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Non-small cell lung cancer (NSCLC) has high mortality rates worldwide. Agrin contributes
to immune synapse information and is involved in tumor metastasis. However, its roles in
NSCLC and tumor immune microenvironment remain unclear. This study examined the
effects and the underlying mechanisms of Agrin in NSCLC and tumor-infiltrated immune
cells. Clinical tissue samples were used to confirm the bioinformatic predictions. NSCLC
cells were used to investigate the effects of Agrin on cell cycle and proliferation, as well as
invasion and migration. Tumor xenograft mouse model was used to confirm the effects of
Agrin on NSCLC growth and tumor-infiltrated regulatory T cells (Tregs) in vivo. Agrin levels
in NSCLC cells were closely related to tumor progression and metastasis, and its function
was enriched in the PI3K/AKT pathway. In vitro assays demonstrated that Agrin
knockdown suppressed NSCLC cell proliferation and metastasis, while PI3K/AKT
activators reversed the inhibitory effects of Agrin deficiency on NSCLC cell behaviors.
Agrin expression was negatively associated with immunotherapy responses in NSCLC
patients. Agrin knockdown suppressed Tregs, as well as interleukin (IL)-6 expression and
secretion, while PI3K/AKT activators and exogenous IL-6 rescued the inhibitory effects. In
the mouse model, Agrin downregulation alleviated NSCLC cell growth and Treg infiltration
in vivo. Our results indicated that Agrin promotes tumor cell growth and Treg infiltration via
increasing IL-6 expression and secretion through PI3K/AKT pathway in NSCLC. Our
studies suggested Agrin as a therapeutically potential target to increase the efficacy of
immunotherapy in NSCLC patients.
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INTRODUCTION

Lung cancer has the leading occurrence (11.6% of the total cases)
and remains the most lethal one (18.4% of the total deaths) all
over the world (1). Non-small cell lung cancer (NSCLC) is the
major histologic subtype, accounting for approximately 85%
lung cancer (2). Despite the improvements in both traditional
and novel treatments for NSCLC patients, only partial patients
could benefit from these therapies, and the survival rates of the
majority remain poor (3, 4).

Agrin is a glycosylated proteoglycan protein involved in the
development of neuromuscular junctions (5). Recent studies
show that Agrin plays important roles in cancers and immune
system. Agrin was reported to be upregulated in various cancers
than the adjacent normal tissues (6–9). Further studies found
that Agrin upregulation enhanced tumorigenesis and metastasis
via activating focal adhesion kinase and mitogen-activated
protein kinase signaling pathways (6, 10). Moreover, Agrin was
reported to activate T cells and facilitate immune connection
formation between T cells and target cells (11, 12). Furthermore,
Agrin was highly expressed on the membrane of primary T cells
and involved in autoimmune disease progression (13). These
results suggested that Agrin modulated cancer development and
tumor immune microenvironment (TIME), which might be a
potential target for tumor immunotherapy. Although Agrin was
highly expressed in NSCLC and associated with worse survival,
the specific roles of Agrin in NSCLC and TIME are still to be
investigated (14).

In our study, we found that Agrin enhanced NSCLC
development and regulated tumor-associated regulatory T cell
(Treg) infiltration via enhancing interleukin-6 (IL-6) expression
and secretion through PI3K/AKT pathway, suggesting that Agrin
acted as an oncogene and augmented Tregs in NSCLC immune
microenvironment. Our findings provided Agrin as a predictive
factor of therapeutical approaches for NSCLC patients.
MATERIALS AND METHODS

Data Collection and Preprocessing
RNA-sequencing data (FPKM values) from 33 types of cancers
were obtained from the Cancer Genome Atlas (TCGA; https://
portal.gdc.cancer.gov). Among them, 510 NSCLC and 59
adjacent normal tissue samples were used for differential
expression analysis of Agrin, survival analysis and pathway
enrichment analysis. According to Agrin expression levels, 510
NSCLC samples were divided into the high- and low-expression
groups. Limma R package was used to analyze the differentially
expressed genes, which were regarded as the genes co-expressed
with Agrin. These genes were then imported into Metascape
(http://metascape.org) for pathway enrichment analysis
subsequently. Tumor Immune Estimation Resource (TIMER;
cistrome.shinyapps.io/timer) was used to identify tumor-
infiltrated immune cells (15). Tumor Immune Dysfunction and
Exclusion (TIDE; tide.dfci.harva rd.edu) was used to predict
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tumor immune evasion, as well as immune checkpoint
inhibitor responses (16, 17).

