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Abstract

The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or
a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds
with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New
Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is
known about its’ visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the
Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo’s orbits are significantly more
convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye
shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal
parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway.
Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to
other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the
Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche.
Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than
other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds
and therefore does not adhere to the traditional view of the evolution of nocturnality in birds.
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Introduction

Living in a scotopic, or low light, environment poses significant

challenges for the visual system. In contrast to photopic, or well-

illuminated, environments where the chances of the retina

capturing a photon are extremely high, in scotopic environments,

light levels are typically about a million times lower [1] and the

visual system relies on various specializations. As a result, the

visual systems of animals that live in scotopic environments have

evolved in one of two ways. Firstly, they can evolve mechanisms to

increase the sensitivity of the eye to light. Examples of this include

increasing the size of the eye, the size of the cornea relative to the

axial length of the eye, and/or density and type of photoreceptors

in the retina [2–5]. In addition, increasing orbit convergence and

binocular visual field overlap can increase light capture by

increasing the probability of capturing a quantum of light within

the region of overlap [6–9]. Alternatively, animals can decrease

their emphasis on the visual system and enhance the sensitivity of

other sensory systems to provide equivalent information about

their environment. Kiwi (Apteryx spp.), moles and mole-rats are all

prime examples of this second strategy. These species have

relatively small eyes and visual brain regions, but greatly enlarged

somatosensory systems and tactile specialisations in their extrem-

ities [4,10–14]. Thus, shifting from a diurnal to a nocturnal

lifestyle can either be associated with the enlargement of the visual

system to enhance light sensitivity or the reduction of the visual

system combined with the enlargement of other sensory systems.

Although in fishes and mammals there are numerous examples

of both strategies, the extent to which individual species evolve one

strategy or the other in birds is not well understood. Nocturnality

has evolved multiple times in otherwise diurnal avian lineages

[15,16] and, in the case of owls diurnality has evolved several times

within an otherwise nocturnal lineage [17]. One of the most

profound shifts in activity pattern from diurnality to nocturnality

has occurred in the critically endangered New Zealand parrot, the

Kakapo (Strigops habroptilus), a parrot unlike any other in many

aspects [18]. It is the largest parrot worldwide; it is nocturnal,

flightless and an obligate herbivore with a strong body-odour

[19–21]. Its nocturnal lifestyle, combined with its owl-like facial

ruff, earned this species the moniker ‘owl parrot’ [22,23]. To suc-

cessfully conserve this enigmatic species, there is a strong need to

understand its sensory abilities and unique nocturnal lifestyle.
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Pettigrew (1978) suggested that the Kakapo could have visual

specializations similar to that of owls based on its nocturnal activity

pattern and the presence of a facial ruff. Hall et al. (2009) further

suggested that the optic foramen size fell well within the range of

nocturnal birds, although analyses of the eyes or brain of the

Kakapo have not been carried out. In this study, we provide the

first detailed comparative examination of the size and shape of the

brain as well as the eyes and orbits of this enigmatic species. We

compare our data with closely related parrots such as the Kea

(Nestor notabilis), a sister taxon to the Kakapo [24], as well as more

distantly related parrots.

Because very little is known about retinal morphology in

parrots, the retinal morphology of the Kakapo is compared with

that of two diurnal parrot species as well as the nocturnal Barn

Owl (Tyto alba) and the diurnal chicken (Gallus domesticus). Much is

known about the visual systems of both Barn Owls and chickens

[25–28] and they exhibit a retinal morphology that is typical of

nocturnal and diurnal birds, respectively. By comparing retinal

morphology across these species, we will be able to determine

whether the Kakapo has a retina typical of parrots or one more

similar to that of nocturnal birds, like the Barn Owl.

In principle, there are two expected outcomes. If the Kakapo

has enhanced light sensitivity in a comparable fashion to other

nocturnal birds, then from an anatomical perspective it should

have relatively large eyes, an eye shape with a larger cornea

relative to the axial length of the eye, more rods in the retina and

more convergent (i.e., similar facing) orbits [2,29–38], all of which

function to increase light gathering in dim environments.

