
NEURAL CIRCUITS
REVIEW ARTICLE

published: 18 April 2012
doi: 10.3389/fncir.2012.00016

Models of grid cell spatial firing published 2005–2011
Eric A. Zilli*

Department of Psychology, Center for Memory and Brain, Boston University, Boston, MA, USA

Edited by:

Yasser Roudi, Norwegian University
of Science and Technology, Norway

Reviewed by:

Nestor Parga, Columbia University,
USA
Yoram Burak, Harvard University, USA

*Correspondence:

Eric A. Zilli , Department of
Psychology, Center for Memory and
Brain, Boston University, 2
Cummington Street, Boston, MA
02215, USA.
e-mail: zilli@bu.edu

Since the discovery of grid cells in rat entorhinal cortex, many models of their hexago-
nally arrayed spatial firing fields have been suggested. We review the models and organize
them according to the mechanisms they use to encode position, update the positional
code, read it out in the spatial grid pattern, and learn any patterned synaptic connec-
tions needed. We mention biological implementations of the models, but focus on the
models on Marr’s algorithmic level, where they are not things to individually prove or dis-
prove, but rather are a valuable collection of metaphors of the grid cell system for guiding
research that are all likely true to some degree, with each simply emphasizing different
aspects of the system. For the convenience of interested researchers, MATLAB imple-
mentations of the discussed grid cell models are provided at ModelDB accession 144006
or http://people.bu.edu/zilli/gridmodels.html.
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1. INTRODUCTION
The puzzling grid cell has become a popular topic in neuroscience
due to its simultaneously simple behavioral firing correlate (the
animal’s position) and complex spatial activity (a nearly regular
hexagonal arrangement of spatial fields; Figure 1).

From their spatial-coordinate–like appearance, persistence in
darkness, head direction preference (in a subset of grid cells), and
anatomical position in the medial temporal lobe (Hafting et al.,
2005; Sargolini et al., 2006), all accounts of the hexagonal fir-
ing pattern assume grid cell firing is a function of the animal’s
internal sense of its position. Most models specifically assume
the grid cells are performing or reflecting path integration: the
process of continuously updating an estimate of position with
each movement made (McNaughton et al., 1996; Redish, 1999;
Etienne and Jeffery, 2004). The current models of the hexag-
onal field arrangement therefore all start with path integration
and then translate the path integrated information into the grid
pattern through additional trickery (e.g., modifying the path inte-
gration mechanism to produce a hexagonal grid as a side effect
or path integrating along directions in 60˚ or 120˚ increments
and combining the separate integrated positions into a hexagonal
pattern).

Existing grid cell models use a variety of different mechanisms,
but similarities among models have led to a rough classification
scheme (Burgess et al., 2007; Burgess, 2008; Giocomo and Has-
selmo, 2008; Jeewajee et al., 2008; Kropff and Treves, 2008; Moser
and Moser, 2008; Welinder et al., 2008; Burak and Fiete, 2009;
Zilli et al., 2009; Milford et al., 2010; Zilli and Hasselmo, 2010;
Giocomo et al., 2011; Yartsev et al., 2011; Mhatre et al., 2012)
into the groups of continuous attractor network (CAN) models
or of interference models, with some suggesting the true mecha-
nism may involve both (Burgess, 2008; Hasselmo, 2008; Jeewajee
et al., 2008). This terminology is somewhat misleading, though.
For example, a number of models (Blair et al., 2007, 2008; Wel-
day et al., 2011; Mhatre et al., 2012) use both CANs as well as the
mechanism of interference (and see Discussion). The models can

be better understood and compared when considered in terms of
their subcomponents:

• How is the positional information encoded and maintained?
• How is the positional information updated when the animal

moves?
• How is the encoded information read out as a hexagonal spatial

pattern?
• How do any structured synaptic connections in the model

self-organize?

As an example, Burgess et al. (2007) encoded positional infor-
mation as the phase difference between oscillators, updated that
position by modulating the oscillator frequencies, and used tem-
poral interference to read that code out into the grid pattern. In
these terms the space of models described in the literature becomes
much clearer. For example, CANs are mechanisms for encod-
ing and maintaining positional information, whereas interference
is a read-out mechanism, so strictly the two are independent
properties of a model.

Information-processing tasks (e.g., path integration) can be
understood on multiple levels, three of which were emphasized
by Marr (1982). On the highest level, tasks can be characterized
by their goal (e.g., accumulate spatial displacements). A system
can also be characterized by the way it represents the relevant data
(e.g., phase differences, population activity patterns, etc.) and the
algorithm that transforms the data (e.g., frequency modulation).
Finally, a system has an implementation, mapping the representa-
tion and algorithm to physical systems. Tables 1 and 2 summarize
the models with respect to the subcomponents above on the algo-
rithmic and implementational levels, respectively. Though not all
models fit perfectly into this system nor do all publications attempt
to examine each of these aspects, this approach allows a useful
overview of the field.

Below we discuss current approaches to the above questions
before discussing each of the individual models. We hope our
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FIGURE 1 |The grid cell spatial pattern. Different descriptions of the grid
suggest different underlying mechanisms. The simplest descriptions as (A)

an equilateral triangular tessellation or (B) a hexagonal grid suggest no
obvious mechanism. (C) The pattern can be thought of as
inactivity-surrounded place fields packed as closely as possible, which
leads to Kropff and Treves (2008). Alternatively, the regularity of the pattern
suggests that perhaps only a small segment, e.g., (D) a rhombus (skewed
rectangle) or a rectangle large enough for (E) only one or (F) two or more
appropriately spaced fields, is represented and when the animal walks off
the segment it re-enters from the other side. If a rectangle containing only

one field is used, it must be twisted so that walking off the bottom on the
left brings the animal to the top on the right (the top edge is shifted by half
its width, see dashed rectangle), while walking off the left or right sides
wraps around normally. The grid can also be thought of as the overlap or
interference between other spatial patterns, such as (G) smaller scale
grids or (H) sinusoid-like gratings, not unlike a Fourier decomposition of
the grid, and this produces the temporal interference models when
generalized to the temporal domain. Note that in all figures spatial plots
are shown in perspective to distinguish them from 2D plots of neural
activities or synaptic weights.

tight focus on model mechanisms complements other recent
reviews (e.g., Welinder et al., 2008; Giocomo et al., 2011) that
considered wider ranges of grid cell topics. For the convenience
of interested researchers, we have also implemented in MAT-
LAB most of the models of grid cells we are aware of and have
shared them as a collection at ModelDB accession 144006 or
http://people.bu.edu/zilli/gridmodels.html

2. RESULTS
2.1. ENCODING POSITIONS
The starting point of all path integration models is a mechanism
that allows neurons to represent and maintain a spatial position.
These mechanisms can be divided into those that independently
represent 1D positions and recombine them to form the 2D grid
(linear-coding: Burgess et al., 2007; Gaussier et al., 2007; Giocomo
et al., 2007; Blair et al., 2008; Burgess, 2008; Hasselmo, 2008; Has-
selmo and Brandon, 2008; Zilli and Hasselmo, 2010; Welday et al.,
2011; Mhatre et al., 2012) and those that directly represent 2D posi-
tions (planar-coding: Conklin and Eliasmith, 2005; O’Keefe and
Burgess, 2005; Fuhs and Touretzky, 2006; McNaughton et al., 2006;
Blair et al., 2007; Guanella et al., 2007; Kropff and Treves, 2008;
Burak and Fiete, 2009; Navratilova et al., 2012). So far these suffice
since grid cells seem to ignore height in simple 3D environments
(Hayman et al., 2011).

2.1.1. Linear-coding
We first examine ways 1D positions can be encoded.

Perhaps the most obvious way of encoding a linear position is
as a coordinate in a single cell’s firing rate. This mechanism was
used by Gaussier et al. (2007) and Hasselmo and Brandon (2008),
where respective scaling factors α or β Hz/cm translated distance
moved along a cell’s preferred direction into a change in its firing

rate. An advantage to directly storing distances from the starting
position is that the return vector to the starting position can be
easily calculated (e.g., Burgess et al., 1993; Touretzky et al., 1993;
Hasselmo and Brandon, 2008), but since coordinates can be arbi-
trarily large (or negative) while cells can only fire over a limited
frequency range, most models represent position less explicitly.

On linear tracks, grid cells have fairly regular field spacing (Brun
et al., 2008). The fields seem to repeat endlessly so the animal’s 1D
location can be encoded as a single number that gives its position
relative to the nearest field (Figure 2A, top). Such a position is
conveniently described in circular terms as a phase (an angle) in
radians or degrees. A number of mechanisms for storing a phase
have been used in grid cell models.

A ring attractor is a CAN of neurons arranged in a circle, like
the hours on an analog clock (illustrated in Figure 2A). In a simple
ring attractor, any cell (e.g., 6 o’clock) strongly excites nearby cells
(e.g., 4, 5, 7, and 8 o’clock) and weakly excites or even inhibits
distant cells (e.g., 12 o’clock). When a small group of nearby
cells is active (e.g., 6 and 7 o’clock) we call it a bump of activ-
ity. The cells mutually excite each other to continue firing while
inhibiting the rest of the cells and so can store any phase value
indefinitely by maintaining a bump of activity on the ring at that
phase. We call this an unbiased ring attractor. Though our exam-
ple used only one bump of activity, a larger network could easily
support multiple bumps spaced out over the cells (see below and
Figure 2B).