Clinical Samples
A total of 21 NSCLC samples and their paired normal lung
tissues were obtained from Zhongnan Hospital of Wuhan
University (Wuhan, China) from January 2018 to April 2020.
None of these patients received chemotherapy or radiotherapy
before surgery. Patients’ clinical characteristics were shown in
Table 1. The studies involving human participants were
reviewed and approved by the Institutional Review Board at
Zhongnan Hospital of Wuhan University. The patients/
participants provided their written informed consent to
participate in this study. No potentially identifiable human
images or data is presented in this study.

Mice
BALB/c nude mice (5-6 weeks) were purchased from the Vital
River Laboratories (Beijing, China). NSCLC H1975 cells (1 × 106

cells per 100 ml) were injected subcutaneously into the right
armpits of the mice. Human peripheral blood mononuclear cells
(PBMCs, 5 × 106 cells per mouse) were injected subcutaneously
into the same place of right armpits 7 days later. The sizes of
tumors were measured with digital vernier calipers every 3 days.
The volumes of tumors were calculated: volume = (length ×
width2)/2. Mice were sacrificed 45 days after cell inoculation, and
tumor tissues were collected and measured for weight and
volume. The animal study was reviewed and approved by the
Institutional Animal Care and Use Committee at Zhongnan
Hospital of Wuhan University.

Cells
Human NSCLC cell lines (H1299, H1975, H460, A549, PC9),
Jurkat T and THP-1 cells were purchased from the Type Culture
Collection of the Chinese Academy of Sciences (Shanghai,
China). Human bronchial epithelium cell line (BEAS-2B) was
purchased from Guangzhou Cellcook Biotech. NSCLC, Jurkat T
and THP-1 cells were cultured in RPMI-1640 (Hyclone, USA),
while BEAS-2B cells were cultured in DMEM (Gibco, USA),
supplemented with 10% fetal bovine serum (FBS, Hyclone). Human
PBMCs were collected from healthy donors with informed consent
and ethical approval. Monocytes and lymphocytes were harvested
using lymphocyte separation medium (Dakewe, China) according
to manufacturer’s recommendations.

RNA Interference
Agrin was downregulated with siRNA-1 (sense: 5’- GCCUGCA
AAUCUCUAUCCATT -3’; antisense: 5’- UGGAUAGAGA
UUUGCAGGCTT -3’), siRNA-2 (sense: 5’-CCUUUGUC
GAGUACCUCAATT -3’; antisense: 5’-UUGAGGUACUCGA
CAAAGGTT -3’) using jetPRIME® transfection reagent
(Po lyp lus - t rans fec t ion SA, France) fo l lowing the
manufacturer’s instructions. Lentiviral-mediated shRNAs
(GenePharma, China) were used for s table Agrin
downregulation, and puromycin (Cayman, USA) was used to
select cells at a final concentration of 4 mg/ml.
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Quantitative Real-Time PCR
Total RNAs were obtained using TRIzol (Vazyme, China). RNA
(1 mg) was reversely transcribed to cDNA using the HiScript® Q
RT SuperMix kit (Vazyme). Quantitative PCR (qPCR) was
performed using the ChamQTM SYBR® qPCR Master Mix
(Vazyme) on the BIO-RAD CFX96. The relative expression
levels of mRNAs were assessed by the 2−DDCt method. The
primers are listed in Table S1.

Immunoblotting
Total proteinswere extractedusingRIPAcell lysis buffer (Beyotime,
China) containing phosphatase and protease inhibitors (Sigma,
USA). After centrifugated at 13,000 rpm at 4°C for 10 min,
supernatants were obtained and boiled with 5 × SDS loading
buffer for 10 min. Bicinchoninic acid system (Beyotime) was used
to detect protein concentrations. The proteins were separated by
10% SDS-PAGE gels and transferred onto PVDF membranes
(Merck). The membranes were blocked with 5% non-fat milk for
90min, and then incubated with specific primary antibodies at 4°C
overnight. The primary antibodies are presented inTable S2. After
washing, the membranes were incubated with HRP-conjugated
antibodies at room temperature for 2 hours. After washing, the
proteins were exposed to ECL developer (Aspen) and analyzed by
Bio-Rad Image Lab software.
Frontiers in Oncology | www.frontiersin.org 3
Immunofluorescence
The cells on 24 × 24 mm glass slides were fixed with 4%
paraformaldehyde (PFA, Sangon, China) and permeabilized
with 0.5% Triton X-100 (Beyotime) for 15 min. After washing
and blocking with 5% bovine serum albumin, the cells were
incubated with anti-Ki67 antibodies (1:200) at 4°C overnight.
Secondary antibodies (1:200) were applied for 1 hour. Nuclei
were stained with DAPI (Sigma), and images were obtained by
fluorescent microscope (Olympus, Japan).