Similarly, if the Kakapo has stereoscopic abilities comparable to

that of nocturnal owls, the brain of the Kakapo should have: 1) an

enlarged Wulst [39]; 2) a markedly reduced optic tectum

[35,40,41]; and 3) correspondingly smaller forebrain targets of

the optic tectum [40]. Alternatively, if the Kakapo has diminished

its reliance on vision, it should have relatively small eyes, few rods

in its retina, little change in corneal diameter and a relatively small

optic tectum as well as its corresponding forebrain targets. Our

data suggests that the Kakapo has undergone profound changes to

the morphology of its visual system. Some features of the Kakapo

visual system are typical of nocturnal birds, the brain morphology

is vastly different from that of other parrots and other aspects of

the visual system are intermediate with respect to diurnal and

nocturnal birds.

Results

Brain Morphology
The adult Kakapo brain has a length of 5.2 cm and a width of

3.5 cm. While both the olfactory bulbs and Wulst are prominent,

the optic lobes are extremely small and partially obscured by the

lateral aspect of the cerebral hemispheres (Fig. 1A). In contrast, the

Kea brain is relatively wider than the Kakapo (Fig. 1B) with a

length of 4.2 cm and a width of 3.8 cm. The olfactory bulbs were

damaged and, as a result, missing in the extracted Kea brain and

the brainstem slightly damaged; however, the optic lobes were

prominent, as they are in other parrots (Fig. 1C).

Brain Volumetrics
As suggested by the external appearance of the Kakapo brain,

the optic tectum (TeO) is significantly reduced in size relative to

the total size of the brain (Fig. 2A). The same is also true of

the other two tectofugal regions, nucleus rotundus (nRt) and

entopallium; both of them are significantly smaller in the Kakapo

compared to other parrots, including the Kea (Fig. 2B,C). In

contrast, the Wulst, the one region of the thalamofugal visual

pathway that we could measure, did not show a reduction in size

(Fig. 2D), and is similar in relative size across most parrots

examined.

Optic foramen
The optic foramen of the Kakapo is significantly smaller than

that of other parrots, regardless of what scaling measure is

examined and whether or not phylogeny is taken into account

(Fig. 3A) and is within the range of other nocturnal birds [42]. In

fact, the diameter of the Kakapo’s optic foramen is similar to that

of the Red-rumped Parrot (Psephotus haematonotus), a species with a

body mass 1/25th and a brain volume 1/8th that of the Kakapo

[42]. The small size of the Kakapo’s optic foramen is also apparent

when it is contrasted with both the Kea and the Kaka (Nestor

meridionalis; Fig. 3A). Both the Kea and Kakapo share a similar

skull length and brain volume, however, the Kea’s optic foramen is

two times larger than that of the Kakapo.

Eye size and shape and orbit orientation
Relative to head length and brain volume, corneal diameter,

axis length and transverse diameter of the Kakapo eye were not

different from that of other parrots (Fig. 3B–D). The shape of the

Kakapo eye, as described by a plot of corneal diameter against

axial length, is also within the range of other parrots (Fig. 3E). The

Kakapo also has significantly more convergent orbits than other

parrots (Fig. 3F). Whereas most parrots have orbital convergence

values of 5–25u, the Kakapo’s orbital convergence is more than

double (59u) the average (16.3u69.2u). Thus, the orbits of the

Kakapo are more convergent (i.e., front facing) than any other

parrot.

Figure 1. Photos of the brains of three species of parrots. A, the
Kakapo (Strigops habroptilus); B, Kea (Nestor notabilis); and C, Sulphur-
crested Cockatoo (Cacatua galerita). The dotted lines outline the left
optic lobe of all three species. Abbreviations refer to the following: OB,
olfactory bulbs; W, Wulst; Cb, cerebellum; and TeO, optic lobe. Scale
bar = 10 mm.
doi:10.1371/journal.pone.0022945.g001
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Retinal anatomy
In the Kakapo, the overall length of the photoreceptors is larger

than the other species examined in this study. This is because

photoreceptor’s outer and inner segments are longer than in

diurnal species studied here (Fig. 4, Table 1). The Barn Owl has an

extreme specialisation for night vision; they have elongated rods

and possibly double cone photoreceptor cells ([43], Fig. 4Ba).

Neither elongated rods nor putative double cones were observed in

the Kakapo photoreceptors either in central or peripheral retina

(Fig. 4Aa, Ab). The diurnal species had a relatively thin photo-

receptor layer, however, in the Cockatoo (Cacatua galerita) the

outer/inner segment length is comparable to nocturnal species.

