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Muscle weakness is a common clinical symptom in children with spastic cerebral palsy

(SCP). It is caused by impaired neural ability and altered intrinsic capacity of the muscles.

To define the contribution of decreased muscle size to muscle weakness, two cohorts

were recruited in this cross-sectional investigation: 53 children with SCP [median age,

8.2 (IQR, 4.1) years, 19/34 uni/bilateral] and 31 children with a typical development (TD)

[median age, 9.7 (IQR, 2.9) years]. Muscle volume (MV) and muscle belly length for

m. rectus femoris, semitendinosus, gastrocnemius medialis, and tibialis anterior were

defined from three-dimensional freehand ultrasound acquisitions. A fixed dynamometer

was used to assess maximal voluntary isometric contractions for knee extension, knee

flexion, plantar flexion, and dorsiflexion from which maximal joint torque (MJT) was

calculated. Selective motor control (SMC) was assessed on a 5-point scale for the

children with SCP. First, the anthropometrics, strength, and muscle size parameters

were compared between the cohorts. Significant differences for all muscle size and

strength parameters were found (p ≤ 0.003), except for joint torque per MV for the

plantar flexors. Secondly, the associations of anthropometrics, muscle size, gross motor

function classification system (GMFCS) level, and SMC with MJT were investigated

using univariate and stepwise multiple linear regressions. The associations of MJT

with growth-related parameters like age, weight, and height appeared strongest in the

TD cohort, whereas for the SCP cohort, these associations were accompanied by

associations with SMC and GMFCS. The stepwise regression models resulted in ranges

of explained variance in MJT from 29.3 to 66.3% in the TD cohort and from 16.8 to

60.1% in the SCP cohort. Finally, the MJT deficit observed in the SCP cohort was

further investigated using the TD regression equations to estimate norm MJT based on

height and potential MJT based on MV. From the total MJT deficit, 22.6–57.3% could be

explained by deficits in MV. This investigation confirmed the disproportional decrease in

muscle size andmuscle strength around the knee and ankle joint in children with SCP, but

also highlighted the large variability in the contribution of muscle size tomuscle weakness.
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INTRODUCTION

Cerebral palsy (CP) describes a group of permanent disorders
of the development of movement and posture, causing activity
limitation, that are attributed to non-progressive disturbances
that occurred in the developing fetal or infant brain. It is the
most common cause of childhood-onset physical disability (1).
Spastic CP (SCP) is the largest subcategory, affecting between
70 and 80% of children with CP (2). Children with SCP
present with physical impairments like abnormal gait and gross
motor function, which can deteriorate gradually. These physical
impairments are associated with limitations in daily life activities
and restrictions in societal participation. They are primarily
caused by neural impairments including spasticity, decreased
selected motor control (SMC), and poor postural stability.
Additionally, the neural impairments can lead to secondary non-
neural musculoskeletal impairments like altered intrinsic muscle
structure, muscle contractures, and bony deformities (3).

Another consistent clinical finding in children with SCP
is muscle weakness (4–7), defined as an inability to produce
or maintain an anticipated level of force (8). When studying
mechanisms underlying physical disability, higher associations
with gross motor function have been reported for strength
and selectivity than for spasticity (9–13). In ambulant children
with SCP, lower extremity muscle strength deficits have been
identified, ranging from 15 to 80%, with larger deficits reported
for less functional children (4, 5, 14). Moreover, the increase in
strength during growth is lower than in typically developing (TD)
children and suggested to be insufficient in relation to increases
in body mass (15, 16).

However, muscle weakness cannot be categorized as just a
neural or just a musculoskeletal impairment. Both the neural
ability to selectively activate the muscle and the intrinsic
capacity of the muscle influence strength production (6, 7).
Furthermore, the assessment of strength in children with SCP
can also be influenced by cognitive, attentional, or motivational
difficulties (17). The primary cause of muscle weakness in
children with SCP is impaired neural function due to damage
to the descending pathways of the central nervous system (7).
The central damage impacts the ability to maximally activate
the agonists and the degree of cocontraction of antagonists (6,
7, 18, 19). Secondarily, muscle weakness is caused by intrinsic
muscle property alterations involving decreases in muscle size,
deteriorated muscle integrity, and potentially also changes in
fascicle arrangement (17, 20–22).

Improved access to muscle imaging techniques in clinical
research has led to a great increase in the number of studies
quantifying intrinsic muscle properties in children with SCP
(23). Lower limb muscle volume (MV) reduction ranging from
18 to 50% has been documented (6, 24–31). Similar reductions
have been described based on two-dimensional ultrasound (US)
measures of muscle size like muscle thickness and cross-sectional
area (CSA) (6, 17, 29, 32, 33). These deficits in muscle size
present as early as the age of 15 months (27, 34, 35) and
increase into later childhood and adolescence (36). Comparable
to muscle weakness, muscle size is also related to the level
of functionality, with larger reductions seen in less functional

children (25, 26, 29, 37–39). However, large variability has been
reported between subjects and between different muscles, often
with distal predominance of MV reduction (25, 28).

The physiological CSA (pCSA) of a muscle is the ratio of MV
to fascicle length. This value represents the number of fascicles
in parallel. It is therefore directly related to the force-generating
capacity of a muscle. Since pCSA and muscle size show a strong
association with muscle strength in TD populations (40, 41), it
can serve as a proxy measure of potential strength in children
with SCP. It is likely that decreased MV and shorter or similar
fascicle lengths result in decreased pCSA in children with SCP
(29, 42). However, as discussed above, the decrease in muscle
strength is larger than the reduction in MV. While investigating
the muscle size–strength relationship, Reid et al. (20) found a
weaker association between knee flexors and extensors MV and
anatomical CSA (aCSA) and joint torque in comparison to TD
children. Elder et al. (6) found a reduction in specific tension,
defined as the ratio of joint torque and aCSA, for both the plantar
and dorsiflexors in SCP. The disproportional decrease in muscle
strength could be related to other properties such as impaired
neural control (6, 7).