Colony Formation and Cell
Proliferation Assays
For colony formation assay, NSCLC cells were cultured in 6-well
plates for 2 weeks. The cells were then fixed with 4% PFA, and
stained with 0.5% crystal violet (Beyotime). After washing, the
numbers of colonies were counted under microscope. For cell
proliferation assay, NSCLC cells were seeded into 96-well plates.
Cell viability was measured by the CCK-8 reagent kit (Vazyme).
The optical density values were estimated at 450 nm everyday
using a multimodal plate reader (Molecular Devices, USA).

Modified Boyden Chamber Assay
NSCLC cells were suspended in RPMI-1640 with 1% FBS and
planted into the upper chamber, while RPMI-1640 with 10% FBS
was added to the lower chamber. After incubation for 24 hours,
TABLE 1 | Patient characteristics.

Variable Low Agrin expression (n = 10) High Agrin expression (n = 11) Total p-value*
(n = 21)

Gender 0.048
Female 8 3 11
Male 2 8 10

Age 0.08
< 65 y 7 3 10
≥ 65 y 3 8 11

Smoking
Yes 2 8 10 0.048
No 8 3 11

Stage 0.39
I 5 8 13
II 1 2 3
III 3 1 4
IV 1 0 1

T 0.56
T1 4 5 7
T2 5 6 12
T4 1 0

N 0.75
N0 6 7 13
N1 1 2 3
N2 3 2 5

M 0.9
M0 9 11 18
M1 1 0 1

Lymph_node_status 0.88
metastasis 3 4 7
No-metastasis 7 7 14

Tumor size 0.66
<3.5 cm 7 6 13
≥3.5 cm 3 5 8
January 2
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the filters were fixed with 4% PFA, and then stained with 0.5%
crystal violet. Cells in the upper surface of the chamber were
wiped using a cotton swab. Cells at × 100 magnification were
counted and photographed. For the invasion assay, the upper
chambers were pre-coated with Matrigel (BD, USA, dilution
1:40) before inoculation.

Wound Healing Assay
NSCLC cells were seeded into 6-well plates until full confluence.
After scratched with a 1 ml pipette tip, the migration rates were
assessed: wound closure (%) = (distance of initial scratched -
distance of final imaged without cells)/distance of initial
scratched 48 hours later.

Enzyme-Linked Immunosorbent Assay
(ELISA)
The supernatants were collected from H1299 and H1975 cells 48
hours after transfection. The levels of IL-6 were measured by
ELISA kit (Bioswamp, China). The optical density 450 values
were determined using SpectraMax® Absorbance Reader.

Flow Cytometry
Single-cell suspensions of NSCLC cells or PBMCs were stained
with the cell cycle staining kit (Beyotime), FITC anti-human
CD4, APC anti-human CD25, or PE anti-human Foxp3
antibodies (Biolegend). The stained cells were washed and
incubated with 1 ml intracellular fixation buffer at room
temperature for 60 min. Permeabilization buffer (2 ml) were
then added into each tube, and the cells were centrifuged at 1,500
rpm for 7 min. The supernatants were removed, and single-cell
suspensions were analyzed by flow cytometry (Beckman, China).

Immunohistochemistry (IHC)
Tissue samples were fixed with 4% PFA and embedded in paraffin.
After cut into 4mmslides, deparaffinization, rehydration and blocking
were performed in steps, followed by heat-induced antigen retrieval.
Next, primary antibodies against Agrin (1:100, Zen), pAKT (1:100,
Abclonal), Ki-67 (1:1000, Abcam), IL-6 (1:100, Abclonal), Foxp3
(1:100, Abcam) and CD8 (1:100, Abcam) were used to incubate the
slides at 4°C for 12 hours. Consequently, corresponding secondary
antibodies were used to incubate the slides at 37°C for 1 hour. Finally,
the slides were stained with hematoxylin and then visualized on the
light microscopy (Olympus, Japan).