If the strongest output from each cell were systematically shifted
in one direction, we could call it a biased ring attractor, cyclic
attractor (Eliasmith, 2005), or ring oscillator (Blair et al., 2008).
The bias causes the bump of activity to rotate around the ring at a
fixed frequency that depends on the size of the network and the dis-
tance the peak output is shifted (Zhang, 1996). This asymmetry in

Frontiers in Neural Circuits www.frontiersin.org April 2012 | Volume 6 | Article 16 | 2

http://people.bu.edu/zilli/gridmodels.html
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Zilli Grid cell models

Table 1 |The models on Marr’s algorithmic level.

Grid cell model Position representation Updating mechanism Read-out mechanism Learning mechanism

Conklin and Eliasmith (2005) Torus attractor, single bump Direction-conjunctive cells Direct –

O’Keefe and Burgess (2005) [Torus attractor, single

bump]

[Direction-modulated

recurrent connections]

Direct –

Fuhs and Touretzky (2006) Aperiodic attractor,

multi-bump

Direction-conjunctive cells Direct Wave packets in development

for symmetric weights

McNaughton et al. (2006) [Torus attractor, single

bump]

[Direction-conjunctive

cells]

Direct Learn toroidal topology through

grid pattern in a teaching layer

Blair et al. (2007) [Theta grids] – Spatial interference –

Burgess et al. (2007) Sinusoid phase difference Frequency modulation Temporal interference [Self-organization of directional

velocity to oscillators]

Gaussier et al. (2007) Firing rates as coordinates Firing rate modulation Spatial interference Self-organization of stripe cell

spatial phases to grid cells

Giocomo et al. (2007) Sinusoid phase difference Frequency modulation Temporal interference –

Guanella et al. (2007) Twisted-torus attractor,

single bump

Dynamic recurrent

connections

Direct –

Blair et al. (2008) [Biased ring attractor phase

difference]

[Direction-conjunctive

cells]

Temporal interference –

Burgess (2008) Sinusoid phase difference Frequency modulation Temporal interference –

Hasselmo (2008) Sinusoid phase difference Frequency modulation Temporal interference –

Hasselmo and Brandon (2008) Firing rate Frequency modulation Spatial interference –

Kropff and Treves (2008) Place cells [Place cell updating] Direct via place-to-grid

synapses

Self-organization of place Cell

inputs

Burak and Fiete (2009) Torus and aperiodic

attractors, multi-bump

Direction-conjunctive cells Direct –

Mhatre et al. (2012) [Unbiased ring attractor] [Direction-conjunctive

cells]

Spatial interference Self-organization of stripe cell

spatial phases and orientations

to grid cells

Zilli and Hasselmo (2010) Spiking population phase

difference

Spiking frequency

modulation

Temporal interference –

Navratilova et al. (2012) Unbiased ring attractor Direction-conjunctive cells Direct or spatial

interference

–

Welday et al. (2011) [Biased ring attractor phase

difference]

[Direction-conjunctive

cells]

Temporal interference –

“–” Indicates no specific mechanism given in reference. Gray rows are planar-coding models, white linear-coding. Square brackets indicate the mechanism was

suggested but not simulated.

the synaptic connections turns the network into an oscillator and
so precludes storing a phase as a fixed bump of activity. Instead, a
pair of biased ring attractors with identical frequencies can be used
to store a phase in the difference between the phases of the rings
(Blair et al., 2008). As the bumps move in the same direction and
speed, the networks can maintain the phase difference indefinitely
(Figure 2).

This mechanism of storing a phase with a pair of identi-
cal oscillators works with any oscillator imaginable (Figure 2A)
as long as the oscillator can precisely and indefinitely maintain
a specified frequency. Some early grid models (Burgess et al.,
2007; Giocomo et al., 2007) interpreted the model oscillations
as narrow-band oscillations in a cell’s membrane potential or in
the local field potential (LFP; e.g., theta rhythm), though they
were modeled abstractly as sinusoids. Other approaches manip-
ulated the sinusoids to treat them as a rough approximation of

repeating single spikes or burst of spikes (Burgess, 2008; Has-
selmo, 2008). Unfortunately, data suggest biological oscillators
like these are highly irregular (Welinder et al., 2008; Zilli et al.,
2009; Dodson et al., 2011) and so unsuited for use in these mod-
els. One solution to this problem used synchronized networks
of coupled, noisy, spiking neurons, which produce much more
regular oscillations on the population level (Zilli and Hasselmo,
2010).

Using any of these mechanisms, a linear position can be rep-
resented neurally, but these mechanisms cannot represent a 2D
position, which requires storing at least two values. Instead, to
represent 2D positions, two or more independent linear-coding
mechanisms can be used to encode linear position along two dif-
ferent directions (Figure 2B, top), requiring a read-out stage as
described below.

An alternative is provided by planar-coding models.

Frontiers in Neural Circuits www.frontiersin.org April 2012 | Volume 6 | Article 16 | 3

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Zilli Grid cell models

Table 2 |The models’ biological implementations, though somewhat arbitrary, allow for concrete experimental predictions.

Grid cell model Position representation Updating mechanism Read-out mechanism

Conklin and Eliasmith (2005) [Subiculum or MEC population activity] [Excitatory and inhibitory recurrents] Direct

O’Keefe and Burgess (2005) [MEC population activity] [Head direction modulated weights

or direction conjunctive cells]

Direct

Fuhs and Touretzky (2006) [Dorsal MEC population activity] [Inhibitory recurrents] Direct

McNaughton et al. (2006) [Dorsal MEC population activity] [Head direction and grid conjunctive

cells]

Direct

Blair et al. (2007) [Mammillary complex population activity] – Interfering inputs to grid cell

Burgess et al. (2007) MECII stellate dendritic SMPOs vs.

theta-rhythmic MS input phase differences

Body velocity/voltage-dependent

SMPO frequency

Interference in soma

„ MECII stellate somatic SMPO vs.

theta-rhythmic MS input phase difference

„ Synapses among band cells cre-

ate grid cells

Gaussier et al. (2007) [Retrosplenial or parietal spiking activity] – Interfering inputs to grid cell

Giocomo et al. (2007) MECII stellate dendritic vs. somatic SMPO

phase differences

Body velocity/voltage-dependent

SMPO frequency

Interference in soma

Guanella et al. (2007) [MEC population activity] [Velocity-modulated excit. and inhib.

recurrents]

Direct

Blair et al. (2008) Theta cells in raphe nuclei, mammillary

bodies

[Body-direction-conjunctive cells] Interfering inputs to grid cell

Burgess (2008) MECII stellate or MECV pyramidal somatic

vs. dendritic SMPO phase differences

Body velocity/voltage-dependent

SMPO or spiking frequency

Interfering inputs to soma

„ MECII stellate or MECV pyramidal spiking

vs. [theta-rhythmic input] phase differences

„ Interference in ECIII pyramidals

Hasselmo (2008) ECV pyramidal spiking phase differences Body–velocity–dependent spiking

frequency

Interfering inputs to grid cell

Hasselmo and Brandon (2008) ECII pyramidal firing rates Body velocity/Ca2+-dependent

spiking frequency

Interfering inputs to grid cell

Kropff and Treves (2008) [CA1 place cells, MECV/VI grid cells] – Direct via CA1 to MEC projection

Burak and Fiete (2009) [MEC population activity] [Inhibitory recurrents] Direct

Mhatre et al. (2012) [ECII, III, V/VI population activities] [ECIII to ECII synaptic connections] Interfering inputs to grid cell

Zilli and Hasselmo (2010) [Spiking neurons] [Velocity-modulated firing rate] Interfering inputs to grid cell

Navratilova et al. (2012) ECII stellate, ECIII pyramidal population

activities

ECIII to ECII synaptic connections Direct or interfering inputs to

grid cell

Welday et al. (2011) Theta cells in medial septum, hippocampus,

and anterior thalamus

– Interfering inputs to grid cell

“–” Indicates no specific implementation given in reference. Gray rows are planar-coding models, white linear-coding. [Square brackets indicate a mechanism not

specifically identified with a known cell type, synaptic connection, etc. below the level of e.g. a grid cell in a general region.] MECII, medial entorhinal cortex layer II;

MS, medial septum; SMPO, subthreshold membrane potential oscillation.

2.1.2. Planar-coding
The planar-coding models represent the 2D position directly
within one population of cells.

The simplest way of encoding a 2D position is through a Carte-
sian coordinate (x, y). A natural neural code for specific (x, y)
positions is provided by the place cell: a cell that is nearly silent
in all locations except in its place field, a small region of the envi-
ronment where it fires at an elevated rate (O’Keefe, 1976; Skaggs
et al., 1996). Place cells are used as the position code in Kropff and
Treves (2008), the only non-path-integrating model of grid cells
(though place cells could be driven by path integration).

Since grid cells themselves appear to code 2D positions, Blair
et al. (2007) used high–spatial-frequency grid cells (Figure 1H)
to encode and maintain 2D positional information. While they
reported interesting results, using grid cells to produce grid cells
somewhat lacks in explanatory power.