Most focal treatments for children with SCP, like strength
training, casting, and botulinum neurotoxin-A injections, are
administered at the muscular level (43, 44). Knowing the
contribution of decreased muscle size to muscle weakness is of
importance in choosing the appropriate treatment options. The
muscle size–strength relationship in children with SCP has been
evaluated both at the knee and the ankle, but in different, possibly
not equivalent, ways (6, 20). Additionally, in investigations about
the factors underpinning gross motor function, parameters of
muscle size have been combined with neuromotor symptoms like
SMC and indirect estimates of muscle quality (12, 24). Evaluating
the muscle size–strength relationship at the knee and ankle joint
in one cohort of children with SCP, using data of TD children
as a reference, as well as including SMC, could improve our
understanding of the neural and non-neural contributions to
muscle weakness in this population.

The first aim of this investigation was to describe the deficits
in muscle strength, muscle size, and their ratio for knee flexors
and extensors, plantar, and dorsiflexors in children with SCP.
Secondly, the muscle size–strength relationship was defined,
combined with the influence of age, anthropometric measures,
functional level, and SMC following a multiple linear regression
approach. Finally, the contribution of muscle weakness due to
decreased muscle size to the total deficit in muscle strength was
defined for the four investigated joint movements.

MATERIALS AND METHODS

Participants
This investigation included a convenience sample of 84
participants, 53 with SCP (19 unilateral and 34 bilateral) and
a control group of 31 TD children, who were recruited at the
Clinical Motion Analysis Laboratory at the University Hospitals
Leuven, Belgium. Inclusion criteria for the SCP cohort were a
confirmed diagnosis of SCP, age between 5 and 12 years, and
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gross motor function classification system (GMFCS) level I–
III (45). Botulinum neurotoxin-A injections 6 months prior to
the assessments, lower limb bony surgical interventions 2 years
prior to the assessments, and history of lower limb muscular
surgeries at any time point were defined as exclusion criteria.
In case of insufficient cooperation during testing or insufficient
understanding of the test procedures, the participant was also
excluded. TD children were recruited via hospital co-workers and
students within the same age range of 5–12 years and could not
have any known neurological or orthopedic lower limb problems.
All data were collected as part of an ongoing project that was
approved by the local Ethical Committee of the University
Hospitals Leuven (S59945) and Ghent (EC/2017/0526). Written
informed consent was obtained from all parents or caregivers.

Data Collection and Analysis
Participant Characteristics and Anthropometrics
The clinical and anthropometric features of the participants
are summarized in Table 1. The most affected leg was assessed
in the participants with SCP, according to the clinical reports
and the most recent clinical exam results for muscle spasticity
(Modified Ashworth Scale and Modified Tardieu angle) and
strength (Medical Research Council grade scale) at the knee and
ankle (46–48). If the clinical examination indicated no difference,
the assessed leg for study was chosen at random by flipping a coin.
In the TD cohort, the assessed leg was identified in the same way.
Age, weight, and height were recorded for each participant. A
clinical classification of SMC assessed in standard manual muscle
testing position, graded on a 5-point scale between 0 and 2, was
used for knee extension (KE), knee flexion (KF), plantar flexion
(PF), and dorsiflexion (DF) [adapted from the method described
by Gage et al. (49)].

Three-Dimensional Freehand Ultrasonography
Three-dimensional freehand ultrasonography (3DfUS)
acquisitions were performed by combining a conventional
two-dimensional B-mode ultrasonography device (Telemed-
Echoblaster 128 Ext-1Z, with a 5.9-cm 10-MHz linear US
transducer, Telemed Ltd., Vilnius, Lithuania) with a motion
tracking system (Optitrack V120:Trio, NaturalPoint Inc.,
Corvallis, Oregon, USA) (50). According to a previously
described technique, four markers were attached to the US
probe and tracked by the motion tracking system, resulting in
the synchronized position and orientation of every acquired
two-dimensional US image (50).

Both data collection and processing were performed using
STRADWIN software (version 6.0; Mechanical Engineering,
Cambridge University, Cambridge, UK) for four lower limb
muscles: m. rectus femoris (RF), m. semitendinosus (ST), m.
tibialis anterior (TA), and m. gastrocnemius medialis (MG).
The reliability of 3DfUS has been confirmed for the plantar
flexor muscles (50–52), as well as for the processing of the TA,
RF, and ST (53). MV (in milliliters) was estimated by drawing
equally spaced transverse plane segmentations along the inside
of the muscle border for ∼5% of all acquired images, followed
by an automatic linear interpolation. The reconstructed muscle
was visually inspected, and additional images were segmented

to improve the interpolated shape if needed. Muscle length
(ML) (in millimeters) was determined as the linear distance
between muscle origin and distal muscle tendon junction. MV
was normalized to body mass (nMV; ml/kg) and ML, to subject
height (nML; mm/cm), enabling comparisons between cohorts.
More details about the measurement and processing protocol can
be found in Supplementary File 1.

Isometric Strength Assessments
Maximum voluntary isometric contractions (MVIC) were
collected for KE, KF, PF, and DF with a fixed dynamometer
(MicroFet 2, Hogan Health Industries, West Jordan, Utah,
USA) in a previously described, custom-designed chair (5).
The procedure is further explained in Supplementary File 2.
Custom-written MATLAB scripts were used to determine the
peak force (in Newton) of each MVIC, from which average
maximal joint torque (MJT; Nm) and normalized joint torque
(nMJT; Nm/kg) were calculated over the three MVIC trials (5).