The outer nuclear layer (ONL), formed by the rod and cone

photoreceptor nuclei, has the highest relative thickness in the Barn

Owl and is relatively thin in the Chicken and Eastern Rosella

(Platycercus eximius) (Fig. 4B, D, E, Table 1). The relative thickness

of the ONL in the Kakapo and Cockatoo are similar to one

another and have an intermediate thickness (Fig. 4A, C, Table 1).

Also, the relative thickness of the inner nuclear layer (INL), which

contains the cell bodies of the amacrine and bipolar cells, is much

thinner in the Kakapo compared to the Chicken and Eastern

Rosella and similar to that of the nocturnal species, the Barn Owl.

Finally, although the condition of the eyes from the Kakapo

specimen were not properly fixed for analyses of retinal ganglion

cell density or detailed structural analyses of the retinal layers and

no distinction between ganglion cells and displaced amacrine cells

was made, we were able to estimate ganglion cell layer (GCL)

density, as shown in Figure 4. The staining of the GCL of the

Kakapo revealed relative few cells compared to the other species

examined (Fig. 4, Table 1). The cell density in the GCL was

similar to that of the Barn Owl.

Discussion

In general, a shift from a diurnal to nocturnal lifestyle should

entail changes to the visual system that either enhance light

Figure 2. Scatterplots of each of the four visual brain regions measured against total brain volume. A, optic tectum (TeO); B, nucleus
rotundus (nRt); C, entopallium; and D, Wulst. All measurements in mm3. The solid lines indicate the least-squares linear regression lines and dotted
lines indicate the phylogeny-corrected 95% confidence interval. The diamond represents the Kakapo (Strigops habroptilus), the filled circle represents
the Kea (Nestor notabilis) and open circles represent other parrot species included in the analyses.
doi:10.1371/journal.pone.0022945.g002
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Figure 3. Scatterplots for each of the parameters measured from the eye. A, optic foramen diameter, B,C,D, eye size, and E, eye shape.
Kakapo (diamond), Kea (filled circle), Kaka (triangle) and all other parrots (open circles). The solid lines indicate the least-squares linear regression lines
and dotted lines indicate the phylogeny-corrected 95% confidence interval. F, is a boxplot of orbit orientation (in degrees) measured in the Kakapo
and 64 other parrot species. The box plot shows the smallest observation (sample minimum), lower quartile (Q1), median (Q2), upper quartile (Q3),
and largest observation (sample maximum). Outliers are shown as open circles and also a diamond for the kakapo.
doi:10.1371/journal.pone.0022945.g003
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Figure 4. Photomicrographs of transverse sections through the retina of five species of birds. A, Kakapo (Strigops habroptilus), B, Barn
Owl (Tyto alba), C, Sulphur-crested Cockatoo (Cacatua galerita), D, Eastern Rosella (Platycercus eximius), and E, Chicken (Gallus gallus domesticus). Aa
and Ab are photomicrographs of peripheral and central photoreceptors respectively in the kakapo retina at 100 times magnification. Ba is a higher
magnification image of the photoreceptors in the Barn Owl. The arrows indicate cone photoreceptor cells. Retinal tissue was stained with cresyl
violet. Abbreviations are as follows: RPE, retinal pigmented epithelium; OS/IS, outer segment/inner segment; ONL, outer nuclear layer; OPL, outer
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bar = 25 mm.
doi:10.1371/journal.pone.0022945.g004

Table 1. Shows average thickness for central and peripheral retina and retinal layers in diurnal and nocturnal species.