Just as 1D positions are identified with respect to the nearest
two grid fields, 2D positions only need to be encoded in terms of
position within, e.g., a rhombus whose corners are four adjacent
fields (Figure 1D). So by analogy with an unbiased ring attrac-
tor in the linear-coding case, a 2D position can be encoded as a
bump on a rectangular sheet of cells (Zhang, 1996; Samsonovich
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FIGURE 2 | Spatial position codes. (A) Linear-coding models. Top. A linear
track environment with three grid fields. Positions can be identified as a
spatial phase between 0˚ in the center of one field and 360˚ (0˚) at
neighboring fields. One-quarter of the distance between the field centers,
90˚, is indicated. Some models (Burgess et al., 2007; Giocomo et al., 2007;
Blair et al., 2008; Burgess, 2008; Hasselmo, 2008; Zilli and Hasselmo, 2010;
Welday et al., 2011) store the 90˚ linear position as a 90˚ phase difference
between two oscillators. An unbiased (stationary) ring attractor (Mhatre
et al., 2012; Navratilova et al., 2012) can also directly store the 90˚ phase as
a bump of activity centered on cells in the ring at a corresponding angle.
Instead of encoding position as a phase, the animal’s actual position or
coordinate could be stored as the firing rate of a single cell (Gaussier et al.,
2007). Hasselmo and Brandon (2008) described one model using only
coordinate cells and another using only modulo cells. (B) Top. A square
environment with many grid fields. Linear-coding models can encode 2D
positions as two spatial phases, now measured between rows of grids, not
neighboring grid fields (so only alternate 0˚ points are field centers). For
example, a position at 0˚ along one direction and 90˚ along the other is

(Continued)

FIGURE 2 | Continued

indicated. Alternatively, place cells can represent 2D positions (Kropff and
Treves, 2008) or a 2D position can be represented by the relative position of
a fixed activity pattern on a sheet of cells (Fuhs and Touretzky, 2006;
Guanella et al., 2007; Burak and Fiete, 2009). Early toroidal models,
however, would produce a rectangular rather than a hexagonal grid. In
continuous attractor network models each circle (Blair et al., 2008; Mhatre
et al., 2012; Navratilova et al., 2012) or pixel (Fuhs and Touretzky, 2006;
Guanella et al., 2007; Burak and Fiete, 2009) represents one cell and darker
colors indicate higher activities. Red squares on the right indicate one cell
that might produce the grid fields shown in the spatial environment.

and McNaughton, 1997; Conklin and Eliasmith, 2005; O’Keefe
and Burgess, 2005; McNaughton et al., 2006; Guanella et al., 2007;
Figure 2B, right). Just as the ring attractor is essentially a string
of cells with the ends connected to each other, the bump on the
2D sheet must be allowed to move off one edge of the sheet and
reappear on the opposite edge.

A 2D sheet with opposite edges connected in this manner is
called a torus. Such a network will generally produce rectangular,
not hexagonal patterns. One solution (Guanella et al., 2007) that
produces a hexagonal pattern is to twist the torus in such a way that
the edges wrap around normally in one direction (e.g., left/right),
but when a bump moves past, e.g., the top edge, it reappears on the
bottom edge shifted by half the width of the torus (see Figures 1E
and 2B, bottom). Strictly, though, this twist is not necessary and
a normal torus can produce the hexagonal pattern if the velocity
inputs are skewed (see below and our online model code for an
example).

Rather than encoding position with a single bump of activity, a
sheet of cells can maintain multiple bumps of activity, Figure 2B,
arrayed hexagonally on the sheet of cells like each grid cell’s fields
in space (Fuhs and Touretzky, 2006; Burak and Fiete, 2009). A cell’s
adjacent fields occur not because a bump of activity wraps around
one edge and returns to the cell, but rather because while the first
bump moves off behind the cell, another bump comes from ahead.
Bumps moving off one edge simply disappear while new bumps
are created at the opposite edge. For this reason, a multi-bump
CAN can produce the hexagonally arrayed fields without the need
for synaptic connections wrapping around the edges. This is called
an aperiodic network.

A multi-bump 2D CAN can also produce a hexagonal grid on
an untwisted torus (a periodic network). In that case the bump
spacing must be consistent with the size of the torus (Burak and
Fiete, 2009).

2.2. UPDATING
With the above mechanisms a position can be represented and
maintained, but the key to path integration is updating that rep-
resentation of position as an animal moves from one place to
another. In all models except (Kropff and Treves, 2008), changes
in position are provided as a body velocity signal. Guanella et al.
(2007) uses the 2D velocity signal directly, but the other models
first pre-process 2D velocity into 1D directional velocity signals.
The directional velocity vφ(t ) along a preferred direction φ is
defined as vφ(t ) = s(t )cos(d(t ) − φ), where s(t ) and d(t ) are the
animal’s speed and direction at time t. Linear-coding models
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usually use two to six of these directional velocity inputs with pre-
ferred directions at increments of 60˚ or 120˚, while planar-coding
models generally assume four inputs at 90˚ increments (but would
work with as few as three at 120˚ or up to a continuous distribu-
tion of all directions). Clear directional body velocity signals have
not yet been found (but see Welday et al., 2011), but an analogous
representation of reaching movements has been reported (Kalaska
et al., 1983; van Hemmen and Schwartz, 2008).

Each mechanism for representing position has a corresponding
updating mechanism. For example, since position is the integral of
velocity, a cell that maintains a position in its firing rate can update
its encoded position by perfectly integrating its velocity input.

If two oscillators encode a phase difference (e.g., oscillator A is
90˚ ahead of oscillator B), the phase difference can be modified by
momentarily changing the frequency of either or both oscillators.
Generally oscillator A is an active oscillator whose frequency can
change and oscillator B is a baseline oscillator whose frequency
never changes. An oscillator’s frequency w is the rate of change of
its phase φ, or dφ/dt = w, so, given two oscillators, the derivative
of the encoded position (their phase difference) is the difference in
their frequencies: d(φ1 − φ2)/dt = dφ1/dt − dφ2/dt = w1 − w2.
If w1 − w2 is always proportional to an animal’s speed in some
direction, then φ1 − φ2 is proportional to its distance moved in
that direction, which is the basis for path integration in these
models.

The exact mechanism for modulating an oscillator’s frequency
depends on the nature of the oscillator. The frequency of abstract
oscillators like sinusoids can be controlled directly. When the oscil-
lator is a network of cells, changing the level of injected current
or synaptic inputs to the cells will cause their firing frequency to
increase or decrease. In a biased ring attractor, the frequency is
related to the amount of bias (the distance of the offset in the
synaptic weights) and the activity level of the biased cells, and
either can be changed to control the frequency.

In unbiased attractor networks, balanced symmetric connectiv-
ity maintains a position as a bump of activity in a fixed location, so,
to update the stored position, the velocity inputs must introduce
a bias to shift the bump in the desired direction. Broadly this has
been done in two ways.

Guanella et al. (2007) gave a simple solution to this problem. In
their model the synaptic output resembles the unbiased attractor
weight matrix given above when the animal stands still (Figure 3).
Each cell’s output is centered on itself, so the bump is stationary.
When the animal moves, the network becomes biased: the weight
matrix changes dynamically so that the output of each cell is shifted
in a direction according to the animal’s movement direction and
by a distance proportional to the animal’s speed. When the animal
moves north, all cells shift their output in the north direction on
the sheet (Figure 3, right) and the bump begins to move in that
direction. Dynamically changing the weights this way is an effec-
tive but seemingly biologically implausible mechanism. With this
mechanism cells do not have a fixed preferred direction (they are
pure grid cells).

A more common and biologically plausible solution used in
other grid cell models (O’Keefe and Burgess, 2005; Fuhs and
Touretzky, 2006; McNaughton et al., 2006; Burak and Fiete, 2009;
Navratilova et al., 2012) assigns a directional velocity input to some
or all cells in the network, producing direction-conjunctive grid

cells. The synaptic outputs of a conjunctive cell have a shift in a
corresponding direction: the same or opposite direction, depend-
ing on whether the output is respectively excitatory (Navratilova
et al., 2012) or inhibitory (Fuhs and Touretzky, 2006; Burak and
Fiete, 2009), Figure 3. While standing still the velocity inputs to all
cells are equal, so the synaptic output is symmetrical and the bump
remains stationary. When velocity input increases to a subset of
cells, their relative influence on the synaptic activity in the network
increases, producing a momentarily biased network and allow-
ing the network to path integrate. Two more-or-less equivalent
variations of this mechanism are used: one simple arrangement
(O’Keefe and Burgess, 2005; McNaughton et al., 2006; Navratilova
et al., 2012) considers the pure grid cells as one population and
assumes the existence of separate, parallel populations of conjunc-
tive cells that are interconnected with the grid cells and responsible
for shifting the pattern about. The other models (Fuhs and Touret-
zky, 2006; Burak and Fiete, 2009) do away with the pure grid
cells and simply interconnect the conjunctive populations into
one large network.

2.3. READ-OUT
With the previously discussed mechanisms, an animal’s move-
ments can be integrated into a running estimate of its position,
and presumably this information is sent to many areas of the brain
to support many processes, but our current interest is the way the
information comes to appear as a hexagonal arrangement of spatial
fields.

In Kropff and Treves (2008), the read-out mechanism is par-
ticularly simple: synaptic connections from place cells with fields
arranged in a hexagonal grid directly drive a common grid cell.