Statistical Analysis
Data were analyzed using SPSS (Version 26, SPSS Inc.,
Chicago, Illinois, USA). A ratio of strength to muscle size was
calculated for every joint movement by dividing the MJT by the
corresponding MV. Percentage differences in muscle strength
and muscle size between TD and SCP were calculated as shown
below, whereM represents themedian of the specified parameter:

%Diff =

(

MSCP −MTD

MTD

)

∗100% (1)

A negative percentage indicated a deficit in the SCP group in
comparison to the TD group. Normality of the data distribution
was evaluated using the Shapiro–Wilk test, histograms, and QQ
plots. Since most parameters were not normally distributed,
all descriptive statistics are presented as median (interquartile
range). Bonferroni corrections were applied for multiple testing
and specified beneath each table.

To investigate the first aim, differences between the TD
and SCP cohort were assessed using a Student’s t-test (after
confirming equality of variances) or the Mann–Whitney U-test.

For the second aim, linear associations between
anthropometric measures (normalized) MV and ML, SMC,
GMFCS, and (n)MJT were explored by univariate linear
regression. Standardized residuals (≥3 standard deviations) were
used to remove outliers, and normal distribution of residuals
and heteroscedasticity were checked. Correlation coefficients
were classified as negligible (r < 0.300), low (r = 0.300–0.499),
moderate (r = 0.500–0.699), high (r = 0.700–0.899), or very
high (r ≥ 0.900) (54), and differences in correlation coefficients
between TD and SCP were defined by Fisher Z-scores. Based
on the linear association with (n)MJT and the interassociations
of potential independent variables within the categories
anthropometrics (age, weight, and height), muscle morphology
(MV and ML), and clinical scales (SMC and GMFCS), one
parameter was selected per category to be used in themultivariate
analyses. Multiple linear regression models were built using a
backward approach (enter p ≤ 0.05, remove p ≥ 0.10). A first
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TABLE 1 | Participant characteristics.

Typically developing Spastic cerebral palsy Comparison

(n = 31) (n = 53)

Median IQR Median IQR T-test MWU

Age (yrs) 9.7 2.9 8.2 4.1 0.064

Weight (kg) 29.2 9.1 27.3 13.6 0.407

Height (cm) 138.6 17.5 130.4 19.3 0.021

Frequencies Frequencies

Sex (F/M) 16/15 22/31

Involvement (uni/bi) NA 19/34

GMFCS (I/II/III) NA 32/12/9

SMC (2/1.5/1/0.5/0) (n = 52)

Knee extension NA 33/13/6/0/0

Knee flexion NA 24/15/7//0/1

Plantar flexion NA 18/15/7/4/4

Dorsiflexion NA 23/20/9/6/1

Comparison of anthropometric parameters between TD children and children with spastic cerebral palsy. Significant p-value ≤ 0.017 (p = 0.05/3). n, number; IQR, inter quartile range;

MWU, Mann-Whitney U test; F, female; M, male; NA, not applicable; GMFCS, gross motor function classification system; SMC, selective motor control.

model included the same parameters for both cohorts from the
categories anthropometrics and muscle morphology. In a second
model for the SCP cohort, the additional explained variance
by a clinical scale was explored. Standardized residuals and
Cook’s distance value were used to diagnose and remove outliers.
Final models were assessed for normal distribution of residuals,
multicollinearity, and heteroscedasticity.

For the third aim, the MJT deficit observed in the SCP cohort
was further investigated using the TD regression equations. The
regression equation of MV with MJT defined in the TD cohort
was used to estimate potential muscle strength in children with
SCP (MJTpotential) based on their MV. The regression equation
for MJT based on an anthropometric variable was used to
estimate the expected norm value of muscle strength for children
with SCP (MJTnorm). Muscle strength profiles based on the
relative contribution of decrease in MV (MJTdeficitMV) and the
other factors (MJTdeficitother) to muscle weakness were calculated
as a percentage of the total strength deficit (Figure 2A).

There were some missing data due to 3DfUS reconstructions
that could not be analyzed, MVICs that could not be assessed,
and missing information about SMC. For the univariate linear
regressions, the participant with missing data was excluded for all
analyses of the specific joint movement. An overview of missing
data is added in Supplementary Table 1.

RESULTS

Like in the Methods section, the results are structured in the
order of the three aims. First, the descriptive results and deficits
of SCP children in comparison to TD children are described
and reported in Tables 1, 2. Thereafter, the linear associations
and multiple regression models are discussed and presented in

Figure 1 and Tables 3, 4. Finally, the contributions to muscle
weakness are explored and reported in Figure 2.

Deficits
Descriptive results of participant characteristics are shown in
Table 1. There were no significant differences in age, weight,
and height between the SCP and TD groups. Table 2 describes
the differences in muscle morphology and strength parameters
between the TD children and children with SCP. Both MV and
nMV for all four muscles were significantly decreased in the
SCP cohort (p ≤ 0.002). For nMV, the median deficits ranged
between 19.7% for the ST and 43.5% for the TA. Similarly, both
ML and nML were significantly decreased in the SCP cohort for
all four muscles except for nML of the RF, which was close to
significance (p≤ 0.011). Differences in median nML ranged from
4.6% for the RF to 11.3% for the MG. Similar to the alterations
in muscle morphology, both MJT and nMJT were significantly
decreased for all four joint movements (p < 0.001). Normalized
MJT showed median decreases ranging from 47.1% for PF to
71.7% for DF. The ratio of joint torque over muscle size was also
significantly decreased for KE, KF, andDF, withmedian deficits of
40.3–54.0% (p < 0.001), but PF showed a lower, non-significant
deficit of 18.1% (p= 0.071).

Relationships
The univariate associations of anthropometric parameters,
muscle morphology, GMFCS, and SMC with MJT, as well as
with nMJT, are depicted in Table 3. In the TD cohort, all
anthropometric and muscle morphology parameters showed
significant moderate to high associations with MJT of KE, KF,
and DF (r = 0.537–0.849, p≤ 0.003). For PF, only age and height
showed significant moderate associations (r = 0.502–0.556, p
≤ 0.008). Associations of PF with weight and MV were close
to significance but low (r = 0.449–0.463, p ≤ 0.019). Similarly,
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TABLE 2 | Comparisons of muscle morphology and maximal joint torque.