total OS IS ONL INL GCL OS-IS/total ONL/total INL/total GCL/total GCL cells/mm

Kakapo central 214.34 99.59 35.01 34.41 10.03 0.46 0.10 0.16 0.05 89

Kakapo periphery 211.215 101.25.70 22.14 34.1 11.86 0.48 0.10 0.16 0.06 87

Barn owl central 178.42 73.97 28.81 29.97 6.89 0.41 0.16 0.17 0.04 82

Barn owl peripheral 170.71 70.12 29.15 31.81 6.03 0.41 0.17 0.19 0.04 96

Chick central 235.60 25.52 13.04 101.19 19.59 0.11 0.06 0.43 0.08 354

Chick peripheral 234.53 27.97 12.15 107.39 15.39 0.12 0.05 0.46 0.07 348

Cockatoo central 158.43 54.80 19.55 36.84 14.59 0.35 0.12 0.23 0.09 124

Cockatoo peripheral 137.03 46.40 16.41 31.50 13.46 0.34 0.12 0.23 0.10 98

Rosella central 232.89 28.88 17.30 55.94 15.31 0.12 0.07 0.24 0.07 285

Rosella peripheral 225.21 42.69 21.30 62.72 15.11 0.19 0.09 0.28 0.07 333

Values are expressed in micrometers. Highlighted values indicate best similarities with the kakapo retina. The Barn Owl is representative of a nocturnal species and the
Chicken, Cockatoo and Eastern Rosella diurnal species [17,22]. Abbreviations: total: total thickness of the retina (microns), OS IS: outer segment/inner segment, ONL:
outer nuclear layer, INL: Inner nuclear layer, GCL: Ganglion cell layer. GCL cells/mm indicates the number of cells per mm in the GCL.
doi:10.1371/journal.pone.0022945.t001
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sensitivity or decrease the relative importance of vision [5]. Instead

of either of these extremes, the Kakapo has a unique combination

of traits including a reduction in the relative size of the tectofugal

pathway and optic nerve in conjunction with a morphological

appearance of the retina that shows features of both nocturnal and

diurnal birds. This interesting combination of traits speaks to the

Kakapo’s unusual phylogenetic position as one of only two species

to evolve nocturnality in an otherwise entirely diurnal group,

necessitating comparisons both within parrots and with unrelated

nocturnal birds. The Kakapo has convergently oriented orbits

common for nocturnal vertebrates, and an eye size and shape that

is within the range of the diurnal parrots but is also within the

range of other nocturnal birds, including the nightjars, night-

hawks, and owls [2]. These traits indicate that the Kakapo likely

has a larger binocular visual field, which could confer enhanced

light capture by increasing the quantum catch probability within

the expanded region of overlap (e.g. [7,44]). In addition, the

paucity of retinal ganglion cells compared to other parrots could

be indicative of relatively poor visual acuity [33,42,45,46].

Orbit orientation is correlated with the amount of binocular

overlap in the visual field of both birds and mammals [33,45,46].

The significantly greater amount of orbital convergence in the

Kakapo could therefore be taken as an indication of a wider

binocular visual field, as predicted by Pettigrew (1978). The

orientation of the orbits is not, however, solely responsible for the

width of the binocular field. Indeed, eye movements make a

significant contribution to the shape of the visual fields of many

birds [35]. Thus, the extent to which we can infer the degree of

binocularity during various activities in the Kakapo is limited.

Similarly, it is difficult to comment on the suggestion [47,48] that

the Kakapo has stereoscopic abilities (i.e., depth perception)

similar to that of owls. Unlike owls, the Kakapo does not have an

enlarged Wulst, but Wulst hypertrophy is not necessarily a robust

predictor of either the binocular visual field or stereopsis [33,49].

Determining these features of the Kakapo visual system will

depend on behavioral testing because neurophysiological studies

are unlikely to be feasible in such a highly endangered species.

The sensitivity and acuity of the Kakapo’s visual system can be

inferred from our data. In most tetrapods, eye size and shape

varies according to activity pattern. In general, nocturnal species

tend to have broader corneas, relative to the axial length of the

eye, than either crepuscular or diurnal species [2,50]. The purpose

of these changes in eye size and shape is to increase the sensitivity

of the eye. Corneal diameter is associated with the light gathering

ability of the eye. The axial length of the eye is associated with

visual acuity; the longer the axial length, the larger the projected

image on the retina becomes [5,51,52]. An eye shape with a large

corneal diameter relative to the axial length of the eye is typical of

nocturnal birds, including owls, nightjars and nighthawks, and the

oilbird [2]. Although the size and shape of the Kakapo eye is

within the range of other parrots, the Kakapo is also within an

area of overlap with many nocturnal birds [2]. Therefore, we

suggest that the eye shape of the Kakapo is consistent with the

typical nocturnal eye shape of birds. Based on eye morphology

alone, we would therefore predict that the Kakapo has enhanced

visual sensitivity, with concomitantly poor visual acuity.