In the 2D CAN models (Conklin and Eliasmith, 2005; O’Keefe
and Burgess, 2005; Fuhs and Touretzky, 2006; McNaughton et al.,
2006; Guanella et al., 2007; Burak and Fiete, 2009; Navratilova
et al., 2012), the spatial grid pattern is a direct consequence of
the positional code and no transformation is needed: the bump(s)
of activity simply move in concert with the animal’s movements,
and the networks are shaped so that bumps activate any given cell
when the animal enters positions arranged in a hexagonal pattern.

The other models, however, break up the encoding of position
into multiple networks, and these must be recombined with a read-
out mechanism to produce the hexagonal field arrangement. Blair
et al. (2007), for instance, stored a 2D position in multiple grid net-
works and, in a process of spatial interference, produced a larger
scale grid pattern where the smaller grids overlap (Figure 1H).
This is a planar-coding model, so the read-out is not needed to
produce a 2D pattern per se, but rather to produce one of the
necessary scale.

Read-out is mandatory, however, to produce a 2D hexagonal
pattern in a linear-coding model. In such models the grid pattern
is irrelevant to path integration and occurs as just one of many
ways the encoded position may be read-out (Welday et al., 2011).
Some models (Burgess et al., 2007; Gaussier et al., 2007; Hasselmo
and Brandon, 2008; Mhatre et al., 2012) contain stripe or band
cells (Figure 1G) that in 1D could look like repeating fields, but
their firing pattern is clearly striped rather than a grid in 2D envi-
ronments. However, when two or more of these patterns at 60˚
angles are overlaid, their intersections produce a 2D hexagonal
grid. This is essentially the same process of spatial interference as
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FIGURE 3 | Synaptic connections play a major role in continuous

attractor networks. For each of three 2D attractor models, we plot the
activity of the sheet of neurons (top in each row) and the synaptic input to
each cell caused by that activity (bottom in each row). (A) Each cell in the
Fuhs and Touretzky (2006) model projects symmetrically outward in
alternating rings of excitatory and inhibitory synapses. Just offset from the
center, in this case downward, is an asymmetric inhibitory region (dark
blue). When this cell fires, it inhibits the nearby cells except in a small
region just above it where other cells are free to fire. Cells have different
offset directions, so a bump of activity can form in a small group of cells
that each inhibit a different direction around the bump, surrounding it in a
ring of inhibition. All the cells here are driven to fire, creating new bumps
spontaneously, and the excitatory ring surrounded by inhibition on each
side encourages the new bumps to maintain a particular spacing. When
the animal moves north, north-conjunctive cells increase in activity
(producing the checker boarding of activity), increasing the inhibition on

one side of each bump and causing the pattern to shift. (B) In Guanella
et al. (2007) each cell has an identical synaptic output: an excitatory
Gaussian bump that is inhibitory at long distances. The model has only one
bump of activity, which wraps around on all sides, but with a “twist” in the
up-down direction (see Figure 1A). The synapses change dynamically with
velocity: e.g., when moving north the synaptic output is offset upward on
the sheet of cells, which causes the bump to slide in that direction. (C) In
Burak and Fiete (2009) the output of each cell is a ring of inhibition, the
center offset in the direction the cell tries to move activity bumps (in this
case offset two cells upward). The space inside the ring allows a bump to
form, each active cell contributing to a strong ring of inhibition around the
bump. The cells are driven to fire spontaneously so as many bumps form
as is possible. Under the repulsive effects of the inhibitory rings, the
bumps pack as tightly as possible, which is in a hexagonal grid. While
moving north, north-conjunctive cells are driven strongly, slightly shifting
the pattern of the synaptic drive and so shifting the bumps as well.
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in Blair et al. (2007). A natural neural implementation of spatial
interference is given by the thresholded sum of inputs from the
cells producing the stripes or grids (and see Figure 4).

Temporal interference is another commonly used mechanism
(Burgess et al., 2007; Giocomo et al., 2007; Blair et al., 2008;
Burgess, 2008; Hasselmo, 2008; Zilli and Hasselmo, 2010; Wel-
day et al., 2011). Whereas in spatial interference models, the grid
cell inputs are either active or inactive at any time, in temporal
interference models the inputs are always active (they fire at all
locations) but their spike timing changes with respect to a baseline
oscillation as a function of position. In these models the grid cell
must become active when all of the inputs are sufficiently close
in time to the baseline. In particular, grid field width is usually
around one-half the field spacing, so the cell must fire when all

active oscillators are within 90˚ of the baseline. Any mechanism
that can perform this sort of coincidence detection will work. In
the more abstract models (Burgess et al., 2007; Blair et al., 2008;
Burgess, 2008; Hasselmo, 2008), various combinations of multi-
plying, adding, and thresholding the various inputs have been used
successfully (Figure 4). A more realistically modeled grid cell must
spike to reflect coincidence detection of its synaptic inputs, which
can be can be difficult to carry out over an extended window with
three or more inputs (two active and one baseline inputs). A sim-
ple approach (Zilli and Hasselmo, 2010; Welday et al., 2011) is to
use inhibitory connections from the oscillators to the grid cell, and
to drive the grid cell so it spikes spontaneously when not inhibited.
The result is that when the oscillators are not sufficiently similar
in phase, the grid cell receives tonic inhibition (Figure 4, bottom),
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FIGURE 4 | Read-out in temporal interference models. Top. A 5-Hz
baseline oscillation (black) and three active oscillators (colors) path
integrating while receiving a constant velocity input. The oscillator
outputs are (A) sinusoids or (B) exponentially decaying synaptic
potentials (50 ms time constant). The simulated animal begins between
grid fields at time t = 0 s and enters fields at times t = {1,3,5} s. The
remaining rows show the output of various models in response to the
input oscillations (some using fewer than three active oscillator inputs).
The rules all aim to produce maximal activity when the oscillators are all

closely aligned in phase. The activity would then be thresholded (grid
field width in vivo is about one-half the field spacing). Most of these
rules were not intended to work with synaptic potentials (right column),
but we show them to illustrate the difficulty of performing coincidence
detection with spiking inputs: with some rules there is no threshold that
would produce realistic field widths. Abbreviations: b, baseline
oscillation; ai, active oscillations; H (x ), the Heaviside step function
(H (x ) = 0 if x < 0 and H (x ) = 1 if x ≥ 0), and R(x ) the ramp function
(R(x ) = 0 if x < 0 and R(x ) = x if x ≥ 0).
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but when the oscillators move into phase with each other, the grid
cell is able to spike in the time between volleys of inhibition.

2.4. LEARNING
All of the grid cell models require specifically structured connec-
tivity. Depending on the model, the connections may include:
connections from specific directional velocity inputs to specific
oscillators or cells, from specific oscillators or place cells to specific
grid cells, or connections among grid and direction-conjunctive
cells. The models only work if the synaptic connections and
weights are close enough to their optimal values (Zhang, 1996;
Burgess et al., 2007), so some mechanism must exist that allows
the necessary connectivity to be learned (though at least one model
has been shown to be robust to high levels of noise in the weights;
Conklin and Eliasmith, 2005).

The following subsections describe the mechanisms that have
been suggested for learning connections from one region or cell
type to another.

2.4.1. Velocity to network oscillators
When a ring attractor or population of phase-synchronized spik-
ing cells acts as a velocity-controlled oscillator, each of the cells
must develop the same preferred input direction, and this learn-
ing problem has not been addressed for either type of oscillator.
Standard self-organization methods may work when the oscillator
is a network of phase-synchronized cells, as the co-activity of the
cells may cause them all to select the same direction (though this
suggestion is untested). For ring attractors, though, the problem
is compounded because not only must all the conjunctive cells
for one direction learn the same directional preference, but cells
conjunctive for the other direction must all learn the opposite
preferred direction.

2.4.2. Velocity to planar CANs
The complexity of the velocity to direction-conjunctive cell prob-
lem just mentioned is most clear in 2D attractor models. To control
the bump of activity, conjunctive cells in at least three directions
(and more commonly four) are required. Because the synaptic
outputs of the conjunctive cells are shifted in some direction (see
below regarding learning those connections), those cells have both
a velocity input direction and a synaptic output direction, and not
only must all cells with the same output direction learn to prefer
the same input direction, but cells with different output directions
must learn to prefer consistent input directions. If the cells with
output direction up all develop a preference for north velocities,
then the down output cells must develop a preference for south
velocities, and this further constrains the input preferences that
left and right cells can have. This problem has not yet been solved.

2.4.3. Place cells to grid cells
In place-driven models (Kropff and Treves, 2008), no learning of
velocity inputs is required. Instead the grid cells must develop con-
nections from place cells whose fields are arranged in a hexagonal
pattern. Kropff and Treves (2008) gave a solution to this problem
that can be thought of in two stages. In the first stage, grid cells
develop place fields surrounded by rings of inactivity, and in the
second stage these fields shift around to minimize their distance

from each other, which produces the hexagonal field arrangement
(Figure 1C).