Typically developing Spastic cerebral palsy Comparison

n Median IQR n Median IQR T-test MWU %

Muscle volume (ml)

Rectus femoris 31 96.0 32.0 53 64.9 33.2 <0.001* −32.7

Semitendinosus 29 68.8 31.3 48 48.8 30.6 0.002* −30.4

Medial gastrocnemius 27 68.5 29.1 49 40.0 26.4 <0.001* −41.6

Tibialis anterior 28 48.6 28.7 49 25.5 12.6 <0.001* −47.6

Normalzied MV (ml/kg)

Rectus femoris 31 3.17 0.61 53 2.30 0.63 <0.001* −27.5

Semitendinosus 29 2.24 0.75 48 1.80 0.36 <0.001* −19.7

Medial gastrocnemius 27 2.44 0.41 49 1.49 0.76 <0.001* −38.9

Tibialis anterior 28 1.60 0.49 49 0.90 0.25 <0.001* −43.5

Muscle length (mm)

Rectus femoris 31 256.8 47.1 53 224.5 47.5 0.003* −12.6

Semitendinosus 29 244.1 50.8 48 221.0 46.7 <0.001* −9.5

Medial gastrocnemius 27 185.5 39.6 49 146.1 39.9 <0.001* −21.3

Tibialis anterior 28 242.9 58.0 49 198.2 43.7 <0.001* −18.4

Normalized muscle length (mm/cm)

Rectus femoris 31 1.84 0.23 53 1.75 0.16 0.011 −4.6

Semitendinosus 29 1.81 0.28 48 1.68 0.21 0.001* −7.2

Medial gastrocnemius 27 1.35 0.15 49 1.19 0.24 <0.001* −11.3

Tibialis anterior 28 1.74 0.23 49 1.58 0.20 <0.001* −9.1

Maximal joint torque (Nm)

Knee extensors 31 31.0 35.5 53 13.3 18.4 <0.001* −57.1

Knee flexors 29 22.5 11.9 48 6.7 10.4 <0.001* −70.2

Plantar flexors 27 12.5 8.3 49 7.0 5.2 <0.001* −44.0

Dorsiflexors 28 9.9 6.0 49 2.3 2.0 <0.001* −77.2

Normalized maximal joint torque (Nm/kg)

Knee extensors 31 1.11 0.63 53 0.54 0.53 <0.001* −51.8

Knee flexors 29 0.74 0.49 48 0.28 0.30 <0.001* −62.4

Plantar flexors 27 0.42 0.21 49 0.22 0.24 <0.001* −47.1

Dorsiflexors 28 0.31 0.16 49 0.09 0.07 <0.001* −71.7

Joint torque/muscle size (Nm/ml)

Knee extensors 31 0.40 0.19 53 0.24 0.20 <0.001* −40.3

Knee flexors 29 0.31 0.16 48 0.14 0.17 <0.001* −54.0

Plantar flexors 27 0.19 0.10 49 0.15 0.13 0.071 −18.1

Dorsiflexors 28 0.19 0.11 49 0.09 0.06 <0.001* −51.2

Comparisons of muscle morphology parameters and MJT between TD children and children with SCP. *Significant difference at p ≤ 0.007 (p = 0.05/7). n, number; IQR, interquartile

range; MWU, Mann–Whitney U-test.

in the SCP cohort, associations of anthropometrics and muscle
morphology with MJT were significant for KE and KF, with
coefficients ranging from low to high (r = 0.437–0.746, p ≤

0.007). For DF, height, MV, and ML were significant, whereas
age and weight were close to significance (r = 0.353–0.639, p
≤ 0.013). Only MV and ML were significant for PF with low
associations (r = 0.413–0.431, p ≤ 0.003). GMFCS level showed
a low significant association with KE MJT and a low, close to
significant association with KF (r = −0.340–0.469, p ≤ 0.018),
but negligible non-significant associations with PF and DF MJT
(r = −0.251, p ≤ 0.082). SMC was moderately significantly
correlated with KE and PF MJT (r = 0.450–0.480, p = 0.001),

close to significant for KF (r= 0.337, p= 0.021), and there was no
association with DF MJT. Fisher’s Z-scores did not demonstrate
significant differences between the reported relationships for
children with and without SCP, except for KE with weight (Z =

2.442) and age with DF MJT (Z = 1.764).
To eliminate the influence of growth on the associations

with MJT, the univariate analyses were also performed with
normalized parameters (nMJT, nMV, and nML). In the TD
cohort, only the association of weight and height with KE nMJT
remained significant (r = 0.486–0.528, p ≤ 0.006). However,
in the SCP cohort, nMV associated significantly with nMJT
of KE, PF, and DF (r = 0.401–0.608, p ≤ 0.004), and nML
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with KE nMJT (r = 0.454, p = 0.001). GMFCS showed low to
moderate significant associations with KE and KF nMJT (r =

−0.504 to−0.414, p≤ 0.003), and SMC showed low to moderate
significant associations with KE, KF, and PF (r = 0.442–0.528,
and p ≤ 0.002).

Based on the univariate associations with MJT (Table 3)
and the interassociations between predictors within each
category (Supplementary Table 2), the following parameters
were selected: height within the category anthropometrics, MV
within muscle morphology, and SMC within clinical scales. The
results of the multiple linear regression models for MJT in
both cohorts are presented in Table 4. The models in the TD
cohort (Table 4A) included height, MV, or both parameters. All
regression models were significant (p ≤ 0.002), and explained
variance ranged from 29.3% for PF to 66.3% for KE. The results
in the SCP cohort for MJT (Table 4B) were also all significant
(p ≤ 0.002), and in the first model, with the same independent
variables as in the TD cohort, only MV was included per joint
movement. Explained variance ranged from 16.8% for PF to
54.8% for KE. In the second model, also SMC was entered into
the model. The model for DF MJT did not change, whereas SMC
was included for KE, KF, and PFMJT. The regression coefficients
increased accordingly, explaining an additional 5.3–11.1% of the
variance compared to the first model (Table 4B). The multiple
linear regression models in the SCP cohort for nMJT had
explained variances ranging from 21.0 to 41.9% and were all
significant (p≤ 0.002) (Table 4C). The included parameters were
SMC, nMV, or both.