Both the enhanced sensitivity and poor acuity of the Kakapo,

relative to other parrots, are reinforced by the structure of the

retina. The Kakapo retina is characterized by a broader photo-

receptor layer and an increased length of the outer and inner

segment (Table 1). The outer segment of photoreceptors is the

area where the photopigment is located and in the inner segment

the metabolic and biosynthesis of molecules for the outer segment

occur [53]. Thus, increased outer and inner segment length may

suggest increased retinal sensitivity. The histological analysis does

not reveal specialised photoreceptors cells, however, the moder-

ately thick outer nuclear layer in the Kakapo and the presence of

round nucleus located in the most outer part of the ONL,

suggestive of cone, indicates that rods and cones are well repre-

sented in the retina as in other nocturnal birds [54]. A narrower

inner nuclear layer and fewer ganglion cells likely reflect a strategy

for increasing retinal sensitivity, although with very poor resolving

power [55]. A relatively small number of retinal ganglion cells is

also supported by the small size of the Kakapo’s optic foramen.

The optic nerve, which passes through the optic foramen, is largely

comprised of retinal ganglion cell axons. A smaller optic foramen

therefore reflects few retinal ganglion cells and is typical of

nocturnal species [42]. More photoreceptors per retinal ganglion

cell, referred to as increased retinal summation, would then pro-

vide enhanced light sensitivity, but poor visual acuity, similar to

other nocturnal birds [11,54]. Based on our measurements of the

optic nerve and examination of retinal sections, it would appear

that the Kakapo has the requisite morphology of a bird with

enhanced low light (mesopic) vision.

The morphology of the Kakapo’s brain also yields insight into

its visual abilities. Parrots possess relatively small visual regions

[40,41], although the Kakapo has taken this reduction in the

tectofugal pathway to an extreme. In fact, apart from kiwi [11,35],

the Kakapo appears to have the smallest tectofugal brain regions

of any bird examined to date. This reduction in the visual sys-

tem in the Kakapo is not, however, universal. The Wulst, the

telencephalic target of the thalamofugal pathway, is similar in size

to that of other parrots and not enlarged as it is in owls or some

caprimulgiforms [39,41]. The huge reduction in size of the

tectofugal pathway combined with no change in Wulst volume

strongly suggests a decreased reliance on vision in the Kakapo in a

similar fashion to what has occurred in Kiwi [11,13]. The

evolution of flightlessness, folivory and nocturnality on a largely

predator-free island may have reduced the Kakapo’s reliance on

vision in favor of enhancing other sensory modalities [21].

Overall, we conclude that the Kakapo has a unique visual

system unlike that of other parrots or any other bird examined

to date. The Kakapo is a highly unusual animal that evolved

nocturnality in the context of its phylogenetic background as a

parrot, and as such it almost certainly had a diurnal ancestor.

Therefore, in order to interpret the suite of nocturnal character-

istics exhibited by the Kakapo, we must compare it to both parrots

and nocturnal birds. Indeed, we can see that the Kakapo possesses

traits consistent with nocturnal birds, including owls (retina, eye

size and shape and orbit orientation), caprimulgiforms (eye size

and shape), and kiwi (brain morphology), and also diurnal birds

(eye size and shape). Based on this suite of traits, the Kakapo likely

has somewhat reduced its overall reliance on vision. However, its

visual abilities are characterized by the larger binocular visual

field, enhanced low light sensitivity and poor visual acuity usual for

nocturnal birds. In doing so, the Kakapo breaks the dichotomy

typical of the evolution of nocturnality in birds and mammals and

illustrates that the visual system can evolve in a mosaic rather than

a strictly concerted fashion by exhibiting individual nocturnal

traits found in a variety of unrelated nocturnal birds.

Materials and Methods

Ethics Statement
All specimens were provided to us dead by conservation

authorities, wildlife veterinarians and museum staff and thus

approval was not required by an institutional ethics committee to

undertake this research. Specimens were obtained from the New

Visual System of the Kakapo
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Zealand Department of Conservation, the Kakapo Recovery

Group, Massey University, and the National Museum of Natural

History (Washington, DC).