This behavior comes from the combination of the learning rule
and grid cell dynamics in the model. Grid cells undergo an inac-
tivating adaptation, so a steady input makes a cell fire at a high
rate, then adapt down to a lower rate, then return to a high rate
as adaptation inactivates. The place-to-grid learning rule, roughly,
increases the strength of active synapses when the grid cell’s activity
is high, but weakens active synapses when the grid cell’s activ-
ity is low. The place-to-grid synaptic weights begin with random
values, so as the animal explores, a grid cell will receive enough
input to fire at random places. The learning rule strengthens the
synapses that started the firing (reinforcing the firing field), but as
the animal continues to move and adaptation lowers the grid cell’s
activity, synapses from subsequently active place cells will decrease
in weight onto the grid cell. With repeated passes through a grid
field, the learning rule reinforces the strongest cells and then weak-
ens surrounding cells, carving out an area of inactivity around the
field. As the animal continues, adaptation inactivates and place cell
inputs can again be strengthened, encouraging fields to appear or
stabilize at that distance. The time or distance it takes for adapta-
tion to inactivate roughly sets the scale of the grid pattern in this
model.

However, place cells randomly remap in new environments
while grid cells appear to maintain consistent relative spatial phases
to each other (Leutgeb et al., 2005; Fyhn et al., 2007), while this
mechanism must slowly re-learn the grid pattern in each new envi-
ronment the animal is exposed to, unless a large number of maps
have all been pre-learned (Samsonovich and McNaughton, 1997).
The adaptation is also based on fixed time constants in the model,
so the grid cell spacing depends on the history of velocities an
animal has experienced in an environment.

2.4.4. Directional integrators to grid cells
Linear-coding models (Burgess et al., 2007; Gaussier et al., 2007;
Giocomo et al., 2007; Blair et al., 2008; Burgess, 2008; Hasselmo,
2008; Hasselmo and Brandon, 2008; Zilli and Hasselmo, 2010;
Welday et al., 2011; Mhatre et al., 2012) only produce the clas-
sic hexagonal field arrangement if the displacement is integrated
along directions at 60˚ increments. One possibility is that the direc-
tional integrators only exist at 60˚ or 120˚ angles. Gaussier et al.
(2007) gave a self-organizing map for learning spatial phases in a
simplified version of this case.

Alternatively, directional integrators may exist for many direc-
tions and the grid cells must somehow learn to prefer input
from specific directional integrators at appropriate angles. Burgess
et al. (2007) showed in preliminary simulations that a cell’s activ-
ity was highest if it received three inputs at angles producing a
hexagonal grid, suggesting that this could be the basis for self-
organization of the 60˚ directional inputs. Mhatre et al. (2012)
gave a model of grid cells as a self-organizing map that does
just that. Input to their grid cells came in the form of a set of
stripe cells (Figure 1G), which fire spatially in parallel lines of
constant spacing but with systematically varied phases and direc-
tions. In their model the amount of plasticity increases with
the activity level of the grid cell, and these stripe cell inputs
compete for a limited total synaptic weight onto each grid cell.
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As a result, input patterns that occur frequently and produce the
highest level of activity use up the most of the available synap-
tic weights, and Mhatre et al. (2012) argued geometrically that
these inputs will be near 60˚. Simulations show this mechanism
produces fairly grid-like firing patterns, though the orientation
of each cell in the network is not identical, in contradiction to
the pattern observed in vivo. As this mechanism is experience-
dependent, the grids develop slowly and require extended expo-
sure to environments larger than the largest scale of the grids
present in an animal’s brain for the grid to properly develop.
Like the Kropff and Treves (2008) model, this mechanism is also
velocity-dependent.

2.4.5. Grid cells to grid cells
When encoding position in attractor networks, synaptic connec-
tions among the grid and direction-conjunctive cells are needed
to both maintain and update the pattern of activity. As suggested
above, conjunctive cells must not only learn to prefer a common
input direction, but their output must be directed to cells offset in
a corresponding direction. A useful starting point may be analo-
gous learning mechanisms used in head direction network models
(Hahnloser, 2003; Stringer and Rolls, 2006).

In some models (Fuhs and Touretzky, 2006; McNaughton
et al., 2006; Guanella et al., 2007; Navratilova et al., 2012), addi-
tional, symmetric synaptic connections are used to establish and
maintain the pattern of activity. Fuhs and Touretzky (2006) gave
a developmental model for learning the Mexican-hat–like con-
nectivity shown in Figure 3. In their model, packets of activ-
ity randomly flowed over the network (by analogy with reti-
nal waves in the developing eye). These packets were shaped
like a sinusoidal grating, with alternating peaks of excitation
and inhibition where the distance between peaks of excitation
was the desired spacing of the rings in the synaptic matrix.
Burak and Fiete (2006) reported that the symmetry of this
Mexican-hat shape means it can maintain a grid at any orien-
tation, so unfortunately the network has a tendency to drift in
orientation.

McNaughton et al. (2006) suggested a mechanism that could
solve this rotation problem, where the cells were directly con-
nected to other cells hexagonally arranged in the sheet of cells,
rather than having rotationally symmetric synaptic output in the
form of rings. They showed that if entorhinal cells were driven
by a sheet of cells with a drifting (in position but not rotation)
hexagonal pattern of spiking, associative plasticity would con-
nect co-active entorhinal cells into a toroidal topology, though
Burak and Fiete (2006) reported this mechanism fails because the
undesired rotations do occur.

2.5. MODELS
Having reviewed the individual components used in the models,
we now briefly discuss each of the models themselves (summa-
rized in Tables 1 and 2). The models are separated into linear-
and planar-coding categories, because these two strands seemed
to develop rather independently. Further technical details can be
found in the comments in our online implementations of these
models or in the papers themselves.

2.5.1. Linear-coding
O’Keefe and Burgess (2005), though focused on CAN models,
called attention to earlier models that produced place cell theta
phase precession through interfering oscillators (O’Keefe and
Recce, 1993; Lengyel et al., 2003; Huhn et al., 2005). These models
produced a series of equally spaced place fields, providing a fruitful
starting point for later models.

Burgess et al. (2007) described subsequent work that gener-
alized those models to two dimensions. In the basic temporal
interference model, one grid cell received inputs from (or con-
tained all of) the active oscillators, reading out the grid pattern in
its activity. The main focus was on one biological implementation
where LFP theta provided the baseline oscillation to a neuron’s
soma, while SMPOs in the dendrites acted as active oscillators.

Giocomo et al. (2007) simulated a variant of the Burgess et al.
(2007) modified to be consistent with their in vitro data (but see
Burgess et al., 2007) showing that the resonant frequency and peak
subthreshold membrane potential oscillation (SMPO) frequency
of entorhinal cortical layer II stellate cells decreased in a dorsal to
ventral gradient. In this model the baseline frequency scaled the
speed inputs, so a lower frequency produced larger field spacing.
As in Burgess et al. (2007), SMPOs were suggested to be the bio-
logical form of the model’s oscillators, but SMPOs within a cell
cannot store arbitrary phase differences (Remme et al., 2009), and
if they could, SMPOs are far too irregular to store one for long
enough to create a stable grid (Welinder et al., 2008; Zilli et al.,
2009; Dodson et al., 2011).

In Gaussier et al. (2007), linear positions were first encoded in
the firing rates of two cells with preferred directions 60˚ apart. By
integrating respective directional velocities, their activities gave the
total displacement along the respective directions. The firing rate
of these cells was discretized in a separate population E, e.g., one
cell in E fires only when the animal has moved 10 cm in the x direc-
tion from its starting x coordinate (like stripe or band cells, except
these have only a single band rather than repeating bands). E cells
with firing bands at equal increments were synaptically connected
to a modulo cell which then fired in a set of equally spaced parallel
stripes. Finally, grid cells were created by adding or multiplying
the activity of one modulo cell from each of the two directions.
They also gave a simple learning mechanism that allowed grid cells
to select a unique input from each of six different modulo popu-
lations at 60˚ increments. The learning was fairly trivial, however,
creating a new grid cell for each novel combination of modulo cell
activities experienced by the animal.

Blair et al. (2008) used temporal interference to read out lin-
ear positions stored between biased ring attractors rather than
abstract, sinusoidal oscillators. The authors examined the firing
phases of various cells in the network and found some cells pre-
cess (their Figures 4B,C show less than 180˚ of precession, not
the 360˚ claimed) with respect to a baseline oscillation while other
pairs of cells could show procession, shifting phases, or phase lock-
ing. Only the 1D case was modeled, the 2D case later appearing in
Welday et al. (2011).

Burgess (2008) expanded on the Burgess et al. (2007) model,
still using frequency-modulated sinusoids to perform path inte-
gration (also considering a slightly more spike-like shape from
transforming the sinusoids), and examined the behavior of the
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model using various read-out mechanisms. He emphasized the
importance of the baseline oscillation in reducing out-of-field spa-
tial firing when oscillations are summed rather than multiplied.
He also gave the first temporal interference model of grid cell
phase precession that always precessed on every pass through a
field. The precession mechanism used six oscillators at 60˚ incre-
ments: their frequencies increased or decreased normally, but at
any time only the three oscillators that were firing faster than
baseline were allowed to influence (through an unspecified mech-
anism) the grid cell, which then always fired faster than the baseline
and so precessed.