Statistical Analysis
Data in this study were analyzed with Student’s t-test and one-
way ANOVA. All results were presented as Mean ± standard
error or mean ± standard deviation (SD). P < 0.05 was defined as
statistically significance.
RESULTS

Agrin Is Upregulated in NSCLC and
Associated With Worse Survival
The landscape map demonstrated Agrin expression levels in 33
types of cancers (Figure 1A). As the most lethal tumor, lung
Frontiers in Oncology | www.frontiersin.org 4
cancer was selected to be further analyzed. Agrin was highly
expressed in both lung adenocarcinoma and squamous cell
carcinoma. The expression levels of Agrin were higher in the
NSCLC tumor samples (510 cases) than the adjacent normal
tissues (59 cases, P < 0.001, Figure 1B). The patients with higher
Agrin levels had lower long-term survival rates (Figure 1C).
Moreover, 21 pairs of NSCLC and non-tumor lung tissues were
collected from our hospital. Consistently, Agrin was significantly
upregulated in tumors compared with the adjacent normal
tissues (Figure 1D). The IHC results indicated that Agrin and
pAKT expression were obviously higher in tumor than adjacent
normal tissues (Figure 1E). Enrichment analysis also showed
that Agrin was significantly associated with the PI3K/AKT
pathway (Figure 1F).

Agrin Downregulation Suppresses NSCLC
Cell Proliferation and Induces Cell Cycle
Arrest via Inhibiting PI3K/AKT Pathway
Consistent with clinical samples, Agrin was also upregulated in
NSCLC cells compared with regular lung epithelial cells (Figure S1A).
H1299 and H1975 cells with high Agrin expression were transfected
with specific siRNAs targeting Agrin, and the downregulation of Agrin
was confirmed by PCR (Figures S1B, C). Immunoblotting results
indicated that Agrin downregulation inhibited AKT phosphorylation,
and that AKT activator SC79 restored this inhibition (Figures 2A, B).
Colony formation assay found that Agrin deficiency decreased
clonogenic capability of NSCLC cells, and that PI3K/AKT activators
partially rescued this capability (Figures 2C, S2A, S4A). Moreover,
Agrin knockdown suppressed NSCLC cell proliferation, while SC79
reversed these effects (Figures 2D, S2B). Immunofluorescence
illustrated that Agrin downregulation decreased the numbers of Ki67
positive cells, and that SC79 partially restored the decrease (Figures 2E,
S2C, E). Cell cycle assays showed that Agrin deficiency induced G0/G1
arrest, while SC79 reversed this arrest (Figures 2F, G, S2D, F).
Immunoblotting results indicated that Agrin downregulation
decreased CyclinD1 and CDK4/6 protein levels, and that PI3K/AKT
activators rescued their expression (Figures 2H, S2G, S4B). These
results suggested that Agrin deficiency suppressed NSCLC cell
proliferation and induced cell cycle arrest via inhibiting PI3K/
AKT pathway.

Agrin Silencing Inhibits NSCLC Cell
Migration and Invasion via Suppressing
PI3K/AKT Pathway
In addition to cell proliferation, Agrin also regulated NSCLC cell
metastasis. Modified Boyden chamber assay indicated that Agrin
downregulation inhibited NSCLC cell migration and invasion,
and that SC79 restored this inhibition (Figures 3A–C, S3C–F).
Wound healing assay also suggested that depletion of Agrin
significantly suppressed cell migration in both H1975 and H1299
cells, and that PI3K/AKT activators rescued this suppression
(Figures 3D, S3A, B, S4C). In addition, lower levels of N-
Cadherin, Vimentin, MMP9, and higher levels of E-Cadherin
were detected by immunoblotting in the Agrin silencing group
(Figure S3G). However, SC79 and 740Y-P reversed these effects
(Figures 3E, S4D). These results suggested that Agrin deficiency
suppressed NSCLC cell metastasis through PI3K/AKT pathway.
January 2022 | Volume 11 | Article 804418
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Agrin Deficiency Suppresses Tregs via
Downregulating PI3K/AKT/IL-6 Signaling
Pathway
As Agrin was reported to be expressed in T cells and promote
autoimmune disease development, we further explored the
effects of Agrin on TIME using TIMER and TIDE website. The
expression levels of Agrin were significantly associated with Treg
Frontiers in Oncology | www.frontiersin.org 5
infiltration and the response rates of immune checkpoint
inhibitors in NSCLC patients (Figures 4A, B, 5A). After
coculturing with NSCLC cells for 6 days, the Treg proportions
in PBMCs were significantly increased, while the percentages of
Tregs were less in PBMCs cocultured with Agrin-deficient
NSCLC cells (Figures 4C, D). The Treg-related genes (TGFB1,
Foxp3, CTLA-4, IL-10, PRF1, GZMB) were declined in Jurkat T
A