Contributions to Muscle Weakness
Although the correlation coefficients of MV with MJT were
similar between TD and SCP, the regression coefficients or slopes
of this relationship tended to be lower in the SCP cohort for
all joint movements, except for KF. However, there was a large
difference in the regression constant for KF (Figure 1). The
children with SCP are largely located at the bottom-left quadrant
of the graphs, pointing toward lower MV with even lower MJT
than what would be potential for the MV.

Figure 2 and Supplementary Table 3 show the relative
deficits in MJT divided into the part caused by the decrease
in MV (MJTdeficitMV) and the part resulting from other
factors, like decreased neural control or alterations in
muscle composition (MJTdeficitother). MJTdeficittotal as a
percentage of MJTnorm ranged from 44.7% for PF to 73.3%
for DF. The contribution of MJTdeficitMV was largest for KE
with 57.3%, followed by PF (47.7%), DF (39.3%), and KF
(22.6%). The muscle strength profiles for every participant
are depicted in Supplementary Figure 1, indicating the
absolute values of MJTmeasured, MJTdeficitMV, and MJTdeficitother.
Supplementary Figure 1 shows that the contribution of
decreased MV to muscle weakness is not constant, as it changes
with increasing MJT. At the younger ages, there were some
children who did not have a deficit based on MV, especially
for KF, and KF and DF showed an almost constant and large
contribution of other factors to the MJTdeficittotal. However, the
contribution of a deficit in MV appeared to increase with growth
and therefore with increasingMJTnorm. Supplementary Figure 1

specifically highlights the high heterogeneity, not only between
joint movements but also between subjects.

DISCUSSION

Deficits
The first aim of this investigation was to define the deficits in
muscle strength, muscle size, and their ratio for KF, KE, PF, and
DF in children with SCP. The children with SCP demonstrated
significant deficits in MV compared to their TD peers, for all
assessed muscles (Table 2). Since the TD cohort appeared slightly
older (Table 1), MV was also normalized to body weight, but
the differences remained. The deficits in nMV, ranging from
19.7 to 43.5%, were consistent with earlier results in literature
(6, 24, 25, 28, 30). The differences in deficits in proximal and
distal muscles were also in line with previous findings, with the
proximal muscles showing ∼70% MV of the TD cohort values
and the distal muscles showing 50–60% MV of the values of
TD children (25, 28). Similarly, ML and nML were significantly
decreased, with deficits in nML ranging from 4.6 to 11.3%. The
decreases in muscle size parameters were accompanied with
significant decreases in muscle strength, ranging from 47.1 to
71.7% for the nMJT (Table 2). These deficits are consistent with
earlier reported deficits in muscle strength in children with CP
(4, 5, 15). In the current investigation, KE and KF were similarly
weakened, whereas DF was far more affected than PF. This
difference betweenDF and PF torque could be partly explained by
the different impact of the ankle joint angle at which the strength
was assessed, which was in neutral (90◦). This joint angle might
already have induced a stretch on the plantar flexors, which the
dorsiflexor muscles first must overcome.

The disproportionality in the deficits in muscle strength and
size in children with SCP was a first confirmation of an altered
muscle size–strength relationship. This was further confirmed
in the ratio of torque over size, which was significantly lower
in the SCP group in comparison to the TD group for three
of the four muscle groups. Both KE and KF, as well as DF,
showed deficits in strength per muscle size of 40.3–54.0%. Only
PF was an exception, where the relative decrease in MV was
almost equal to the relative decrease in MJT, resulting in a
similar muscle strength-to-size ratio in the two cohorts. In the
investigation by Elder et al. (6), the specific tension defined as
torque over the whole muscle group CSA of both PF and DF
was significantly reduced. However, they also found a few cases
where torque was proportional to the CSA. The results for PF
in the current investigation are in line with results by O’Brien
et al. (55), who found that muscle activation capacity did not
strongly predict ankle PF weakness in high-functioning adults
with SCP, suggesting that muscle size may contribute more to
weakness than neural voluntary activation. However, it should
also be noted that PF is probably the joint movement where
compensation from more proximal joints is most challenging to
be avoided in the fixated position used in this investigation, as
is also visible in some of the relatively high MJTmeasured bars in
Supplementary Figure 1. Despite the heterogeneity between the
current and previous study results, these findings confirm that
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FIGURE 1 | Relationship between muscle volume and maximal joint torque for four lower limb joint movements in children with a typical development (TD) and with

spastic cerebral palsy with gross motor function classification scale (GMFCS) levels I to III. (B) Regression formula parameters for the estimation of maximal joint

torque based on muscle volume as shown in (A). SE, standardized error. The outliers indicate the cases that were removed based upon the standardized residuals or

Cook’s distance.
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TABLE 3 | Associations with maximal joint torque.