Specimens
A Kakapo, from the former Fjordland population, was obtained

post-mortem from the Auckland Zoo with the permission of the

New Zealand’s Department of Conservation and the Kakapo

Recovery Group. The specimen was processed eight hours post-

mortem and the brain and eye were immersion-fixed and stored in

4% paraformaldehyde (PFA) in phosphate buffered saline (PBS).

An adult male Kea specimen was received by Massey University’s

Institute of Veterinary, Animal and Biomedical Sciences in Feb-

ruary 2009 and immersion-fixed in 4% PFA in PBS by a Massey

University veterinarian. Unfortunately, the Kea brain had a badly

damaged hindbrain and cerebellum, so the description of the Kea

brain and its volumetrics are limited to the optic lobe and

telencephalon. The eyes of an Eastern Rosella (Platycercus eximius)

and a Sulphur-crested Cockatoo (Cacatua galerita) were obtained

from birds culled in a regional pest management programme in

Auckland, New Zealand. Tissues were immersion-fixed in 4%

paraformaldehyde (PFA) in phosphate buffered saline (PBS) for

30 minutes, washed several times in PBS and transferred into 30%

sucrose until sectioned.

Before sectioning, the brains were photographed using a Nikon

D2Xs digital camera with a 105 mm f/2.8D AF Micro-Nikkor

lens. To compare brain anatomy, all specimens were processed in

a similar way: both brains were cut sagittally with a razor blade

and each half was cryoprotected in 30% sucrose in 0.01 M PBS

(about 10 days). The brains were embedded in gelatin and sec-

tioned in the sagittal plane on a sliding freezing stage microtome at

a thickness of 45 mm. The sections were collected in PBS and

subsequently mounted onto subbed slides, stained with cresyl violet,

dehydrated and coverslipped with DePeX (SERVA GmbH).

Volumetric Measurements
We measured four regions, all of which are involved in visual

processing: optic tectum (TeO), nucleus rotundus (nRt), entopal-

lium and the Wulst. The optic tectum is the primary target of

retinal ganglion cells in the avian brain [56], largely projecting to

the thalamic target nRt. nRt, in turn, projects to the entopallium

of the telencephalon and together these three brain regions

comprise the tectofugal pathway [57]. The Wulst is the telen-

cephalic target of a separate visual pathway: the thalamofugal

[57]. The Wulst is greatly enlarged in owls and some other families

[33,39,41] and plays a key role in stereoscopic vision in these taxa

[47,48,58,59], although its role in modulating stereopsis in other

taxa has been debated [33,49].

In terms of delineating these four regions, we adhered to

descriptions in the literature as well as several stereotaxic atlases

[60–65]. As with previous studies, we defined the optic tectum as

all laminated layers of the tectum, excluding the optic tract

[33,39,66,67]. The nRt is readily defined by the presence of large,

intensely Nissl stained cells of low density relative to adjacent

structures and the borders of entopallium were defined by the

description of Nissl stained tissue outlined in [68,69]. Volumetrics

of other parrot species were obtained from previously examined

tissue [40,66] and the literature [70,71]. Details of the brain region

volumes and sample sizes are provided in Table S1.

Brain sections were imaged using a Leica stereomicroscope, and

the images subsequently loaded into Amira (v 5.2, Mercury

Computer Systems, San Diego, CA, US) for alignment and

modelling. Photos were taken of every second brain section in the

Kakapo and Kea. Total brain volume and volume of the

individual brain regions were calculated while labelling each

section in Amira individually and according to the locations of the

different brain areas. The outlines of each brain region obtained in

Amira were exported as a series of TIFF files. In these, a given

region is filled in black against a white background. These TIFF

stacks were then used for volumetric estimates of each region using

ImageJ (National Institutes of Health, USA, http://rsb.info.nih.

gov/ij/). Each image was then analyzed to obtain the cross-

sectional area of the brain region. To calculate the total volume of

the region the cross-sectional areas were added for each brain

region and then multiplied by the slice thickness and the number

of sections between stack slices.

Shrinkage factors were calculated by comparing brain volumes

prior to processing with brain volumes calculated by measuring

serial sections on the slides. The areas of entire coronal sections

were measured throughout the brain and multiplied by section

thickness (45 mm) and the sampling interval. The difference

between this measurement and the original brain volume yielded a

shrinkage factor (Kakapo = 1.23; Kea = 1.25), which was subse-

quently applied to all of our measurements as in [66,67,70,72–74].

