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Chronic wounds are a prominent health concern affecting 0.2% of individuals in the

Western population. Microbial colonization and the consequent infection contribute

significantly to the healing process. We have compared two methods, cultivation and

16S amplicon sequencing (16S-AS), for the characterization of bacterial populations in

both swabs and biopsy tissues obtained from 45 chronic wounds. Using cultivation

approach, we detected a total of 39 bacterial species, on average 2.89 per sample

(SD = 1.93), compared to 5.9 (SD = 7.1) operational taxonomic units per sample

obtained with 16S-AS. The concordance in detected bacteria between swab and biopsy

specimens obtained from the same CWs was greater when using cultivation (58.4%) as

compared to 16S-AS (25%). In the entire group of 45 biopsy samples concordance in

detected bacterial genera between 16S-AS and cultivation-based approach was 36.4%

and in swab samples 28.7%. Sequencing proved advantageous in comparison to the

cultivation mainly in case of highly diverse microbial communities, where we could

additionally detect numerous obligate and facultative anaerobic bacteria from genera

Anaerococcus, Finegoldia, Porphyromonas, Morganella, and Providencia. Comparing

swabs and biopsy tissues we concluded, that neither sampling method shows significant

advantage over the other regardless of the method used (16S-AS or cultivation). In this

study, chronic wound microbiota could be distributed into three groups based on the

bacterial community diversity. The chronic wound surface area was positively correlated

with bacterial diversity in swab specimens but not in biopsy tissues. Larger chronic

wound surface area was also associated with the presence of Pseudomonas in both

biopsy and swab specimens. The presence of Corynebacterium species at the initial

visit was the microbial marker most predictive of the unfavorable clinical outcome after

one-year follow-up visit.
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INTRODUCTION

Chronic wounds (CWs) are commonly defined as wounds that
fail to spontaneously heal in 6 weeks (1) and are commonly
classified into three most prevalent etiological categories: (1)
venous valve insufficiency and dependency, (2) lower extremity
arterial disease, and (3) diabetes (2). They affect ∼2.21 per 1,000
individuals in the Western population, significantly reducing life
quality of the patients and representing a costly burden for the
health system (3).

Wound healing is a complex process, affected by various
systemic and local factors, among which microbial burden
is one of the major culprits for non-healing CWs (4).
Colonization with bacteria and fungi has been previously linked
to different CW specific parameters, temporal dynamics and
healing outcomes (5–9). The impaired CW healing is partially
associated with biofilm formation, which provides resistance
against host defenses and antimicrobial therapy (10–12). For the
guidelines on the appropriate biofilm sampling, characterization,
treatment and monitoring of treatment effectiveness we refer
the reader to Hoiby et al. (13). The role of individual bacterial
species in CW development and healing process, however,
remains largely unclear and results in frequent overuse and
ineffectiveness of antimicrobial agents in the treatment of CWs
(14, 15).

The diagnosis of CW infection currently relies on a
combination of clinical judgment andmicrobiological cultivation
of one of the potential specimens: swabs, which are non-invasive

and more frequently used or wound tissue, obtained by a

more demanding and invasive biopsy or curettage (16). Recent

guidelines for CW biofilms specify tissue biopsies as a gold
standard for microbiological diagnostics due to the sampling of
both surface and deeper tissue (4).

Molecular approaches enabling the exact and cost-effective
characterization of mixed microbial populations are slowly
being integrated into microbiological diagnostics in general
(17) and have been considered a tool for rutine diagnostics of
CWs (18). Characterization of the microbiota in CWs is crucial
in order to improve our understanding of its impact on the
healing process. It is intuitive to assume that the molecular
characterization, especially high-throughput sequencing,
will outperform cultivation-based methods, because of the
limitations associated with culturing the slow-growing and
anaerobic microorganisms. However, only few studies up to
date systematically evaluated the differences between the two
approaches (19–22). Previous studies specifically performed on
CWs used either sequencing-based methods (23) or cultivation-
based methods (16, 24, 25) to compare between the swab and
biopsy specimens.

In this study, we used sequencing- and cultivation-based
approaches to analyze paired swab and biopsy specimens in
order to evaluate different methodologies for characterizing
the complex bacterial populations in CWs. Additionally,
extensive metadata were used to reveal wound-specific
and clinical-outcome-associated correlations with bacterial
community structure.