Typically developing Spastic cerebral palsy

KE

(31)

KF

(29)

PF

(27)

DF

(28)

KE

(53)

KF

(48)

PF

(49)

DF

(49)

Maximal joint torque

Age (yrs) 0.706 0.680 0.502 0.6681 0.528 0.437 0.250 0.3531

p-value <0.001* <0.001* 0.008* <0.001* <0.001* 0.002* 0.083 0.013

Weight (kg) 0.8491 0.615 0.449 0.595 0.5891 0.578 0.198 0.377

p-value <0.001* <0.001* 0.019 0.001* <0.001* <0.001* 0.172 0.008

Height (cm) 0.749 0.729 0.566 0.605 0.646 0.516 0.302 0.422

p-value <0.001* <0.001* 0.002* 0.001* <0.001* <0.001* 0.035 0.003*

Muscle volume (ml) 0.805 0.537 0.463 0.645 0.746 0.544 0.431 0.639

p-value <0.001* 0.003* 0.015 <0.001* <0.001* <0.001* 0.002* <0.001*

Muscle length (mm) 0.586 0.605 0.221 0.539 0.697 0.483 0.413 0.449

p-value 0.001* 0.001* 0.268 0.001* <0.001* 0.001* 0.003* 0.001*

GMFCS / −0.469 −0.340 −0.251 −0.251

p-value <0.001* 0.018 0.082 0.082

Selective motor control / 0.450 0.337 0.480 0.209

p-value 0.001* 0.021 0.001* 0.154

Normalized maximal joint torque

Age (yrs) 0.451 0.244 0.130 0.330 0.291 0.217 −0.069 0.015

p-value 0.011 0.201 0.517 0.086 0.034 0.139 0.637 0.921

Weight (kg) 0.486 0.034 0.004 0.140 0.214 0.244 −0.211 −0.159

p-value .006* 0.861 0.984 0.476 0.123 0.095 0.145 0.274

Height (cm) 0.528 0.278 0.182 0.239 0.331 0.248 −0.064 −0.014

p-value 0.002* 0.144 0.362 0.220 0.016 0.090 0.664 0.926

Normalized muscle volume (ml/kg) 0.396 0.161 0.100 0.317 0.529 0.160 0.401 0.608

p-value 0.027 0.404 0.621 0.101 <0.001* 0.276 0.004* <0.001*

Normalized muscle length (mm/cm) 0.020 0.052 0.307 0.395 0.454 0.157 0.243 0.188

p-value 0.915 0.793 0.119 0.038 0.001* 0.287 0.093 0.196

GMFCS / −0.504 −0.414 −0.232 −0.191

p-value <0.001* 0.003* 0.108 0.188

Selective motor control / 0.528 0.442 0.520 0.290

p-value <0.001* 0.002* <0.001* 0.046

Univariate associations of anthropometrics, morphology and clinical parameters with MJT. *Significant correlation coefficient p ≤ 0.01 (p = 0.05/5) in the TD cohort and p ≤ 0.007 (p =

0.05/7) in the SCP cohort. 1Significant difference between the correlation coefficient in the two cohorts (p ≤ 0.05). The colors indicate the strength of the relationship: dark gray, high;

middle gray, moderate; light gray, low; MJT, Maximal joint torque; KE, knee extension; KF, knee flexion; PF, plantar flexion; DF, dorsiflexion; GMFCS, gross motor function classification

system.

most of themuscles in childrenwith SCP are undersized, but even
more underpowered, producing less force per unit muscle tissue.

Relationships
The second aim of the current study was to define the
muscle size–strength relationship, as well as associations
of anthropometric measures, GMFCS level, and SMC with
muscle strength. The correlation coefficients of anthropometric
parameters with MJT (Table 3) were similar between TD and
SCP (17, 34, 35, 56). While the coefficients appeared a little lower
in the SCP cohort, the only significantly different associations
were for KE with weight (Z = 2.442) and for DF MJT with age
(Z = 1.764). Similarly, the associations of muscle morphology
parameters with MJT were comparable between the cohorts.
This is in contrast with previous results by Reid et al. where
correlation coefficients of MV with KE and KF isometric MJT

were significantly lower in the SCP cohort. However, in the
same investigation, they found no differences in the correlation
coefficient of MV with the isokinetic joint torque or joint
work (20).

Different conclusions could be drawn when MJT was
normalized to body weight (Table 3). In the TD cohort,
all correlation coefficients became non-significant, with an
exception for KE nMJT with weight and height. These findings
suggest that the variance in MJT is largely influenced by growth-
related parameters in this young, prepubertal TD cohort. In
contrast to the TD group, the RF, MG, and TA nMV, as well as
RF nML remained significantly associated with nMJT in the SCP
cohort. These results confirmed that (muscular) growth is not the
only crucial factor contributing to strength in children with SCP.
This conclusion is further supported by the observed significant
associations of SMC with MJT of KE and PF and nMJT of KE,
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TABLE 4 | Regressions best fit.

Dependent variable Independent

variables

Adjusted R2 p-value Part

correlations

Tolerance VIF

A. Maximal joint torque in typically developing children

Knee extension Height 0.663 <0.001* 0.232 0.248 4.038

RF MV 0.194 0.248 4.038

Knee flexion Height 0.514 <0.001* 0.729 – –

Plantar flexion Height 0.293 0.002* 0.566 – –

Dorsiflexion TA MV 0.393 <0.001* 0.645 – –

B. Maximal joint torque in spastic cerebral palsy

Knee extension model 1 RF MV 0.548 <0.001* 0.746 – –

Knee extension model 2 RF MV 0.601 <0.001* 0.644 0.888 1.127

SMC KE 0.208 0.888 1.127

Knee flexion model 1 ST MV 0.281 <0.001* 0.544 – –

Knee flexion model 2 ST MV 0.366 <0.001* 0.529 0.988 1.012

SMC KF 0.276 0.988 1.012

Plantar flexion model 1 MG MV 0.168 0.002* 0.431 – –

Plantar flexion model 2 MG MV 0.279 <0.001* 0.280 0.882 1.113

SMC PF 0.355 0.882 1.113

Dorsiflexion model 1/2 TA MV 0.396 <0.001* 0.639 – –

C. Normalized maximal joint torque in spastic cerebral palsy

Knee extension Height 0.419 <0.001* 0.206 0.947 1.056

RF nMV 0.312 0.788 1.269

SMC KE 0.326 0.825 1.213

Knee flexion Height 0.210 0.002* 0.222 0.994 1.006

SMC KF 0.432 0.994 1.006

Plantar flexion SMC PF 0.254 <0.001* 0.520 – –

Dorsiflexion TA nMV 0.355 <0.001* 0.607 – –

Backward multiple linear regression model for maximal joint torque in typically developing children (A) and for maximal joint torque and normalized maximal joint torque in children with