Morphometrics
Brain volume, skull length, orbit dimensions and cross-sectional

areas of the optic foramen and foramen magnum were made from

specimens at the National Museum of Natural History (Washing-

ton, DC) and were measured in 199 specimens representing 83

parrot species (Table S1). Brain volumes were measured from the

skull by filling the endocranial cavity via the foramen magnum

with a 50:50 mixture of sizes 8 and 9 lead shot. This procedure

provides an unbiased estimate of brain volume [75], and was used

as an independent variable in examining relative optic foramen

and eye size. All linear measurements were made with dial calipers

to the nearest 0.1 mm. Skull length was measured from the

midpoint of the nasofrontal hinge to the caudal-most point of the

braincase. Optic foramen diameter was measured as in Hall et al.

(2009). Finally, we measured the minimum and maximum

diameters of the foramen magnum and then estimated the cross-

sectional area using the formula for an ellipse.

Orbit Orientation
Morphometric data on orbit orientation were collected from

138 specimens at the National Museum of Natural History

(Washington, DC), representing 65 species, including two Kakapo

skulls (Table S1), following the same protocol outlined in Iwaniuk

et al. (2008). Briefly, three-dimensional coordinate data were

collected for the six landmark points on the skull with a

MicroScribe-3DX coordinate data stylus (Immersion Corp., San

Jose, CA). Each specimen was mounted on an elevated clay base

so that all coordinate data could be collected in a single series [76].

The six landmark points are as follows: 1) the anterior-most point

of the beak; 2) that point where the internasal suture meets the

inter-premaxillary suture; 3) the posterior-most projection on the

skull, at the superior-most portion of the occipital complex; 4) the

mid-point on the quadratojugal bar; 5) the point on the orbital

margin that is directly opposite and furthest from the midpoint on

the quadratojugal bar; and 6) the central point of the lacrimal

bone. Orbit convergence was calculated from these coordinate

data following a standard trigonometric function for dihedral

angle computation [77]. A macro for this calculation is available in

Heesy (2003) and further details are provided in Iwaniuk et al.

(2008). The macro calculates the angle of convergence for a single

orbit. For consistency we have used convergence as an alternative

to calculating inverse of the angle of divergence [33,45,78].
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Multiplying the angle by two yielded the total (or bilateral)

convergence of both orbits.

Eye and Retina
Data on eye size of the Kakapo and data from 117 other parrots

species are from Ritland (1982) and Hall and Ross (2007). Three

parameters were examined: corneal diameter, eye axial length and

transverse diameter. Axial length of the eye refers to the medio-

lateral distance from the centre of the cornea to the medial-most

portion of the eyeball, just anterior to the exit of the optic nerve,

whereas transverse diameter is the width across the eye at the

maximum protrusion point (see below for details on analysis). Eye

shape is defined as the sizeless variable described by regression

between corneal diameter and axial length of the eye [2].

Eye size and shape are not, however, the only features of the eye

that are expected to change with a shift from diurnality to

nocturnality. For example, the outer nuclear layer, formed by the

rod and cone nuclei, of nocturnal birds is generally much thicker

and tends to have more rows than diurnal animals [5]. This is

related to morphological differences in the photoreceptor types,

with rods typically being longer than cones meaning the soma of

the rod is usually located in the lower part of the ONL, and as in

the mammalian retina, the nucleus of rods is smaller than cones

[5]. Additionally, diurnal species need an increased number of

horizontal, amacrine and ganglion cells to create the high

resolving power needed for color vision in bright light conditions.

Therefore, the inner nuclear and ganglion cell layers of diurnal

species are thicker compared to nocturnal species [5]. We

therefore compared the anatomical structure of the Kakapo retina

with that of other parrots and other birds, all of which were

processed in similar conditions. The eyes were dissected from the

head and the anterior part and lens was removed prior to placing

the tissue in 4% paraformaldehyde (PFA) for 30 minutes. The

posterior eyecup was then washed and stored in 0.1 M phosphate

buffer (PB) for 1 week. The eyes were cryoprotected in a series of

10% and 20% sucrose in PB solutions for 10 minutes each and

then left overnight in a 30% sucrose PB solution. The posterior

eyecup was embedded in TissueTek medium, frozen and cut

perpendicular to the equator on a LEICA cryostat (Germany) at a

thickness of 16–20 mm. Sections were mounted onto glycerine

coated slides, stained with cresyl violet, dehydrated and cover-

slipped with DePeX. Images of central and peripheral areas of

retina from Kakapo, Cockatoo, Barn Owl (Tyto alba), Chicken

(Gallus gallus domesticus) and Eastern Rosella were obtained using a

LEICA DC 500 camera and a 406objective and 106ocular lens.