B C

E F

D

FIGURE 1 | Agrin was upregulated in NSCLC and associated with worse survival. (A) Agrin expression landscape in 33 types of cancer. (B) Differential expression
of Agrin in NSCLC and adjacent normal samples. (C) Survival analysis for Agrin in NSCLC patients. (D) Differential expression of Agrin in 21 pairs of NSCLC and
adjacent tissues. Agrin was significantly upregulated in NSCLC patients. (E) Representative IHC images of Agrin and pAKT staining in the clinical tumor and adjacent
normal tissues. (F) Enrichment analysis of 3 databases (KEGG Pathway, Reactome Gene Sets, Wiki Pathways). **P < 0.01; ***P < 0.001. Student’s t-test.
January 2022 | Volume 11 | Article 804418
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cells and PBMCs cocultured with Agrin-deficient NSCLC cells
(Figures 4E, F).Although M1 macrophages and CD8 T cells also
played an important role in TIME, no significant alteration of
macrophage polarization or CD8 T cells was detected in the
THP-1 cells or PBMCs cocultured with Agrin-deficient NSCLC
Frontiers in Oncology | www.frontiersin.org 6
cells (Figures S5B, C). Moreover, treatment with SC79 or 740Y-
P in NSCLC cells could restore the proportions of Tregs in
PBMCs and the Treg-related genes (Figures 5, S4F). There
results revealed that Agrin silencing in NSCLC cells
downregulated Tregs through PI3K/AKT signaling pathway.
A C

D

F

G H

E

B

FIGURE 2 | Agrin downregulation suppressed NSCLC cell proliferation and induced cell cycle arrest via inhibiting PI3K/AKT pathway. (A, B) Agrin knockdown
inhibited AKT phosphorylation in H1299 and H1975 cells. (C) SC79 (5 mg/ml) rescued colony formation inhibited by Agrin deficiency in NSCLC cells. (D) OD values
of CCK-8 assay in NSCLC cells treated with Agrin siRNA and SC79. (E) Representative images of Ki-67 staining in NSCLC cells treated with Agrin siRNA and SC79.
The images were taken at 400X magnification. Scale bar, 100 mm. (F, G) SC79 reversed G1 arrest induced by Agrin deficiency in NSCLC cells. (H) Representative
immunoblots of CyclinD1 and CDK4/6. N = 3; *P < 0.05; **P < 0.01; ***P < 0.001.
January 2022 | Volume 11 | Article 804418
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Several tumor-secreting cytokines, including IL-6, IL-10 and
TGF-b1, are essential for Treg differentiation. To identify the
mediators between NSCLC cells and Tregs, qPCR was used to
screen these potential key cytokines in both H1299 and H1975
cells (Figure 6A). The results revealed that IL-6, rather than IL-
10 and TGF-b1, was significantly downregulated in the Agrin-
deficient NSCLC cells. ELISA confirmed the lower levels of IL-6
in the medium of Agrin-deficient NSCLC cells (Figure 6B).
Moreover, the addition of PI3K/AKT activators reversed the
decrease of IL-6 mRNA levels in NSCLC cells and protein levels
in the medium (Figures 6C, D). In addition, exogenous IL-6
treatment restored Treg proportions in PBMCs cocultured with
Agrin-deficient NSCLC cells, while the addition of IL-6
antibodies significantly decreased the percentages of Tregs in
PBMCs (Figures 6E–G). The results of immunoblotting
indicated that Agrin silencing downregulated IL-6 in NSCLC
Frontiers in Oncology | www.frontiersin.org 7
cells, and that SC79 or 740Y-P could reverse these effects
(Figures 6H, S4E). TIMER website revealed that IL-6 and
Foxp3 were closely associated in NSCLC cells (Figure 6I).
Collectively, these observations indicated that Agrin
knockdown inhibited Treg differentiation via downregulating
PI3K/AKT/IL-6 pathway.

