cell and was processed with Vireo to 765 
probabilistically determine the donor identity of each cell, or assign it as a doublet.  766 
 767 
Drug/activation scoring 768 
 Because drugs in the Multiome drug screen were administered to PBMCs in the 769 
presence of immunostimulatory antibodies, we sought to isolate and quantitatively 770 
compare the effect of each drug dose on relative activation and all other drug-induced 771 
changes separately. To calculate the relative activation score, the accessibility of 772 
activation-associated marker genes for each cell type is aggregated by cell type and drug 773 
dose replicate. The mean aggregate value for resting control/DMSO(-) cells is then 774 
subtracted and then scores are normalized to the stimulated control/DMSO(+) cells. Thus, 775 
all drugs are scored by the same cell type-specific marker set and relative activation state 776 
can be compared. For the orthogonal drug score, we wanted to be able to compare paired 777 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2025. ; https://doi.org/10.1101/2025.02.14.638353doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.14.638353
http://creativecommons.org/licenses/by-nc/4.0/


inhibitors and PROTACs targeting the same enzyme. To do so, we selected the union 778 
marker set of each drug pair per cell type and excluded any markers that were involved 779 
in calculating the relative activation score. We then separately calculated the log2 fold-780 
change in accessibility of the up- and down-regulated markers in this set relative to 781 
stimulated control/DMSO(+) cells. The absolute values of these two “up” and “down” drug 782 
scores were combined into a weighted average according to the relative proportion of up- 783 
or down-regulated markers in the set. The values plotted in Fig. 4A represent the average 784 
drug and activation scores for all 4 replicates per drug dose. 785 
 786 
Statistical analysis and data visualization 787 

Statistical analysis and data visualization were performed in R (v.4.3.3). Single-788 
cell chromatin accessibility and gene expression analysis across all experiments utilized 789 
the R packages ArchR21, Seurat75, and Signac22. Statistical tests and p-values are 790 
indicated in the text, figures, and figure legends. 791 
 792 
Data and code availability 793 

All analysis code and R objects necessary to reproduce key figures will be made 794 
available at github.com/Gartner-Lab/MULTI-ATAC. Processed sequencing data files will 795 
be uploaded to the Gene Expression Omnibus (GEO), and raw sequencing reads will be 796 
made available through the Short Read Archive (SRA). 797 
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Dataset Method Species Tn5 
Single-

Cell 
Platform 

q99/q1 
Count 
Ratio 

Tn5 
Rxns Samples Citation 

SNU_A SNuBar Human Std. 10x 3 95 3 Wang K, et al. 
SNU_B SNuBar Human Std. 10x 13 32 32 Wang K, et al. 
SPEAR Spear-ATAC Human Std. 10x 2 18 21 Pierce SE, et al. 

10X scATAC-seq Human Std. 10x 2 21 23 Ziffra RS, et al. 
SCI3_A sci-ATAC-seq3 Fruit Fly Std. CI 12 16* 16 Calderon D, et al. 
SCI3_B sci-ATAC-seq3 Human Std. CI 47 60* 60 Domcke S, et al. 
EASY EasySci-ATAC Mouse Idx. CI 5 384 20 Sziraki A, et al. 
SCI sci-ATAC-seq Human Idx. CI 34 8288 87 Zhang K, et al. 

DSCI dsci-ATAC-seq Human Idx. BR 66 280 4 Lareau CA, et al. 
SCIFI scifi-ATAC Maize Idx. 10x 26 96 7 Zhang X, et al. 
TXCI txci-ATAC-seq Mixed Idx. 10x 5 144 2 Zhang H, et al. 
PLEX sciPlex-ATAC-seq2 Human Idx. CI 44 87 96** Booth GT, et al.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 – Published datasets reanalyzed for transposition batch e8ects.  
Single-cell ATAC-seq datasets from 11 publications spanning a variety of di<erent techniques and biological systems. The number of 
nuclei per transposition reaction in each dataset was tabulated, and the range of transposition batch sizes was represented by the 
ratio of the maximum and minimum nuclei counts (excluding outliers above and below the 99th and 1st quantile of the count 
distribution, respectively). The number of transposition reactions represents the total recovered in the final dataset, and at times is 
less than the original experimental design intended due to drop-outs. 
* sci-ATAC-seq3 datasets (SCI3_A and SCI3_B) actually reflect aggregations of 11 and 4 transposition reactions per sample, 
respectively, due to sci-ATAC-seq3 methodology 
** PLEX reflects 96 samples pooled and split across 96 individual reactions 
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Figure 1 – Transposition batch size e8ects in published datasets.  
A. Variable nuclei counts in separately-transposed samples bias the number of cuts made per nucleus, determining per-