MATERIALS AND METHODS

Specimen Collection
The study included 45 in- and outpatients with CWs, who were
treated in the Department of dermatology and venereal diseases
at University Medical Center Maribor (Slovenia) from February
to June 2017. The inclusion criteria were age above 18 years
and CWs with duration of more than 6 weeks. Only one CW
per patient was sampled. The ethical approval was obtained
by institutional ethical board committee (UKC-MB-KME-23-
13/17).

After obtaining patients’ written informed consents, clinical
data relating to the characteristics of the patients [age, gender,
body mass index (BMI), and ankle-brachial index] and of the
CWs (duration, estimated surface area calculated as length
by width of the wound, topical and systematic therapy in
previous month, clinical assessment of biofilm presence and
clinical outcome of the wound after 1 year), were obtained.
Although no generally accepted clinical signs of CW biofilms
exist (26), extensive fibrinous slough has been proposed as
possible macroscopic clue of CW biofilm (27) and this was also
adopted in this study.

All CWs were cleaned with potable warmwater, soap (pH 5.5),
gauze and a round curette. The swabs were obtained according to
the Levine technique, which consists of rotating a swab over 1
cm2 area with sufficient pressure to express fluid from within the
CW tissue (24, 28). The swabs were placed in a sterile container
with liquid medium and were sent within 24 h for downstream
analysis. Next, 3–4mm punch biopsies were performed on the
same CW area under local anesthesia and the tissue samples were
bisected, with half of the sample immediately frozen and stored
in liquid nitrogen at−197◦C until NGS, and the other half placed
in sterile container and sent within 24 h for bacterial cultivation.

Cultivation-Based Analysis of Samples
Swabs were re-suspended in the physiological solution.
Suspension was divided in two aliquots, one of them was used for
DNA isolation and sequencing, the other was initially inoculated
into thioglycolate enrichment for 24 h. This was subsequently
cultured on the blood agar and selective media for Gram negative
bacteria. Plates were incubated either at 5% CO2 or at aerobic
atmosphere for 24 h.

Tissue biopsies were initially homogenized in physiological
solution (Millimix 20, DOMEL). The homogenate (100 µL) was
transferred into thioglycolate broth and into cooked meat broth.
After 24 h, enrichment cultures were inoculated on the same
media and under same conditions as described above for swabs.
Additionally, anaerobic cultivation was performed on COH and
Schaedler agar for 48 h. Colonies were isolated in pure culture
and identified with Maldi Biotyper (Bruker Daltonik).

16S Metagenomic Sequencing
The tissue biopsies and swab sample residues (in physiological
solution) were stored at−80◦C until molecular diagnostics. Total
DNAwas extracted with QIAamp DNAMini kit (QIAGEN) with
a modified protocol. Pellets were re-suspended in 360 µL of ATL
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buffer and homogenized [SeptiFast tubes (Roche), MagnaLyser
(Roche), 7,000 rpm, 70 s]. Afterwards, 40 µL of proteinase K was
added and the suspension was incubated at 55◦C for 1 h. Next,
200µL of AL buffer was added, followed by an incubation at 70◦C
for 30min. After the addition of 200 µL of 96–100% ethanol, we
transferred the content into column tubes and the subsequent
steps followed the protocol provided in QIAamp DNA Mini kit.
Extracted DNA was stored at−80◦C until further use.

We sequenced the V3V4 variable region of the 16S rRNA
gene. Libraries were prepared according to the 16S Metagenomic
Sequencing Library Preparation (Illumina) protocol using the
primer pair Bakt_341F (5′-CCTACGGGNGGCWGCAG-3′) –
Bakt_805R (5′-GACTACHVGGGTATCTAATCC-3′), covering
∼460 bp fragment length (29). Library quality was checked
with Bioanalyzer High Sensitivity DNA Assay. Sequencing was
performed on the Illumina MiSeq platform (2 × 300 bp,
5% PhiX).

Sequence Data Analysis and Statistics
Quality filtering was performed using mothur software (30) with
parameters as recommended by Kozich et al. (31). Alignment
was performed using Silva reference base (Release 123). Chimeras
were identified using mothur implemented UCHIME algorithm.
Taxonomy was inferred with the RDP training set (v.12) (0.80
bootstrap value). We obtained a total of 7,576,427 reads (min:
14,453, max: 81,825, average per sample: 39460.56).