spastic cerebral palsy (SCP) (B,C). *indicates a significant regression coefficient (p ≤ 0.0125; p = 0.05/4). Model 1 for the SCP cohort included height and muscle volume. Selective

motor control was added in model 2. VIF, variance inflation factor; RF, rectus femoris; MV, muscle volume; TA, tibialis anterior; SMC, selective motor control; KE, knee extension; ST,

semitendinosus; KF, knee flexion; MG, medial gastrocnemius; PF, plantarflexion; nMV, normalized muscle volume.

FIGURE 2 | (A) Fictive example of the calculation of the different maximal joint torques (MJT) that were measured or estimated as a percentage of the expected score

in typically developing children, their relative representation and their corresponding deficits. MJTpotential was based on muscle volume and the relationship with MJT in

the typically developing cohort. The MJTnorm was based on the relationship of MJT with height in the typically developing cohort. The blue part indicates the relative

MJTmeasured. The red part indicates the relative MJTdeficitMV, i.e., the deficit in strength that is proportional to the deficit in muscle volume. The orange part of the graph

indicates the relative MJTdeficit other, representing the deficit in MJT that comes from other factors than the decrease in muscle volume. (B) Representation of the

measured MJT and deficits relative to the expected score in typically developing children for four lower limb joint movements.
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KF, and PF, as well as GMFCS with MJT of KE and with nMJT
of KE and KF. Earlier investigations found a similar influence
of GMFCS level on both isometric and functional strength (4, 5,
14, 57). However, these results point toward the need for further
research on the correct normalization parameters for muscle
size and strength parameters in healthy and disabled pediatric
populations. There was no significant negative association of
nMJT with age in the CP cohort, indicating that the previously
reported decrease in normalized muscle strength with age was
not yet present in our group (16). This is presumably due to study
differences in the age range of the cohort, which was 5–12 years
in the current investigation in comparison to 8–19 years in the
investigation by Davids et al.

In the multiple regression models for MJT in the TD group,
height, MV, or both were included (Table 4A). Age, height, and
weight as well as MV and ML showed high collinearity with each
other (Supplementary Table 2), upon which only one parameter
per category was chosen. The total explained variance of the TD
models for MJT ranged from 29.3 to 66.3%. This is lower than
previous results for KE MJT from Moreau et al. (17), where
muscle thickness of the vastus lateralis and age resulted in an
explained variance of 91%. Yet, the latter study was performed
in a small study sample (N = 12) with a much wider age range
(7–20 years) than the current study sample. The first multiple
regression model of MJT in the SCP cohort included MV for all
four joint movements, resulting in explained variances ranging
from 16.8 to 54.8% (Table 4B). Adding SMC to the model
increased the explained variance for KE, KF, and PF by 5.3–
11.1%, resulting in a range of 27.9–60.1% explained variance.
Likewise, SMC was included in the models for nMJT for KE,
KF, and PF (Table 4C). SMC has, to our knowledge, not yet
been related to isometric strength. However, SMC as assessed
in this investigation has been found to be significantly related
to gait parameters around the ankle (24). Moreover, both the
Gross Motor Function Measure and overall gait deviation have
been found significantly associated with another selectivity score,
i.e., the Selective Control Assessment of the Lower Extremity
(SCALE) (12, 13).

Contributions to Muscle Weakness
The final aim of this investigation was to define the contribution
of decreased muscle size to the deficits in muscle strength.
The group results for the four joint movements indicated that
the patterns in the proportion of muscle weakness explained
by decreased MV and by other factors are muscle specific
(Figure 2 and Supplementary Table 3). The part explained by
MV, i.e., the difference between the MJTnorm based on growth
and the MJTpotential based on MV, ranged between 22.6% for
KF and 57.3% for KE. The part explained by other factors,
i.e., the difference between the measured MJT and MJTpotential,
ranged from 42.7% for KE to 77.4% for KF. The weakness in
KE and PF presented with approximately equal distributions
of MV deficits and remaining factors, whereas KF and DF
muscle weakness seemed predominantly caused by other factors.
This variability between joint movements can potentially be
partially explained by the differences in architectural types of the
investigated muscles (like the fascicle arrangement), as well as

by the differences in neural control and common treatment at
the muscular level. Additionally, muscle weakness, as well as the
contributing factors to muscle weakness, largely varied between
participants (Supplementary Figure 1). This may be caused
by participant-specific characteristics, like cognitive ability and
motivation, as well as by the treatment history with, among
others, the focus of regular physiotherapy, the use of orthoses,
and the number of botulinum neurotoxin-A injections (44, 58,
59).

There may be several additional underlying mechanisms,
the “other factors,” causing the disproportional decrease in
muscle strength. A simple, clinical measure of SMC was used
to represent the neural component in this investigation and
found to have moderately significant associations with MJT
of KE, KF, and PF (Table 3). The lack of studies evaluating
the associations of SMC with isometric muscle strength in
previous investigations made it difficult to compare results.
However, various underlying neurological factors influencing
muscle strength have been identified like reduced central drive,
impaired reciprocal inhibition, and disorganized motor unit
recruitment (6, 7). Moreover, it should be noted that there is
also individual variation in neural control of muscle activation
in the healthy population (60), which was confirmed by the wide
spread of the TD data around the regression line in Figure 1.
Furthermore, the assessment of strength can also be influenced by
cognition, attention, or motivation (17). So far, previous studies
on the role of muscle selectivity, using the SCALE outcome (61),
only reported the total limb score without description of the
individual scores. Moreover, the SCALE evaluates both directions
of movement around one joint in one score (e.g., KF and KE),
instead of separately per motion direction, as applied in the
current study.