Agrin Knockdown Alleviates NSCLC Cell
Growth and Treg Infiltration In Vivo
To investigate the effects of Agrin downregulation on NSCLC cell
growth andTreg infiltration in vivo, Agrinwas downregulatedwith
lentiviral-mediated shRNAs. After puromycin selection, both the
transcriptional and protein levels of Agrin were significantly
decreased (Figure S1D). In the xenograft tumor model using
BALB/C nude mice, Agrin deficiency significantly suppressed
NSCLC cell growth in vivo (Figures 7A–C). In the group of
B

C

A

ED

FIGURE 3 | Agrin silencing inhibited NSCLC cell migration and invasion via suppressing PI3K/AKT pathway. (A–C) Representative images of modified Boyden
chamber migration and invasion assays in NSCLC cells treated with Agrin siRNA and SC79. Scale bar, 200 mm. (D) Representative images of wound healing assays
in NSCLC cells treated with Agrin siRNA and SC79. The images were taken at 100X magnification. Scale bar, 200 mm. (E) Representative immunoblots of N-
Cadherin, E-Cadherin, Vimentin and MMP9. N = 3; *P < 0.05; **P < 0.01; ***P < 0.001.
January 2022 | Volume 11 | Article 804418
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PBMC injection, Agrin knockdown also inhibited tumor growth
(Figures 7D–F). The IHC results indicated that Agrin knockdown
inhibited NSCLC cell proliferation, IL-6 and p-AKT expression in
vivo (Figure 7G). Moreover, Agrin deficiency decreased the
expression levels of Foxp3 and IL-6 in NSCLC TIME
(Figure 7H). Taken together, our results suggested that Agrin
downregulation significantly suppressed NSCLC cell growth and
Treg infiltration in vivo.
Frontiers in Oncology | www.frontiersin.org 8
DISCUSSION

NSCLC is the most lethal malignancy worldwide. Due to its
asymptomatic and rapid progression, most patients were diagnosed
at advanced stages and had poor prognosis. Immunotherapy is a high-
profile therapy by largely extending patients’ survival time based on
enriched immune-infiltrated environment in NSCLC (18–21).
However, a considerable number of patients could not benefit from
A

C

D

E

F

B

FIGURE 4 | Agrin knockdown decreased Treg differentiation and downregulated Treg-related genes. (A) The relationship between Treg infiltration and Agrin expression in
NSCLC from TIMER. (B) The immunotherapeutic response rates for NSCLC patients in TIDE between the low- and high-Agrin groups. (C, D) Flow cytometry of Tregs (CD4+,
CD25+, Foxp3+) in PBMCs cocultured with NSCLC cells transfected with NC or siRNA. (E, F) Relative expression of Treg markers (CTLA-4, TGF-b1, Foxp3, GZMB, IL-10,
PRF1) in Jurkat T cells and PBMCs cocultured with NSCLC cells transfected with NC or siRNA for 6 days. N = 3; *P < 0.05; **P < 0.01; ***P < 0.001.
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immunotherapy. Recent studies illustrated that immune suppressive
environment in NSCLC might hinder patients from getting profits
from immune checkpoint inhibitors (22). Tumor progression has an
inextricable associationwithTIME(23). Cancer cells not only enhance
several oncogenic signaling pathways to promote tumor progression,
but also secrete cytokines to stimulate and activate immune-
suppressive cells, such as Tregs, tumor-associated fibroblasts and
Frontiers in Oncology | www.frontiersin.org 9
cancer stem cells, which in turn assist tumor to evade immune
surveillance (24–29). Tregs repress tumor killing T cell responses
(30), as the main impediments of cancer immunotherapy. Clinical
researches approved that Treg exhaustion led to tumor regression (31)
and induced anti-cancer immunity (32). Therefore, finding a way to
inhibit tumor development and depleting Tregs might be effective to
improve NSCLC prognosis.
A