A negative control (dH2O) was included in every DNA
isolation batch (14 samples), totaling 5 negative controls.
High abundance of contaminants is expected in samples with
low bacterial burden such as CWs. To eliminate as many
contaminants as possible from our dataset we implemented the
following procedure: for each operational taxonomic unit (OTU)
we selected the negative control with the highest number of reads
(Nmax); altogether 5 negative controls were used. RespectiveOTU
was then removed from the sample if the number of reads was<5
× Nmax.

Statistical analysis was done in mothur (alpha and beta
diversity, Bray-Curtis dissimilarity) and in R using packages
“vegan” and “ggplot2.” Analysis of sequencing reads at species
taxonomical level for Corynebacterium genus was performed
with Oligotyping tool (32) and BLAST (https://blast.ncbi.nlm.
nih.gov/Blast.cgi; accessed May 05, 2020).

RESULTS

Characteristics of Patients and Chronic
Wounds
Patient cohort in this study consisted of 31 females (68.9%) and
14 males (31.1%). Patients were on average 73.6 years old (SD
= 11.8), had an average BMI 31.8 (SD = 8.1) and ankle-brachial
index 0.98 (SD = 0.18). All patients were treated with different
topical agents while 9 patients (20%) also received systemic
antibiotic therapy.

An average duration from initial diagnosis of CW up until
sampling for this study was 48.6 months (SD = 82.2). Measured
CW surface area was on average 5494.0 mm2, biofilm was
clinically estimated in 28 CWs (62.2%). The majority of CWs

were located on the lower legs and were classified into four
etiological categories: venous/dependency (n = 30), mixed
arterial-venous (n = 6), diabetic wounds (n = 2) and wounds of
other etiologies (n= 7).

Complete metadata along with OTU-based community
structure is available in Supplementary Figures 1, 2 for
swabs and biopsy samples, respectively. Contingency table
with absolute sequencing read count can be found in
Supplementary Table 1.

Cultivation-Based Analysis of Swabs and
Biopsy Specimens
Swabs and biopsy specimens were collected from 45 CWs. Using
cultivation approach, we detected a total of 39 different bacterial
species, on average 2.89 species per sample (SD = 1.93). The
average number of detected species per sample did not differ
between biopsy and swab specimens (pairwise t-test, p = 0.93).
The structure of bacterial population, however, showed only
partial congruence between swab and tissue biopsy (Figure 1
and Supplementary Table 1). In 58.4% of cases, a respective
bacterial species was detected in both specimens of the same CW,
denoted hereinafter as a match. Highly prevalent bacterial species
were more likely to match in swab/biopsy pairs of samples. For
instance, when bacterial species was detected in at least five
CW samples, we observed a 68% matching rate compared to
the 37% matching rate in case of species that were detected
in <5 CW specimens (Fisher exact-test, p = 0.027). In 41.6%
of paired swab/biopsy samples we observed a miss-match, i.e.,
cases where a bacterial species was detected in only one of the
paired swab/biopsy samples. Similar rates of miss-matches were
observed for swabs (20.5%) and biopsy samples (21.1%) (Fisher
exact-test, p= 1.000).

Cultivable bacterial community was represented by four
bacterial phyla, of which Proteobacteria and Firmicutes
showed the highest diversity and prevalence (Figure 1A).
Pseudomonas aeruginosa and Staphylococcus aureus were the
most prevalent species and were detected in 53% (24/45) and
49% (22/45) of CWs, respectively. In contrast, 43.6% (17/39)
of detected species were each detected in only one CW sample
(Supplementary Table 1).

When using cultivation approach, biased detection between
specimens was most notable among the less prevalent bacterial
species. For example, Peptoniphilus harei (n = 5), Finegoldia
magna (n = 3), Helcoccus kunzii (n = 3) and Porphyromononas
sp. (n = 2) were detected several times, but only in biopsy
samples. On the other hand, Stenotrophomonas maltophilia (n =

2) was detected only in swabs (Figure 1A).