Hasselmo (2008) gave a variation on the Burgess et al. (2007)
model that interpreted the oscillator outputs as trains of spikes,
represented artificially by thresholding a sinusoidal oscillation
into a train of rectangular pulses. The model still path integrated
through frequency modulation,but it did not use a baseline oscilla-
tor. The role of the baseline oscillator was played by an additional
active oscillator along a third direction. Just as with a baseline
oscillation, the third oscillator only moved into phase with the
two others at positions arranged hexagonally. The lack of a base-
line oscillation means that the model does not produce correct
phase precession (and see Figure 7A left in Burgess, 2008). This
paper also considered how place-based resetting of the grid system
could explain context-dependent firing in the hippocampus and
the non-grid pattern observed from grid cells in the hairpin maze
(Derdikman et al., 2009), giving resetting mechanisms that would
work with any path integration model.

Hasselmo and Brandon (2008) discussed multiple models
including a spatial interference model they called a cyclical per-
sistent firing model. Linear position was encoded in the firing rate
of an individual cell, and that cell’s velocity input caused the firing
rate to cycle such that the cell’s spatial firing occurred in parallel
bands across the environment. In essence this is a temporal inter-
ference model with a baseline frequency of 0 Hz (like a single-cell
analog of the cells found in a ring attractor), but it assumed an
unspecified mechanism by which a constant input could modulate
a cell’s firing rate in a sinusoidal manner.

Mhatre et al. (2012) addressed the issue of learning velocity
inputs at 60˚ or 120˚ increments. They gave a self-organizing map
(Grossberg, 1976a,b) receiving inputs in the form of increased
activity along parallel lines at various orientations (their stripe
cells, but possibly also Turing stripes, McNaughton et al., 2006,
or band cells, Burgess et al., 2007) that could select for inputs at
60˚ increments and so eventually produce grid cells. The learn-
ing, however, produces grid cells at various orientations instead
of one common orientation, seems to be sensitive to the velocity
of the training trajectory, and requires early experience in large
environments to learn the large-scale grids.

Zilli and Hasselmo (2010) addressed another concern in tem-
poral interference models: the biological oscillators (SMPOs, LFP,
and neuronal inter-spike or inter-burst intervals) considered in
earlier models are highly noisy, which prevents them from stably
storing a position on behavioral time scales (Welinder et al., 2008;
Zilli et al., 2009). Zilli and Hasselmo (2010) showed that con-
necting a large enough number of cells in each oscillator allowed
the synchronizing effect of coupling to overcome the independent
noise injected into each cell. This produced spatial grid patterns

that were fairly stable on the order of minutes, though such a large
number of cells were needed as to seem wasteful. Other issues
likely to recur in other increasingly biophysical interference grid
cell models were discussed, including a lagging frequency response
of neuronal oscillators, the non-linear frequency response of spik-
ing neurons, and the difficulty performing coincidence detection
on three or more inputs (especially when their magnitudes change
stochastically). However, use of inhibitory inputs from oscillators
(Figure 4) made coincidence detection easier (later confirmed by
Welday et al., 2011).

Welday et al. (2011) continued the work of Blair et al. (2008),
showing how arbitrary spatial firing patterns (including many seen
in the medial temporal lobe) can be created by combining the out-
puts of biased ring attractors. They provided a valuable theoretical
approach (carrying on from Blair et al., 2008) that focused on the
spatial envelope of the interference of two oscillators, allowing
questions of temporal interference to be treated as simpler spatial
interference problems.

2.5.2. Planar-coding
Early path integration models that considered or used
single-bump toroidal CANs (Zhang, 1996; Samsonovich and
McNaughton, 1997) recognized that the place fields produced by
the network would repeat as a rectangular grid in large environ-
ments, and the relationship between this pattern and grid cells was
quickly noticed (Hafting et al., 2005).

Conklin and Eliasmith (2005) gave such a toroidal (rectangu-
lar grid) CAN and was the first modeling work to link it to the
firing patterns of cells that would later be called grid cells (Fyhn
et al., 2004; Hafting et al., 2005). This model featured improve-
ments over earlier 2D CAN place cell models such as requiring
fewer cells and tolerating heterogeneity in the cells and errors in
the weight matrix.

Fuhs and Touretzky (2006) described a planar CAN model
producing a hexagonal pattern of multiple bumps that could be
moved over a circular sheet of cells. The rate-based grid cells were
connected to nearby cells with concentric rings of excitatory and
inhibitory synapses (Figure 3). With this pattern of connectivity,
bumps of activity formed in a hexagonal pattern where the exci-
tatory bands intersect (Figure 3). A conjunctive cell’s asymmetric
output was an inhibitory region near the center of the concentric
rings, offset opposite the direction that the cell would shift the
population (each cell has one of four preferred directions). The
recurrent weights faded out to 0 toward the edge of the network
to prevent bumps of activity from forming lines parallel to the
edges, creating cells at the edge that were barely spatially mod-
ulated and resembled head direction cells. Fuhs and Touretzky
(2006) also described a developmental mechanism to learn the
concentric rings component of the synaptic weights inspired by
retinal waves observed in the developing eye. Later simulations
(Burak and Fiete, 2006) showed that, due to uncontrollable rota-
tions of the spatial pattern and a non-linear velocity response, this
model fails to produce a stable spatial hexagonal grid.

McNaughton et al. (2006) further discussed the use of attrac-
tor dynamics, reviewing the basic functioning of ring and planar
attractor networks (see also Zhang, 1996; Eliasmith, 2005). Their
preliminary simulations (no details given) dealt with the problem
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of learning the toroidal synaptic connections needed for a single-
bump 2D CAN like the one outlined in O’Keefe and Burgess
(2005). McNaughton et al. (2006) reasoned that grid pattern
development must be experience-independent because lab rats
are unlikely to have been exposed to environments larger than the
ventral grid spacing (a challenge to experience-dependent models
like Kropff and Treves, 2008; Mhatre et al., 2012).

Blair et al. (2007) formed the hexagonal spatial pattern through
spatial interference. Assuming the existence of small-scale, planar-
coding “theta grids” (generated through unspecified attractor
dynamics), they showed two ways two small-scale grids could
interfere to produce the large-scale grid pattern (one hinted at
in Figure 6A in McNaughton et al., 2006). By scaling-up or rotat-
ing one of the theta grids, its firing peaks would respectively phase
precess or maintain a relatively fixed relationship with the fields of
the other theta grid. If the spiking of one theta grid produced the
LFP theta rhythm, spikes from the other grid could precess relative
to theta. Blair et al. (2007) suggested this could relate to the dif-
ference between the theta phase profiles of cells in different layers
of entorhinal cortex (Hafting et al., 2008). With this mechanism
theta frequency would vary linearly with running speed, so they
had to assume that the spacing of the grid producing LFP theta
would vary with speed to keep theta frequency nearly constant.
Consequently, the second grid had to dynamically scale or rotate
to account for the changes in the first grid to maintain constant
spacing in the large-scale grid.

Guanella et al. (2007) gave the first planar CAN model that
produced a stable hexagonal spatial firing pattern. No conjunctive
cells were used to update the stored position. Instead, the recur-
rent connections changed dynamically to shift the bump of activity
smoothly and perfectly in any direction. The mechanism is con-
veniently simple, but not particularly biologically plausible. The
authors introduced a twisted-torus topology to remedy the rectan-
gular pattern produced by previous toroidal proposals (Conklin
and Eliasmith, 2005; O’Keefe and Burgess, 2005; McNaughton
et al., 2006). A twist in the torus is not strictly necessary: a hexag-
onal pattern results from an untwisted torus if the velocity input
directions of certain conjunctive cells are skewed relative to their
synaptic output directions (see online code). For example, the cells
shifting the activity left and right still receive east and west veloc-
ity inputs, but the cells shifting the activity up and down receive
velocity input along a direction 60˚ from the east/west direction
(rather than the expected 90˚). This modification produces ellip-
tical rather than circular fields (a different solution to the toroidal
problem is given by Burak and Fiete, 2009).

Kropff and Treves (2008) described a model that relied on place
cell inputs rather than path integration. Their focus was on a
developmental model that allowed a grid cell to develop its spatial
pattern by slowly learning to prefer inputs from place cells whose
fields are arranged in a hexagonal pattern. As described, the model
produced grid cells that vary in orientation (unlike neighboring
grid cells in vivo which appear to have the same orientation, Haft-
ing et al., 2005). Also, distinct environments have distinct place
field maps (Thompson and Best, 1989), so grid pattern would
have to be relearned in each new environment, which is contrary
to experimental reports that the grid pattern appears immediately
on entry to a new environment (Hafting et al., 2005).

Burak and Fiete (2009) gave a multi-bump planar CAN, build-
ing on the work of Fuhs and Touretzky (2006) and Guanella et al.
(2007), and studied many problems that can occur in this type
of model. Their main focus was on the effects of periodic (i.e.,
toroidal) versus aperiodic (the network fades out to the edges
which do not wrap around) networks. Edges produced detrimental
effects in their aperiodic network, including noise-induced rota-
tions of the pattern and inaccurate responses of the network to
low velocity inputs. Fading out the velocity inputs to cells at the
edges of the network (rather than fading out the synaptic weights
as in Fuhs and Touretzky, 2006) lessened these effects. Those dis-
tortions also decreased in larger networks, so their large network
with faded inputs path integrated successfully. Periodic networks,
having no edges, had none of these problems, though finer tun-
ing of the grid spacing was required so that the pattern perfectly
fit the dimensions of the sheet of cells. The authors also showed
that an attractor network of stochastically spiking cells is consider-
ably more robust to small amounts of noise than models (Burgess
et al., 2007; Gaussier et al., 2007; Giocomo et al., 2007; Burgess,
2008; Hasselmo, 2008; Hasselmo and Brandon, 2008) where only
a single noisy cell encodes position (and see Zilli et al., 2009).