B

C D

FIGURE 5 | Agrin regulated Treg differentiation and Treg-related genes expression through PI3K/AKT pathway. (A, B) Flow cytometry of Tregs (CD4+, CD25+,
Foxp3+) in PBMCs cocultured with NSCLC cells treated with Agrin siRNA and SC79. (C, D) Relative expression of Treg markers (CTLA-4, TGF-b1, Foxp3, GZMB,
IL-10, PRF1) in Jurkat T cells and PBMCs cocultured NSCLC cells treated with Agrin siRNA and SC79 for 6 days. N = 3; *P < 0.05; **P < 0.01.
January 2022 | Volume 11 | Article 804418
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Agrin exerts its vital roles in neuro synapse formation (5), auto-
immune disease (13), angiogenesis (33) and various cancer
development (6–9). In addition, Agrin is a key mediator in
primary T cell activation in autoimmune disease (11–13).
However, few study associated Agrin with TIME. In our study,
samples from TCGA dataset suggested that Agrin was highly
Frontiers in Oncology | www.frontiersin.org 10
expressed in NSCLC compared with normal lung tissues and
associated with worse survival. Data of qRT-PCR confirmed
upregulated Agrin levels in NSCLC compared with the adjacent
normal lung tissues. Subsequent experiments indicated that Agrin
deficiency inhibited NSCLC cell proliferation and invasion. PI3K/
AKT pathway, a classical oncogenic signaling pathway, could
A B

C

E

F

D

G H I

FIGURE 6 | Agrin regulated Treg differentiation via modulating IL-6 expression and secretion. (A) Relative mRNA levels of IL-6, IL-10 and TGF-b1 in NSCLC cells
transfected with NC or Agrin siRNA. (B) ELISA of IL-6 secretion levels in NSCLC cells transfected with NC or siRNA. (C) Relative expression of IL-6 in NSCLC cells
treated with Agrin siRNA and SC79. (D) ELISA of IL-6 secretion levels in NSCLC cells treated with Agrin siRNA and SC79. (E–G) Flow cytometry of Tregs (CD4+,
CD25+, Foxp3+) in PBMCs cocultured with NSCLC cells treated with Agrin siRNA and IL-6/IL-6 Ab. (H) Representative immunoblots of IL-6 in NSCLC cells treated
with Agrin siRNA and SC79. (I) Correlation of IL-6 and Foxp3 expression in NSCLC (TIMER). N = 3; ns, nonsignificant; *P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 7 | Agrin silencing prohibited NSCLC cell growth, and alleviated IL-6, p-AKT and Foxp3 expression in vivo. (A–F) Agrin knockdown suppressed NSCLC cell
growth in the xenograft tumor model of BALB/C nude mice with or without PBMC injection. (G, H) Representative images of Ki67, Foxp3, p-AKT, CD8, Agrin and IL-
6 staining in the tumor tissues. The images were taken at 200X magnification. Scale bar, 50 mm. N ≥ 4; *P < 0.05.
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facilitate multiple tumor amplification via increasing cell viability
(34, 35). Intracellular PI3K/AKT pathway is important for
mediating epithelial-mesenchymal transition (EMT) via
inhibiting E-cadherin transcription (36), inducing N-cadherin
(37) and other key EMT drivers (such as Snail and Slug). Our
enriched analysis showed that Agrin was correlated with PI3K/
pAKT signaling pathway. Following studies indicated that PI3K/
AKT activators mitigated the effects of Agrin downregulation on
NSCLC cells. Previous studies have shown that agrin can
phosphorylate and activate Src kinase (38). Src/PI3K/AKT axis
plays important roles in the development and drug resistance of
various tumors (39–44). In lung cancer, Src/Akt pathway can
promote the invasion and metastasis of lung cancer cells,
suggesting that Src kinase may be an important factor for Agrin
in regulating PI3K/AKT signal and causing tumor development
(41, 42, 45, 46). In addition,Wang et al. reported thatAgrin in rectal
cancer induced WNT pathway to promote rectal cancer
development (47). Our results also verified WNT pathway-related
proteins (c-myc, GSK-3b, b-cantein) were downregulated in the
Agrin-deficient groups (Figure S2G). Glycogen synthase kinase-3b
(GSK-3b) is a key protein inWNTpathway, also known as a tumor
inhibitor. AKT could phosphorylate and inactivate GSK-3b at Ser9
(48, 49), which subsequently stabilized Snail protein and finally
caused EMT (50, 51). Consistently, accumulated evidence revealed
Frontiers in Oncology | www.frontiersin.org 12
that activation of PI3K/AKT/GSK-3b pathway resulted in lung
cancer progression (52), hepatocellular carcinoma metastasis (53)
and so on. These data suggested that Agrin might exert its pro-
oncogenic function via PI3K/AKT pathway, with GSK-3b as a
potential downstream target.