Next to the alterations in neural control, additional muscular
changes may also be considered as underlying mechanism of
the decreased muscle strength. Muscle architecture parameters,
such as the pennation angle and fascicle length, are related to
the pCSA and, therefore, to maximal strength. Yet, previous
investigations found inconsistent outcomes for fascicle length
in participants with SCP (23, 29). Additionally, the ML–force
relationship, also known as the torque–angle relationship, is
considered to be altered in children with SCP, resulting in
measurements being performed at different points of the length–
force curve in the TD cohort vs. the SCP cohort (62, 63).
Earlier research also indicated alterations in the proportion
of contractile tissue relative to non-contractile (fibrotic and
fatty) tissue in children with SCP. It is likely that this reduced
proportion of contractile tissue in the already reduced MV in
children with SCP, compared to their TD peers, also contributes
to the observed muscle weakness (21, 22, 64). Yet, individual
variation in muscle tissue composition has been determined in
the healthy population (65). Future investigations are needed
to further delineate and understand the contributions of these
“other factors” to muscle weakness in SCP, with a systematic
focus on the neuromuscular control, the muscle architecture, the
length–force relationship, and the intrinsic muscle composition.
Since muscle strength is an important parameter for gross motor
function and maintaining ambulation, further research into the
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underlying components of muscle weakness is encouraged (15,
16, 36).

Clinical Implications
The muscle strength profile resulting from the combined
assessment of muscle strength and muscle morphology gives
an indication of the contribution of muscle size deficits to
muscle weakness. This could be used to optimize training
prescriptions either aiming at enhancing neural drive or inducing
muscle hypertrophy. However, for both underlying mechanisms
of muscle weakness, the influence of training is not always
consistent (44, 66, 67). The muscle strength profile could
potentially provide a predictive value on the outcomes of certain
types of strength or active movement training in children
with SCP. Knowing the contribution of muscle size to muscle
weakness could also be used to define if other, potentially
atrophy-inducing, treatments like botulinum neurotoxin-A or
lower leg casting (68–71) are appropriate for a patient or a specific
muscle group.

Impaired muscle growth and muscle size deficits are also
underlying causes for muscle contractures in children with
SCP (72, 73). Muscle contractures can be defined as unique
muscular adaptations that increase the passive stiffness of the
muscle, resulting in limited mobility of the joints without active
force production of the muscle (74). Reduced muscle growth,
as already observed from the age of 15 months (34), may
result in reduced ML and muscle–tendon unit length relative
to bone length. Although shortened fascicle lengths, related
to the number of sarcomeres in series, can be a possible
reason for decreased ML (75), this has not been confirmed in
every investigation (76). However, in pennate muscles, both the
length and the diameter of the fascicle contribute to ML (77).
Consequently, reduced MV resulting from reduced muscle fiber
diameter, and related to the number of sarcomeres in parallel, can
influence longitudinal muscle growth (77, 78). The contribution
of reduced muscle diameter to reduced ML depends on the
morphology of the muscle and fascicle arrangement. Future
studies should define the impact of muscle size deficits on muscle
contractures and define the influence of common interventions
like stretching and casting.

Limitations and Future Perspectives
There were some limitations to this investigation that should
be considered when interpreting the results. First, there was
an unequal distribution of GMFCS levels, with a multitude of
children classified as GMFCS level I. This was influenced by the
selected inclusion criteria related to previous treatment history
and the ability to cognitively understand the test procedures,
since orthopedic surgeries and cognitive problems are more
common in children with higher GMFCS levels (79–82). This
investigation had a cross-sectional design limited to prepubertal
children. Future investigations should consider longitudinal
follow-up to define the alterations of muscle size, strength, and
their ratios during growth and aging, as well as the effect of
interventions to prevent or improvemuscle weakness. Thismight
also uncover the timing of neural and musculoskeletal onset as
causes of muscle weakness. Finally, this investigation applied

some simplifications. The morphology was only assessed for
one muscle per joint movement. Previous investigations showed
that all muscles of the lower limb in children with SCP are
affected. However, there is heterogeneity, and not all muscles are
affected to the same extent (25, 28, 83). Moreover, a subjective
clinical classification of SMC was included. Further research
into the underlying neural components of muscle weakness
is encouraged.

CONCLUSION

This investigation confirmed the disproportional decreases in
muscle size and muscle strength around the knee and ankle
joint of children with SCP in comparison to TD children.
Furthermore, associations of strength with growth-related
parameters like age, weight, and height were strongest in the
TD cohort, whereas these were also present but accompanied
by associations with SMC and GMFCS in the SCP cohort. The
correlation coefficients of the muscle size–strength relationship
were similar, whereas the regression coefficient was decreased in
the SCP cohort, indicating that only part of the muscle weakness
can be attributed to smaller MVs. However, there was a lot
of heterogeneity between the proportion of muscle weakness
that was attributed to deficits in muscle size both between
joint movements and between subjects. Future studies should
investigate what other mechanisms underlie muscle weakness, as
well as how muscle weakness and its components are influenced
by treatment, growth, and aging.
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Supplementary Figure 1 | Display of the measured and estimated maximal joint

torques (MJT)s per participant. The blue bar indicates the MJTmeasured, the red

part is the deficit to MJTnorm due to decreased muscle volume (MV,) and the

orange part of the graph indicates the deficit in MJT that comes from other factors

than the decrease in MV. A negative red bar indicates an MJTpotential based on MV

that is larger than expected from growth. A negative orange bar indicates an

MJTmeasured that is larger than expected based on MV. For all four joint

movements, the bars on the x-axis are ranked from smallest to tallest child (in

height), resulting in the same order of children for all four graphs.
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