Sequencing Based Analysis of Swabs and
Biopsy Specimens
Amplicon sequencing of the V3V4 variable region of 16S rRNA
gene (16S-AS) yielded 73 OTUs, on average 5.9 per sample
(SD = 7.1). Similar to cultivation approach, the identified
OTUs comprised four bacterial phyla, with Proteobacteria
and Firmicutes dominating the complex communities
(Figure 1B). Most prevalent were representatives from genera
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FIGURE 1 | Concordance in the detection of bacterial species (cultivation) or genera (16S-AS) in swabs and biopsy specimens obtained from chronic wounds. Colors

in the frequency histograms denote the percentages of samples according to the matching/non-matching detections between swab/biopsy sample pairs of the same

CW. Results are presented for cultivation-based approach (A) and 16S-AS (B), separately. Venn diagrams show cumulative percentages for all detected bacterial

groups. Note that (A) (cultivation) represent diversity at the species taxonomic level while (B) (16S-AS) at the genus taxonomic level, therefore the direct comparison of

detectable diversity between methods is not possible in this figure.

Enterobacter, Pseudomonas and Staphylococcus. 16S-AS analysis
revealed culture-approach-associated under-representation
of several taxa, mainly Vibrio, Anaerococcus, Finegoldia
and Enterobacteriaceae.

The rate of miss-matches between swabs and biopsy samples
was greater when using 16S-AS as compared to the cultivation-
based approach (75 vs. 41.6%). This is likely a consequence
of detecting bacteria, which are present in low bio-burden
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(Figure 1B). In both, culture- and 16S-AS-based approach, the
detection of Porphyromonas was more consistent in biopsy
specimens compared to swabs.

Comparison Between 16S Amplicon
Sequencing and Cultivation-Based
Approach
By using the sequencing data, CW samples were distributed into
three groups based on the number of OTUs that were required
to cover 99% of the obtained number of reads. Diversity group
A included low diversity samples with a single OTU comprising
99% of all reads; diversity group B required 2 to 4 OTUs to cover
99% of obtained reads while the diversity group C required more
than 4 OTUs (Figure 2 and Supplementary Figures 1, 2). Only
51.1% (23/45) swab/biopsy pairs were classified into the same
diversity group.

The concordance between 16S-AS and cultivation-based
detection of bacterial genera depended on the community
diversity. Our results indicate that cultivation-based detection
underestimates the bacterial richness in highly diverse bacterial
communities (diversity group C) while no such bias was observed
in case of low diversity communities (diversity group A)
(Supplementary Figure 3). The concordance between 16S-AS
and cultivation-based detection was higher in biopsy samples
(36.4% matching rate) compared to the swab samples (28.7%
matching rate) (Fisher exact-test, p = 0.002). Representatives
from genera Pseudomonas, Staphylococcus and Enterococcuswere
most often detected with cultivation method while absent in
16S-AS data. Also, representatives from genera Achromobacter,
Acidovorax, Arthrobacter, and Granulicatella, each detected once
with cultivation, were not detected with 16S-AS. Achromobacter
was the only one among these, which was removed from
16S-AS data due to the high number of reads found in the
negative controls. On the other hand, several genera were often
detected with 16S-AS, but not with cultivation. These included
anaerobic representatives from Anaerococcus, Finegoldia and
Porphyromonas; facultative anaerobes Morganella, Vibrio and
Providencia, and aerobes from genera Erythrobacteriaceae and
Stenotrophomonas (Figure 2).

Microbiota Associations With Patient- and
Wound-Specific Parameters and Clinical
Outcome
In this study, underlying causes of the CWs included venous
insufficiency/dependency, combination of peripheral arterial
disease and venous insufficiency, diabetes and other causes (see
Materials and methods). Due to the large disproportion in the
number of samples of CWs from each etiological category,
comparison between them was not possible.

Patient-specific factors (age, gender, and body mass index)
were not significantly correlated with bacterial community
structure neither in swab nor in biopsy specimens (Permutational
multivariate analysis of variance (PERMANOVA) using
Bray-Curtis distances, p ≥ 0.42; Supplementary Table 2).
Bacterial community was not associated with antibiotic therapy
(PERMANOVA, p > 0.78), while comparison between different

topical treatments was not possible due to small number of cases
in each subgroup.

Pseudomonas (OTU1) was the only bacterial group
significantly associated with a larger CW surface area, both
in biopsy (Spearman’s r = 0.55, p < 0.001) and swab specimens
(Spearman’s r = 0.48, p = 0.001; Figure 3A). The CW surface
area was also positively correlated with the bacterial diversity in
swab specimens (Spearman’s r = 0.42, p = 0.008; Figure 3A),
however no such correlation was observed in biopsy tissues. No
correlation was found between bacterial community and CW
duration or ankle-brachial index.