Central retina was defined as a 2 mm linear area around the optic

nerve. Peripheral retina was 10 mm or more away from the optic

nerve. Quantification consisted of measuring the total retinal

thickness, the length of the outer and inner segment of the photo-

receptor layer, and the outer, inner nuclear layer and ganglion cell

layer thickness. Number of cells in the ganglion cell layer was

counted in at least three different slides 100 mm apart in central

and peripheral retina. The number of cells was averaged and

expressed as GCL cells per mm linear retina.

Data Analysis
To account for allometric effects on brain region volume and the

morphometrics of the optic foramen and eye, all measurements

were examined relative to multiple scaling variables. The data was

log10 transformed prior to all analyses and the volume of each brain

region was compared with brain volume minus the volume of the

region of interest. For example, TeO volume was compared to the

brain volume minus that of the TeO. In addition, we examined the

relative size of the two telencephalic regions, E and Wulst, relative to

telencephalic volume. For the eye measurements, we used brain

volume and skull length, from the nasofrontal hinge to the caudal-

most point of the brain case, as scaling variables. Finally, brain

volume, skull length and foramen magnum area were used as the

scaling variables for examining optic foramen diameter.

To determine if the Kakapo brain differed from other parrots,

we performed least squares linear regressions using each of the

dependent variables against the scaling variables outlined above.

We then calculated 95% confidence intervals for these regression

lines and screened for significant outliers by examining jackknife

distances as calculated in JMP v. 5.1.2 (SAS Institute). To account

for phylogenetic effects, we used the phylogeny of [24] with

resolution of several genera provided by additional sources [79–

81] and calculated phylogeny-corrected 95% confidence and

prediction intervals using PDAP: PDTREE module [82] of

Mesquite [83]. Because we reconstructed the phylogeny of all

species from multiple sources, we used an arbitrary branch length

model, which adequately standardized the independent contrasts

[84], and could therefore be used to construct the ‘phylogeny-

corrected’ confidence intervals.

Supporting Information

Table S1 The data used in all of the analyses. ‘Orbits’

refers to the measurements taken for the degree of orbital

convergence (‘Deg’), which is in degrees, and the sample size (‘n’)

is provided for each species. ‘Eye Measurements’ were all taken

from Ritland (1982) and are as follows: ‘CD’- corneal diameter

(mm), ‘AL’ – axial length (mm), ‘TD’ – transverse orbital diameter

(mm). ‘Skull Measurements’ were made from specimens at the

National Museum of Natural History (Washington, DC) (samples

are indicated under the ‘n’) and are as follows: ‘FM’ – foramen

magnum area (mm2), ‘OF’ – maximum optic foramen diameter

(mm), ‘EV’ – endocranial volume (mm3), and ‘HL’ – head length

(mm). ‘Brain Volumetrics’ are the brain measurements made from

serially sectioned brains, supplemented by four species taken from

the literature (sample sizes are provided under the ‘n’). The brain

regions are as follows: ‘Brain’ – total brain volume (mm3), ‘T’ –

telencephalon (mm3), ‘W’ – Wulst (mm3), ‘E’ – entopallium (mm3),

‘nRt’ – nucleus rotundus (mm3) and ‘TeO’ – optic tectum (mm3).

The values for the Kakapo (Strigops habroptilus) are highlighted in

bold. 1Brain data from: Fernandez P, Carezzano F, Bee De Speroni

N (1997) Analisis cuantitativo encefalico e indices cerebrales en

Aratinga acuticaudata y Myiopsitta monachus de Argentina (Aves:

Psittacidae). Rev Chil Hist Nat 70: 269–275. 2Brain data from:

Boire D (1989) Comparaison quantitative de l’encephale de ses

grades subdivisions et de relais visuals, trijumaux et acoustiques chez

28 especes. PhD Thesis, Universite de Montreal, Montreal.

(DOC)
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