nucleus fragment yield 
B. Inspection of 12 published datasets shows considerable variation in transposition batch size within individual experiments 

and datasets 
C. Methods using standard Tn5 (non-indexed adapter oligos) exhibit a negative association between transposition batch size 

and median per-nucleus fragment count, while methods using indexed Tn5 exhibit an unexpected positive association. 
D. Example sample from the TXCI dataset. Points represent the nuclei count and median fragment count per transposition 

reaction, and are colored by transposition batch size tercile. 
E. Relative mixing of transposition batch size terciles in the 30-dimensional LSI reduction across 4 datasets. Points represent 

separate biological samples and/or technical replicates per dataset. Average Local Inverse Simpon’s Index (LISI) scores per 
sample were normalized to “idealized” mixing scores derived by permuting tercile labels.  

F. Two demonstrative cell types from the sample in D), showing statistically significant changes in cell type frequency 
according to transposition batch tercile. P-values represent results from two-sided Chi-squared proportion tests. 

G. Log2 fold-changes in cell type proportions between the bottom and top transposition batch size terciles plotted for all 
prominent cell types (> 5% of sample) across all samples of 5 datasets. For comparison, Log2 fold-changes were computed 
after permuting tercile labels (black). 

H. The same log2 fold-changes reported in G), plotted as a function of increasing  mean fragment yield for each individual cell 
type. In the datasets represented here, cell types yielding fewer fragments are more likely to be underrepresented 
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Figure 2 – MULTI-ATAC barcoding enables pooled transposition to eliminate transposition batch size e8ects 
A. MULTI-ATAC classifications (using deMULTIplex2) of pooled PBMC nuclei from 3 distinct donors closely matches the 

classifications determined by genotypic deconvolution using Vireo. 
B. Comparison of classification results from A) demonstrates high accuracy in singlet calling relative to genotypic 

deconvolution, with MULTI-ATAC/deMULTIplex2 identifying a higher rate of doublets (see Fig, S2A-C). 
C. Diagram of how Parallel and Pooled transposition libraries were generated from 9 uniquely-barcoded aliquots of a pool of 

K562 and Jurkat nuclei. 
D. Samples deconvolved from the Parallel library show decreasing per-nucleus fragment yield with increasing transposition 

batch size, whereas samples in the Pooled library all yield the same. Whisker length of boxplots shortened to 0.5 * IQR for 
visualization. 

E. Spearman correlation between per-sample means across LSI dimensions 2:30 shows strong clustering of K562 cells by 
transposition batch size in the Parallel library that is lost in the Pooled library. 

F. Similar to analysis in Fig. 1, relative proportions of K562 and Jurkat nuclei recovered per sample varied as a function of 
transposition batch size in the Parallel library, but were consistent across samples in the Pooled library.  
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Figure 3 – MULTI-ATAC facilitates high-throughput experimentation with reproducibility  
A. Diagram of how each of two replicate 96-well plates were seeded with PBMCs and cultured with or without drugs and anti-

CD3/C28 antibodies. 
B. UMAP embedding of MULTI-ATAC barcode counts from 1 of the 3 libraries generated, colored by which of the 96 samples 

each cell was classified to.  
C. UMAP embedding of the ATAC data generated in the Multiome experiment, colored by the drug each cell was treated with.  
D. Representative peak (left) and gene (right) showing how average accessibility (or expression) per cell type and replicate were 

used to calculate drug- or activation-responsive markers by fitting of a linear regression model.  
E. Heatmap of statistically significant marker peaks (p < 0.01, log2FC > 1) identified for T cells across all treatment conditions.  
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Supplemental Figures 
 

Figure 4 – Drug- and cell type-specific e8ects of epigenetic perturbation  
A. Two-component drug response analysis; the X-axis scores each drug dose by its relative activation compared to controls 

using activation-associated marker gene scores, while the Y-axis scores each drug dose on the accessibility of drug-
responsive marker genes not associated with activation. Solid lines show the dose-response trajectory of inhibitors, 
whereas dashed lines show the trajectories of PROTACs. Inset values show the number of drug-responsive marker genes 
used to generate the Y-axis scores. See Methods for more details. 

B. Gene set enrichment analysis (GSEA) for each drug and cell type of markers gene accessibility scores ordered by statistical 
significance and negative vs positive slope. Statistically significant terms (p.adj. < 0.01) are colored by normalized 
enrichment score (NES). Red box – gene sets involved in immune cell activation; blue box – gene sets involved in type I 
interferon response. 

C. Gene set expression across increasing drug dose; log2 fold-changes in expression or accessibility of each gene at each drug 
dose were calculated relative to the activated controls, and then plotted as a function of dose. Trendlines plotted per drug 
via LOESS smoothing with span = 1.5.  