Navratilova et al. (2012) extended CAN models to address theta
phase precession, focusing on the 1D case. The model included
an 8 Hz theta oscillation injected into the conjunctive cells and
an artificial ADP and mAHP injected into the grid cells after a
spike. The grid cells formed an unbiased ring attractor and pro-
jected to corresponding cells in the conjunctive populations (6
o’clock grid cells to 6 o’clock conjunctive cells). The two popu-
lations of conjunctive cells projected back to the grid cells, but
offset in each direction. Thus an input from one spiking grid cell
drove activity in the conjunctive populations at the same position,
which drove grid cells on either side of the first grid cell. Biased
by velocity input, one conjunctive population has greater activ-
ity, asymmetrically driving the grid cells and nudging the bump
in one direction. When the newly active grid cells fire, the cycle
repeats and the bump continues moving. The ADP, mAHP, and
NMDA time constants in the grid cell determine how quickly the
grid cell bump can re-fire, setting how many times the bump can
nudge forward in any unit of time, and so influencing grid field
spacing. This process occurs with the conjunctive cells depolar-
ized to near threshold by the theta input, but at the trough of the
theta input, the conjunctive cells fire much less. At those times the
ADP currents of recently active grid cells caused them to fire again,
making the bump of activity jump back to an earlier point. Theta
phase precession arises from this alternation of the bump mov-
ing forward under the influence of velocity followed by the bump
jumping back. Only a 1D version of the model was given, but the
model might be extended to 2D either via spatial interference of
two rings or by expanding it to be a planar-coding CAN (Guanella
et al., 2007; Burak and Fiete, 2009).

3. DISCUSSION
3.1. SUMMARY
Rather than the common division of continuous attractor vs.
interference models, we suggest alternative categorizations.

The positional codes in the models fall into linear-coding and
planar-coding categories. The key difference is that linear-coding
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models independently encode linear positions along different
directions such that changing the position encoded along one
direction may not affect encoded positions along other directions.
In planar-coding models, although individual cells have preferred
directions, the position coded by the set of cells with one preferred
direction is also changed by movements along any other direction.
The models can also be distinguished according to the mecha-
nisms used to encode and maintain positions. Unbiased attractor
networks or oscillator phase differences are most commonly used,
though some models use more direct positional codes like place
cells or encoding coordinates as firing rates.

A more fine-grained, but non-exclusive categorization of the
models is given by the mechanism used to update the encoded
position. Positions stored using abstract oscillators or phase-
synchronized spiking cells are updated by modulating the fre-
quency or firing rate of the oscillators, and positions stored in
unbiased continuous attractor networks are updated through
direction-conjunctive cells. Biased attractor networks, however,
can be understood as both: inputs modulate the frequency of the
networks, but this is done via conjunctive cells.

Finally, the models can be categorized by their read-out mecha-
nisms, a distinction loosely related to the linear vs. planar distinc-
tion. Planar models do not generally require a read-out mechanism
to produce a 2D grid (but see Blair et al., 2007), while read-out
mechanisms are required for linear-coding models. For simplicity
we divided the read-out mechanisms into temporal interference
and spatial interference, though they are essentially equivalent
because temporal interference models become spatial interference
models when the baseline oscillation frequency is set to 0 Hz.

3.2. EXPERIMENTS AND MODELS
The publications we have reviewed all give models on Marr’s algo-
rithmic level (Table 1), and many also specify an implementation
(Table 2). The two levels have different values and uses.

On the algorithmic level, simulations have theoretical value
as proofs-of-concept demonstrating that a solution can actu-
ally work, but these make fairly limited experimental predictions
regarding only phenomena that might be observed. For example,
algorithmically Burgess et al.’s (2007) model can only predict that
somewhere in the brain there are oscillatory processes being mod-
ulated by the animal’s body velocity. Similarly, Burak and Fiete’s
(2009) model can only predict that somewhere there are velocity-
sensitive (i.e., conjunctive) grid cells whose gain changes when
an environment is deformed or which always maintain a perfect
spatial phase relationship.

This limitation arises because a single algorithmic model or pre-
diction can have many different biological implementations and
experiments can only directly support or oppose specific imple-
mentational predictions. For example, spatial position in CAN
models should be perturbed if the direction-conjunctive cells are
perturbed, but some cells may inherit the direction signal without
partaking in network dynamics and perturbing such a cell may
have no effect. That null result should not be evidence against
the algorithmic model, but would be evidence against a particular
implementation.

As a result, the valuable experimental predictions of a model
generally come from the implementational level where specific

properties are attributed to specific anatomical or electrophys-
iological elements. This is a valuable step because predictions
become concrete and easily tested, though there is a degree of
arbitrariness in selecting an implementation and only this arbi-
trary implementation can actually be evaluated (rather than the
algorithmic model itself).

Temporal interference models that include theta-rhythmic
(spiking or subthreshold oscillations or external input modulated
at a theta frequency) elements provide one example of the value
of distinguishing among these levels.

There are many oscillatory processes in the rodent medial
temporal lobe that show rhythmicity in the 6 to 10 Hz theta
band, including fluctuations in the local field potential (LFP),
subthreshold fluctuations in neuronal membrane potentials, and
bursting or modulation of firing rate of many cells types (and
so also rhythmic synaptic input to cells over recurrent connec-
tions). The prominence of these oscillations has led to their use
in many implementation-level models that have made explicit
predictions about how the scale of the grid pattern may be
reflected in rhythmic processes (O’Keefe and Burgess, 2005;
Burgess et al., 2007; Burgess, 2008). Many predictions have been
confirmed (Giocomo et al., 2007; Giocomo and Hasselmo, 2008;
Jeewajee et al., 2008; Welday et al., 2011; Navratilova et al.,
2012). At the same time, experimental (Welinder et al., 2008;
Zilli et al., 2009; Dodson et al., 2011) and theoretical (Remme
et al., 2009, 2010) arguments have been raised against the same
implementations.

Recently Yartsev et al. (2011) provocatively claimed to have dis-
proven the entire class of “oscillatory interference” models based
on the fact that the LFP in bats contained no strong theta sig-
nal nor did the grid cells show theta modulation in their spike
time autocorrelations. If theta is the same frequency in bats as rats
(though the functional role, not the numerical frequency value is
what is important in the models), this would be good evidence
against an implementation that involves theta, but no more evi-
dence against the whole class of interference models than any of the
earlier experimental results identifying flaws in those implemen-
tations. Algorithmically, no model requires any regular rhythmic
components nor necessarily produces them as output (see our
online code; although the bat data seems to contain a low fre-
quency rhythmic component around 1/3–1 Hz that would still be
consistent with the temporal interference models).

The interesting result of making explicit predictions is that
models that make them have been quite successful in guiding
experiments that have discovered new results, and the experiments
have been quite consistent in revealing flaws with the originally
specified implementations.

3.2.1. Distinguishing linear from planar-coding
It is natural to ask how experiments might distinguish linear-
from planar-coding models. A direct approach would be a time
consuming, systematic search for linear coding (either cells with
stripe-like firing patterns or oscillators whose phase relative to a
baseline varies with directional position) in the inputs to grid cells.
Locating such a code would provide great support to linear-coding
models, though the challenge would remain to show those inputs
are in fact used to create the grid.
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Alternatively, the effects of linear-coding inputs may be vis-
ible in intracellular recordings of grid cells in vivo. The linear
position inputs may be fairly strong because few such inputs are
required in these models (though out-of-field inputs might be
hidden by dendritic non-linearities). Spatial interference models
predict strong, tonic subthreshold inputs at positions along the
lines between adjacent fields, but not in the central spaces of tri-
angles of fields. Temporal interference models predict grid cells
should receive multiple inputs (modulated around a common
baseline frequency) with relative phases that vary systematically
with position, and subsets of these should move into alignment at
positions along the lines connecting adjacent fields (Figure 4).

These predictions are in contrast to planar-coding models,
where there might be spatially correlated (e.g., sensory) subthresh-
old inputs or even inputs that repeat systematically with the grid
(e.g., from flaws in a synaptic weight matrix), but most models
would not predict consistent inputs only along lines of a partic-
ular orientation connecting adjacent fields. One exception is the
Fuhs and Touretzky (2006) model, which contains cells near the
network edge that might produce such stripe-y grid cells if the
model accurately path integrated. Though the case of subthreshold
inputs may be easier to detect, in vivo intracellular recording is still
in its infancy, so these predictions might also be examined in the
positions of out-of-field grid cell spiking (i.e., out-of-field firing
primarily along lines connecting neighboring fields may suggest
linear-coding).

The linear/planar distinction, however, should not be thought
of as necessarily intrinsic to a model. In theory any of the planar-
coding CAN models could be reduced down to a ring attractor and
a pair used in a linear-coding model. Linear-coding approaches
can also be merged into a planar code (e.g., an unbiased ring
attractor where the bump position indicates spatial position along
one direction and the phase relative to a baseline of bursts of bump
activity encodes position along a second direction).