Based on the reports of Agrin in auto-immune diseases and T
cells, we further explored the influence of Agrin on T cells in NSCLC
TIME. Agrin was positively correlated with Treg infiltration and
negatively associated with the response of immune checkpoint
inhibitors in NSCLC patients. After coculture with NSCLC cells,
the proportion of Tregs (CD4+, CD25+, Foxp3+) in PBMCs was
decreased in the Agrin-deficient group. Tregs exert
immunosuppressive mechanism in 2 ways: secret cytokines and
direct contact (22). Treg-produced immunosuppressive cytokines
(TGF-b1, IL-10) restrain the function of T effector cells (54–56). The
cytokines secreted from Tregs, such as perforin and granzyme B,
could directly kill anti-cancer immune cells, including antigen
presenting cells and T effector cells. Moreover, immune checkpoint
CTLA-4 on the surface of Tregs bind to their targets on anti-cancer
immune cells, and inhibit their functions. A key transcription factor
forTreg function isFoxp3, forcedexpressionofwhichcovertsnaïveT
cells into immunosuppressive Treg-like cells (57). These studies
indicated that Treg-related cytokines and immune biomarker
might be important for the immunosuppressive functions of Tregs.
FIGURE 8 | Agrin promotes NSCLC progression and Treg differentiation via inducing PI3K/AKT signaling pathway. Agrin promotes NSCLC cell proliferation and
metastasis, as well as IL-6 expression and secretion, via stimulating PI3K/AKT signaling pathway. IL-6 subsequently induces Treg differentiation. Immunosuppressive
cytokines secreted by Tregs might inhibit cytotoxic T cells from releasing cytotoxic cytokines, ultimately triggering tumor immune evasion.
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In the present work, Treg-related mRNAs were downregulated in
Jurkat T cells and PBMCs after cocultured with Agrin-deficient
NSCLC cells, suggesting that knocking down Agrin in NSCLC cells
declined Treg differentiation in TIME. Based on the findings that
PI3K/AKT pathway participated in Agrin-facilitating NSCLC
progression, we assumed that PI3K/AKT pathway might be a
pivotal factor for Agrin-promoting Treg differentiation. As
expected, the decreased Treg differentiation was abrogated after the
addition of PI3K/AKT activators in theAgrin-deficientNSCLC cells.

Various cytokines are involved in the process of Treg
differentiation, including IL-6, IL-10 and TGF-b1 (58). Agrin
downregulation suppressed IL-6 production, followed by the
decrease of Treg differentiation. IL-6 was reported to mediate
various solid cancer behaviors, such as tumor growth and
metastasis (59–62). Moreover, IL-6 is associated with poor
prognosis of lung cancer patients (63). In addition, patients
with elevated levels of circulating IL-6 are more likely to have
higher Treg proportions and resistance to treatments (64–66),
implicating that blocking IL-6 might result in therapeutic gain of
NSCLC therapy. However, little research was concentrated on its
roles in TIME. In our study, we first demonstrated that IL-6 was
a critical mediator for Agrin to facilitate Treg infiltration in
NSCLC. Based on the tumor-promoting characteristic of PI3K/
AKT pathway and previous studies on AKT-regulating IL-6
expression, we subsequently assessed the effects of PI3K/AKT
activators on IL-6 levels. From qPCR, immunoblotting and
ELISA, we found that SC79 restored the expression and
secretion of IL-6 in Agrin-deficient NSCLCs. These results
implicated that PI3K/pAKT pathway was necessary for Agrin-
stimulated IL-6 production.

Due to the lack of immune competence, our nude mouse
model insufficiently simulated complex immune regulatory
responses in tumor microenvironments in vivo. Further
investigation on function of Agrin in immune-competent mice
would be required in future studies.
CONCLUSIONS

In summary, our study originally indicated that higher Agrin levels
were associated with worse survival in NSCLC patients. Agrin
enhanced tumor growth and invasion through PI3K/AKT pathway,
and induced IL-6 expression and secretion inNSCLC cells to promote
Treg differentiation. Therefore, Agrin/PI3K/AKT/IL-6 axis might be a
novel potential target for NSCLC therapies (Figure 8).
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