D. NF-κB motif footprinting in control and MS177-treated T and myeloid cells. 
E. Significantly enriched TF motifs (p.adj. < 0.01) across 3 clusters of MS177-responsive peaks in T cells (see Fig. S11C). 

Heatmap colored by -log10(p.adj.). 
F. Correlation of TF motif accessibility and TF RNA expression. Axes represent increasing statistical significance of 

negative/positive relationship with MS177 or EPZ-6438 dose. Solid, annotated points are statistically significant (p < 0.01) in 
both modalities.  

G. UMAP embeddings showing imputed RNA expression values for two representative Type I Interferon response genes. 
H. Fraction of Halllmark Interferon Alpha Response gene set upregulated in accessibility and/or expression across any cell 

type.  
I. Same as F) but for AU-15330 and BRM014. 
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Supplementary Figure 1 – Batch e8ects linked to transposition batch size in published datasets 
A. Example samples from each dataset. Points represent the nuclei count and median fragment count per 

transposition reaction, and are colored by transposition batch size tercile. Correlation coe<icients and p-values 
from two-sided Pearson’s test. 

B. Batch mixing analysis, as in Fig. 1E), but excluding the 1st LSI dimension as is standard practice due to correlation 
with depth. 

C. Demonstrative cell types from 3 other samples & datasets as in Fig. 1F), showing statistically significant changes in 
cell type frequency according to transposition batch tercile. P-values represent results from two-sided Chi-squared 
proportion tests. 

D. The 1st LSI dimension obviously correlates with fragment count irrespective of cell type, whereas other dimensions 
show strong linear relationships with fragment count when separated by cell type.  

E. When aggregated by cell type, many LSI dimensions across 5 datasets correlate significantly with fragment count (R 
> 0.5, p < 0.05).  
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Supplementary Figure 2 – MULTI-ATAC Method Design 
A. MULTI-ATAC barcodes are pre-hybridized to LMO Anchor and BE Primer oligos, and the full complex incorporates into 

nuclear membranes through step-wise addition with LMO Co-Anchor as in MULTI-seq. The orientation of the barcode 
prevents direct hybridization to the adapter oligos loaded into the Tn5 transposome. 

B. The pre-hybridized BE Primer is extended during in-droplet linear PCR to produce the complement strand required for 
priming with 10x Genomics capture oligos during subsequent rounds of linear PCR. After GEM incubation and cleanup, 1 µL 
of library is aliquoted from the standard library preparation procedure to perform a separate PCR reaction with MULTI-ATAC 
specific sample-indexing primers.  
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Supplementary Figure 3 – MULTI-ATAC identifies doublets not identified through fragment-based methods 
A. Comparison of fragment counts for doublets classified by both MULTI-ATAC and Vireo, only MULTI-ATAC, only Vireo, or 

neither. Student’s t test.  
B. Comparison of DoubletEnrichment scores for doublets classified by both MULTI-ATAC and Vireo, only MULTI-ATAC, 

only Vireo, or neither. Student’s t test.  
C. Venn diagram comparing doublet classifications between MULTI-ATAC, Vireo, and AMULET. Notably there are no 

doublets agreed upon by Vireo and AMULET that MULTI-ATAC did not call.  
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Supplementary Figure 4 – Pooled transposition eliminates batch e8ects  
A. As in Fig. 2E), Jurkats cluster according to sample size in the Parallel library but not in the Pooled library. 
B. Jurkat nuclei yielded on average 36% fewer fragments than K562 nuclei, possibly making them more sensitive to 

quality control filtering. 
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Supplementary Figure 5 – Multiome pilot experiment demonstrates similar performance to MULTI-seq.  
A. UMAP embeddings of GEX library captured in Multiome experiment shows separation of mouse hepatocytes by zonation 

markers (bottom), and homogenous mixing of cells labeled with either MULTI-ATAC barcodes, MULTI-seq barcodes, or 
neither. 

B. Comparison of ATAC and GEX library quality control metrics between hepatocytes labeled with MULTI-ATAC barcodes, 
MULTI-seq barcodes, or neither. 
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Supplementary Figure 6 – Recovery of replicates from each condition in final dataset 
A. Overall, 148 ± 87 nuclei were recovered per replicate well with no dropouts. 
B. Overview of nuclei recovered per replicate well of each drug. 
C. UMAP embeddings for each drug and controls showing dose-dependent shifts in epigenetic state.  
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Supplementary Figure 7 – Major and minor cell type annotation using known markers 
A. Canonical markers were assessed in terms of chromatin accessibility scores and RNA expression and used to annotate 

clusters as B cells, T cells (CD4+, CD8+, NK, and Treg), and Myeloid cells (Monocyte, DC). Several of the higher drug 
doses pushed cells into states that couldn’t be traced back to subtypes, and were annotated as such. For T and Myeloid 
populations, cells that clustered with resting control/DMSO(-) cells were annotated as Naïve/Unstimulated. 
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Supplementary Figure 8 – Inclusion of multiple replicates enables robust experimentation and statistical analysis 
A. Control replicates were clustered by the correlation of their centroids in the LSI dimensionality reduction (as in Fig. 2E), 

and were found to cluster according to the sides of the plates (left vs right) they derived form.  The mechanism behind 
this e<ect is not clear but could be linked to variable lysis or culture conditions. 