3.2.2. Questions for future work
A number of questions about grid cells arise from studying the
models in detail.

First, path integration requires the body’s movements as inputs,
but the grid cell literature largely focuses on the existence of head
direction cells in the medial temporal lobe. Do head direction cells
actually encode body movement direction, or, if not, do path inte-
gration errors consistently occur if the animal moves forward with
its head rotated to one side? Also, when a grid cell has a directional
preference, is the preference always along a direction connecting
adjacent fields (and if so, along three or all six directions?) or are
all directions represented?

Grid cells often show firing at positions along environmen-
tal edges that does not conform to the overall hexagonal pattern.
Though grid cell models allow for sensory inputs on the grid cell,
no model specifically tries to explain this edge firing. In partic-
ular, if the regularity of grid fields is key to the use of grid cells
as a spatial code, are spatial abilities impaired at environmental
boundaries?

It has sometimes been suggested that local flaws in grid field
spacing can create pentagons or heptagons rather than hexagons
(Fuhs and Touretzky, 2006). Does this actually occur or is it due to

edge effects or undersampling of animal positions? If it does occur,
are spatial abilities impaired in environments where it is observed?

Is the amount of phase precession observed within a field cor-
related with the ratio of field width to field spacing? Temporal
interference models predict that firing phase range is 360˚ · (field
width)/(field spacing). This phase range applies only to the range
where the spikes are truly precessing, not the second component
(Yamaguchi et al., 2001) as the animal exits the field, where the cell
fires across most phases.

Are grid fields firmly established immediately on entry into a
new environment and does a grid cell always fire on every pass
through each field? Both during the course of development and
on exposure to a novel environment, do dorsal grid cells appear or
stabilize before ventral grid cells? Experience-dependent learning
models must reform the grid pattern in new environments, but
they might be able to more quickly organize grid cells with smaller
field spacing.

In the event that the environment is stretched or deformed such
that place cells stretch their place fields, the grid pattern would
also be expected to stretch or deform to match (Blair et al., 2007;
Burgess et al., 2007). A stretched grid pattern due to place influ-
ences can be distinguished from a stretched grid due to changes in
input gain along different directions (an alternative explanation)
by comparing the velocity-modulation and firing fields of pairs of
simultaneously recorded grid cells (Burak and Fiete, 2009).

Does a grid cell’s firing rate slow down in the middle of a
field? Models like Kropff and Treves (2008) and Mhatre et al.
(2012) require adaptation or habituation dynamics that decrease
the activity of tonically active cells.

3.3. ATTRACTORS AND INTERFERENCE
A common division of grid cell models is into continuous attractor
network and oscillatory interference models. As we have already
suggested, this distinction is misleading because it contrasts inde-
pendent qualities. To distinguish their general meanings from the
classes of models the terms have come to represent, additional
points about attractors and interference are worth mentioning.

An attractor is a state (or region of state space) that a sys-
tem moves toward if the system’s state is nearby. All neurons have
attractors: both the stable equilibrium of a neuron at rest and the
consistent voltage trajectory (limit cycle) maintained by a steadily
spiking cell are attractors. A system can have multiple simultane-
ous attractors: bistable cells can have both a resting equilibrium
and a spiking limit cycle at the same time, and others (Hughes
et al., 1999; Izhikevich, 2007) have two simultaneously stable volt-
age attractors (e.g., with no applied current, the voltage can remain
at −75 or at −59 mV, and brief inputs can move it back and forth).
A system can even have infinitely many attractors (e.g., a hypo-
thetical cell that could stably maintain any voltage in between −75
and −59 mV). This is called a continuous attractor (continuous
meaning there is always a third attractor between any two nearby
attractors). A similar continuous attractor is used in Gaussier et al.
(2007) and Hasselmo and Brandon (2008) in their cells that store
a coordinate in their firing rates. Similarly, networks of cells have
attractors, and such networks are called attractor networks when
the attractor aspect is emphasized. The phase-synchronized state
of a population of cells can be an attractor (Izhikevich, 2007), so
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Zilli and Hasselmo (2010) used (non-continuous) attractor net-
works in their model. Continuous attractors can also occur in
networks, as in the many ring and 2D attractor models described
above. In these the attractors are patterns of neural activities
containing one or more localized bumps. Continuous attractor
networks are less generic than other attractors since they require
patterned synaptic connections, but as Conklin and Eliasmith
(2005) showed, imperfect networks can behave as CANs. The CAN
metaphor is thus a matter of degree, not a binary property of a
system.

Interference refers to the signal produced by combining two
other signals, with emphasis on the large peaks in the output where
the inputs constructively interfere and the low points where the
inputs are out of phase and destructively interfere. This is not
a special mechanism, but rather a simple physical fact that two
inputs to a cell that co-occur will produce a larger net effect than
if they had occurred separately. Even in planar CANs, each con-
junctive cell has a slightly different synaptic output pattern and
the final activity of the cells is given by the sum of all of these
patterns, producing a sort of synaptic spatial interference [e.g., in
Fuhs and Touretzky (2006), the arrangement of bumps is the inter-
ference pattern of the synaptic rings of excitatory and inhibitory
outputs]. In grid cell models, the term oscillatory interference
is generally used, suggesting more specifically the interference of
regular oscillations (presumably temporal or spatial) rather than
simply identifying the overlap of multiple synaptic inputs, but any
signal can be considered a complex oscillation in some sense.

Attractors and interference appear not only in the grid cell
models named after them, but also in the other grid cell mod-
els, and are general properties of every circuit in the brain. This
is clear from their widespread occurrence in other models. For
example, a focus on interference of oscillations arose in models of
place cell precession (O’Keefe and Recce, 1993; Lengyel et al., 2003;
Huhn et al., 2005; O’Keefe and Burgess, 2005), but also, e.g., mod-
els of timing (Miall, 1989; Hopfield and Brody, 2001). Attractor
networks have been used to model both place cells (Samsonovich
and McNaughton, 1997; Conklin and Eliasmith, 2005) and head
direction cells (Skaggs et al., 1995; Zhang, 1996), and many other
systems (Eliasmith, 2005).

3.4. NOISE
As path integration models require that a position be both stably
encoded and accurately updated, successful models must account
for the high levels of noise observed in biological systems. All of
the path integration models are equally susceptible to noise in
the velocity inputs themselves (Burak and Fiete, 2009; Zilli et al.,
2009), so the noise intrinsic to the system is most commonly stud-
ied. Noise is also assumed to have a mean of zero, as non-zero
mean noise introduces a constant bias that strongly disrupts the
stable grid pattern (Giocomo and Hasselmo, 2008).

Early models encoding positions as phase differences were con-
sidered particularly susceptible to noise (Burgess et al., 2007;
Giocomo and Hasselmo, 2008; Hasselmo, 2008; Welinder et al.,
2008), though later work showed that the use of multiple, redun-
dant oscillators allowed for robustness to small levels of noise
(Zilli et al., 2009). Considerably greater robustness to noise was
provided by subsequent work in which each oscillator comprised
many coupled spiking neurons (Zilli and Hasselmo, 2010).

This is a general effect of coupled cells, so all CANs automat-
ically attain robustness to noise (including those used to encode
phase differences; e.g., Blair et al., 2008). Burak and Fiete (2009)
examined the behavior of CANs with intrinsic noise and showed
that toroidal networks are robust to noise, with the pattern drifting
in a diffusion process, while aperiodic networks were less robust,
showing the same translational diffusion but also a more damag-
ing rotational drifting of the pattern. The same diffusive process
producing error in the encoded position occurs with noise in phase
difference models (Zilli et al., 2009), suggesting it is likely the
generic behavior of path integration models with internal noise.
To deal with the drifting pattern that occurs with noise, Guanella
et al. (2007) simulated connections from place cells to grid cells
that could reset the grid network. Navratilova et al. (2012) showed
that phase precession in their model was also robust to the presence
of noise.

3.5. “BEST” MODEL
It is possible exactly one current model or mechanism fully
explains the grid pattern to the complete exclusion of all other
models or alternative mechanisms, but grid cells are part of a
messy biological system created through natural selection and
individual development. Grid cell models are designed specifi-
cally to produce the grid in as simple a manner as possible, but
the biological system is unlikely to have evolved with the goal of
finding the simplest way to produce a grid. Grid cells individ-
ually or as a population likely perform a complex and perhaps
context-sensitive processing on inputs that may themselves reflect
various complex, context-sensitive mechanisms, and so the mod-
els may better be considered collectively as a set of metaphors that
guide research by describing how grid cells may possibly be dri-
ven at various times or in different states, rather than as things to
be proven or disproven. For example, the place-driven metaphor
of Kropff and Treves (2008) may be true in familiar environ-
ments, and linear-coding or planar-coding used respectively in 1D
or 2D environments, or perhaps both 1D and 2D environments
are coded linearly, while incidental (e.g., standing on a moving
platform or pushing against a wall and sliding backward) or illu-
sory(e.g., the bus next to your car backs up slightly, creating the
illusion of forward motion) movements might be understood as
updating the position representation through conjunctive cells as
in CANs.

These are meant as examples,not predictions,but it is easy to see
that, given the variety of ways that spatial position could change,
and the distinct systems that may encode or produce different
types of movements, there is much room for a variety of mecha-
nisms to be involved in the unitary representation of position that
grid cells are thought to reflect.
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