CWs were evaluated ∼1 year after the sampling and were
classified as cured, healing, stagnating or expanding. Higher
abundance of Corynebacterium (OTU37 and OTU11) was
associated with unfavorable clinical outcomes at the follow-ups,
most commonly resulting in the stagnation of the healing process
(Fisher exact-test, p = 0.092 and 0.072 for biopsy and swab
specimen, respectively). Unfavorable clinical outcomes were also
correlated with a larger CW surface area (Spearman’s r = 0.44,
p = 0.004) and the presence of biofilm at the time of CW
sampling (Figure 3B). In the group of CWs with no clinical signs
of biofilm, the recovery rate was 53.3% (8/15) compared to 22.2%
(6/27) recovery rate of CWs with clinical signs of biofilm (Fisher
exact-test, p = 0.085). Additionally, expansion of CW area on
the follow-up was observed exclusively in cases with estimated
biofilm at the first visit (6/45 CWs; 13.3%). In CWs with clinically
estimated biofilm, microbiota showed slightly lower richness (3.2
OTUs per sample), compared to biofilm-free CWs (5.3 OTUs per
sample) (p = 0.027); however, no specific bacterial groups could
be correlated to the biofilm formation.

Additionally, we observed a strong co-occurrence between
five OTUs comprising Peptoniphilus (OTU14 and OTU33),
Finegoldia (OTU18) and Anaerococcus (OTU21 and OTU24)
(mean Spearman’s r = 0.59). At least two of these five OTUs co-
occurred in 15/45 CWs (33.3%) and all five co-occurred in 3/45
samples (6.7%) (Supplementary Figure 4).

DISCUSSION

The aim of the present study was to compare different approaches
for characterization of bacterial communities residing in
CWs. We evaluated the differences between swabs vs. biopsy
specimens and differences between performing 16S amplicon
sequencing (16S-AS) vs. cultivation-based methods. Finally,
we associated microbiota signatures with patient- and wound-
specific parameters and clinical outcomes at the 1-year follow-up.

Comparison between swabs and tissue samples did not reveal
significant advantage of one method of sampling over the other
which is in concordance with previously reported studies (23, 25).
However, we observed that the rate of concordance between
cultivation and 16S-AS was higher when analyzing biopsy tissue
(36.4%) compared to the swab samples (28.7%). Concordance
between the swab/biopsy pairs of the same CW was 58.4 and
25.0% for cultivation-based and 16S-AS analysis, respectively.
The relatively low matching rate was likely a consequence of
the detection of bacteria present at low cell concentration and
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FIGURE 2 | Concordance in the detection of bacterial genera with cultivation and 16S-AS in chronic wounds. Heat-plots show relative abundances of bacterial

genera across all analyzed CW samples obtained from swabs (top) and biopsies (below). Red dots denote genera, which were also detected with cultivation-based

approach. Samples were assigned to three diversity groups (A, B, and C), based on the number of operational taxonomic units (OTUs) that were required to cover

99% of total obtained sequencing reads. Diversity groups were not associated with the number of reads obtained per sample, indicated by the symbols shown above

the heat-plots approximating the number of reads per sample into three categories. Histograms (right) show the concordance between cultivation-based detection

and 16S-AS. Venn diagrams show cumulative percentages for all detected bacterial genera.
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FIGURE 3 | Microbiota association with wound surface area at the time of sampling and clinical outcome at 1-year follow-up. (A) CW surface area was positively

correlated with the Pseudomonas (OTU1) abundance (left), significant for both biopsy (blue) and swab specimens (red); and with a larger diversity of the bacterial

community, but only in swab specimens (right). (B) Unfavorable clinical outcomes were most significantly associated with a larger CW surface area (left) and the

clinically estimated presence of biofilm (right). Red lines/points denote group means.

sampling bias due to the heterogeneity of bacterial communities
along wound surface (33) and inside biofilms (34).