B. Cells from the left and right side of each plate di<ered significantly across various quality control metrics. 
C. Plate side seemed to be captured predominantly in LSI4, so this component was excluded from subsequent steps. This 

did not impact any downstream marker analyses, only visualization via UMAP and cell subtype annotation via 
clustering.   

D. Drug-dosed cells exhibited greater inter-replicate variability in gene accessibility and expression relative to control 
cells.  
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Supplementary Figure 9 – Heatmaps of markers significantly altered by immune activation and/or drug treatment 
Heatmaps show Z-scaled median accessibility or expression values across replicates for each condition. 

A) 33,383 di<erentially accessible marker peaks in T cells (p < 0.01, Log2FC > 1) 
B) 21,653 di<erentially accessible marker peaks in Myeloid cells (p < 0.01, Log2FC > 1) 
C) 2,992 di<erentially accessible marker genes in T cells (p < 0.01, Log2FC > 1) 
D) 3,780 di<erentially accessible marker genes in Myeloid cells (p < 0.01, Log2FC > 1) 
E) 2,226 di<erentially expressed marker genes in T cells (p < 0.01, Log2FC > 1) 
F) 1,714 di<erentially expressed marker genes in Myeloid cells  (p < 0.01, Log2FC > 1) 
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Supplementary Figure 10 – Characterization of marker features 
A) Activation and MS177 treatment predominantly increased chromatin accessibility and gene expression, whereas 

treatment with drugs such as AU-15330, BRM014, and dCBP-1 largely had the opposite e<ect.  
B) A large portion of marker peaks in AU-15330, BRM014, and dCBP-1 reflect inversions of activation-associated 

chromatin accessibility changes. MS177 uniquely seems to further increase the accessibility of peaks already 
associated with T cell activation.  

C) Overlap of up- and downregulated peaks with FANTOM5 enhancer set. P-values represent results from two-sided Chi-
squared proportion tests. 

D) Overlap of up- and downregulated peaks with CTCFSDB CTCF binding site database. P-values represent results from 
two-sided Chi-squared proportion tests. 

E) UMAP embedding of the per-cell fraction of fragments that overlap with distal enhancers from the CCRE database. 
F) Non-drugged myeloid cells exhibit a greater fraction of fragments coming from distal enhancers relative to T and B cells. 

Student’s t test. 
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Supplementary Figure 11 – Pathway analysis of marker genes 
A) As in Fig. 4B), gene set enrichment analysis (GSEA) for each drug and cell type of expressed marker genes ordered by 

statistical significance and negative vs positive slope. Statistically significant terms (p.adj. < 0.01) are colored by 
normalized enrichment score (NES). Red box – gene sets involved in immune cell activation; blue box – gene sets 
involved in type I interferon response. 

B) Similar to Fig. 4C), gene set expression across increasing drug dose; expression or accessibility of each gene at each 
drug dose was scaled relative to the activated controls, and then plotted as a function of dose. Trendlines plotted per 
drug via LOESS smoothing with span = 1.5.  

C) MS177- and activation-responsive marker peaks in T cells were hierarchically clustered into 7 groups for downstream 
motif enrichment analysis. Heatmap shows Z-scaled median accessibility values across replicates for each condition.  
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 Supplementary Figure 12 – SWI/SNF perturbation upregulates genes and pathways related to Type I Interferon response 

A. UMAP embeddings showing imputed RNA counts for 15 genes involved in Type I Interferon signal transduction and 
response. 

B. Gene sets determined to be upregulated by SWI/SNF perturbation through GSEA of RNA and Gene Score linear 
regression markers. Type I Interferon gene sets are upregulated in both modalities, whereas gene sets related to 
chromatin organization and RNA processing are only upregulated in accessibility but not expression. 
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 Supplementary Figure S13 – Replication-dependent histones among genes that gain accessibility from SWI/SNF 

perturbation 
A. All histone genes – ordered by genomic location – colored by the direction and significance of their response in gene 

score/accessibility to increasing drug dose.  
B. Coverage plot of the HIST1 locus on chromosome 6 where most replication-dependent histone genes are located shows 

significant increases in accessibility, particularly for AU-15330 and BRM014 but also dCBP-1. Smoothing window for 
plotting = 1000 bp.   
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