Previous studies already demonstrated the advantages of
using sequencing-based methods over cultivation for the

characterization of bacterial communities in CWs (19, 21, 22).
In this study, the 16S-AS approach appeared advantageous
over cultivation when characterizing communities with high
bacterial diversity. In up to 60% of CWs with the highest bacterial
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diversity (more than 4 OTUs presented 99% of total obtained
sequencing reads), the respective genera were detected solely
with 16S-AS. On the other hand, in the low diversity samples
dominated by a single bacterial group we did not observe
any advantage of one method over the other. The majority
of bacterial groups that we failed to detect with cultivation,
included obligate and facultative anaerobic bacteria from genera
Anaerococcus, Finegoldia, Porphyromonas, Morganella and
Providencia, which is in concordance with previous publications
(19, 21). Interestingly, the five OTUs corresponding to three
Gram-positive anaerobic cocci (Anaerococcus, Finegoldia, and
Peptoniphilus) frequently co-occurred in our study, forming a
consortium which has already been reported (35), however its
clinical relevance remains to be elucidated.

In our study, biofilm was clinically diagnosed in 62% of
CWs, which is less frequent compared to the reported rates of
at least 78% of CWs (36). Biofilms have prominent influence
on development of CWs and hamper CW healing due to the
increased resistance against the host defenses and antimicrobial
therapy (10, 11). In this study, CWs with clinically assessed
biofilm at the time of sampling, showed 31% lower recovery
rate compared to those without estimated presence of biofilm.
Additionally, all the CWs, which showed the surface area
expansion at 1-year follow-up, had a diagnosed biofilm at the
first visit. It has been reported that CWs with clinically assessed
biofilms were associated with a larger surface area, which is
an established predictor of impaired CW healing (37, 38). In
this study, only 15% of CWs with a surface area larger than
1,000 mm2 healed in a period of 1 year. Microbiota association
analysis revealed that larger CW surface area at the time of
sampling positively correlated with an increased abundance of
P. aeruginosa and higher bacterial diversity and, the latter being
in disagreement with previous study by Loesche et al. (8), which
reported improved healing of diabetic foot ulcers with higher
bacterial diversity.

Increased abundance of Corynebacterium was the single
most predictive bacterial marker associated with unfavorable
clinical outcomes in our study. Corynebacterium species are
generally perceived as commensal (39); and the abundance of
Corynebacterium was shown to be inversely correlated with
S. aureus, suggesting potential protective role (40). However,
under the right circumstances, Corynebacterium species can be
clinically relevant (41–43) and the targeted treatment against this
bacterium has shown improvement in the CW healing process
(44). In this study, only Corynebacteirum striatum was identified
by cultivation, corresponding to the more prevalent OTU11
in the 16S-AS dataset. However, an additional less prevalent
Corynebacteirum OTU37 was also associated with unfavorable
clinical outcomes. Top BLAST hits suggested OTU 11 and
OTU 37 to belong to either C. pseudodiphtheriticum or C.
propinquum. Reports on the clinical relevance of either of these
two Corynebacterium species in the context of CW infections are
rare (45, 46).

In previous reports, Staphylococcus has been reported as
the most prevalent genus present in the microbiota of CWs,
besides Pseudomonas (9, 47), however no correlation between

Staphylococci and CW-specific factors or clinical outcome were
found in this study.

A limitation of this study is that after obtaining the wound
samples, the patients were not followed up thoroughly in
terms of recording topical and systemic antimicrobial treatment,
compression treatment with its specification, mobility, chronic
and acute co-morbidities, especially peripheral arterial disease,
anemia and nutrition. For appropriate correlation analysis of
wound outcome, all these factors should also be addressed.
Another limitation of our study is the small number of samples.
Community composition differed greatly among CWs therefore
larger sample sizes will be required in the future to improve
the significance of correlations with clinical data. Also, the most
common sequencing methodology (16S-AS) has an inherent
limitation, as it does not enable characterization of microbiota at
the species level, which would again better elucidate the clinical
relevance of the observed trends.

In conclusion, the comparative analysis of 45 CWs included in
this study showed that swabs and biopsy tissues are comparably
sufficient for the correct identification of the dominating
bacterial colonizers in CWs. Sequencing based approach was
more efficient at capturing the broad spectrum of bacteria in
communities with high bacterial diversity, detecting multiple
additional obligate and facultative anaerobic bacterial taxa.
However, currently sequencing is not a time- and cost-effective
method, ready to be introduced in the routine diagnostics.
The main strength of the method is identification of potential
bacterial markers for unfavorable clinical outcome, as shown in
our study for Corynebacterium species.
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