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ABSTRACT

Human embryonic stem cells (hESCs) hold great
promise for regenerative medicine because they
can undergo unlimited self-renewal and retain the
capability to differentiate into all cell types in the
body. Although numerous genes/proteins such as
Oct4 and Gata6 have been identified to play critical
regulatory roles in self-renewal and differentiation of
hESC, the majority of the regulators in these cellular
processes and more importantly how these regula-
tors co-operate with each other and/or with epigen-
etic modifications are still largely unknown. We
propose here a systematic approach to integrate
genomic and epigenomic data for identification of
direct regulatory interactions. This approach allows
reconstruction of cell-type-specific transcription
networks in embryonic stem cells (ESCs) and fibro-
blasts at an unprecedented scale. Many links in the
reconstructed networks coincide with known regu-
latory interactions or literature evidence. Systems-
level analyses of these networks not only uncover
novel regulators for pluripotency and differentiation,
but also reveal extensive interplays between tran-
scription factor binding and epigenetic modifica-
tions. Especially, we observed poised enhancers
characterized by both active (H3K4me1) and repres-
sive (H3K27me3) histone marks that contain
enriched Oct4- and Suz12-binding sites. The
success of such a systems biology approach is

further supported by experimental validation of the
predicted interactions.

INTRODUCTION

The capability of human embryonic stem cells (hESCs) to
undergo unlimited self-renewal and retain the pluri-
potency to differentiate into all cell lineages in the body
has raised great hope for developing cell replacement
therapy. Although a handful of regulators have been
identified to regulate self-renewal and differentiation of
hESC, the underlying mechanisms have not been fully
understood and additional regulators are still to be un-
covered. High-throughput screenings of genes important
for maintaining pluripotency in hESC reveal hundreds of
potential regulators (1). Distinguishing direct from
indirect regulations in such screenings as well as illustrat-
ing the mechanisms of these regulators are the immediate
challenges.
In this study, we focus on identification of transcription

factors (TFs) that may play crucial roles in regulating
self-renewal and differentiation of ESCs. The functions
of a TF are largely conveyed by its target genes. Despite
the availability of complete genome sequences for many
organisms, genome-wide identification of TF direct targets
and assembling these regulatory interactions into a func-
tional network in mammals remain a challenge (2).
chromatin immunoprecipitation (ChIP)-based
technologies have been exploited to determine binding
sites of numerous TFs in higher organisms (3,4).
However, this approach is hindered by the limited
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availability of suitable antibodies and cell types for
analysis. Additionally, not all TF-binding sites correspond
to functional consequences. In parallel, many computa-
tional methods have also been developed to infer tran-
scription networks from gene expression, TF binding
data or integration of various types of data (2). When
applied to mammalian genomes, these methods often
suffer from inability to distinguish direct from indirect
target genes or to identify the context-dependent activities
of the transcription network.
Recent studies reveal that functional elements such as

promoters and enhancers are associated with characteristic
chromatin signatures (5–7). Genome-wide maps of chro-
matin modification states have led to identification of such
elements in the human genome (6,8). More recently, DNA
methylomes have been mapped at base resolution in
multiple cell types (9). These epigenomic data are context
dependent and reflect the functional state of the cell.
Integrating epigenomic and genomic information to
identify transcription factor-binding sites (TFBSs) (10,11)
may allow one to determine cell-type-specific transcription
networks. In this study, we demonstrated the success of
this approach in reconstructing cell-type-specific transcrip-
tion networks in pluripotent cells (human and mouse
ESC, hESC and mESC) and lineage committed (human
fetal lung fibroblast, hFLF) cell type. Genome-wide
identification of TFBSs allowed reconstruction of these
networks (each consisting of >11,000 genes and
>500,000 interactions) at an unprecedented scale.
We conducted systems-level analyses of these networks

that revealed regulators of pluripotency or differentiation,
and illustrated how they might cooperate with the master
regulators (Oct4, Nanog and Sox2) in ESCs. Gene expres-
sion changes of these predicted regulators upon knock-
down of Oct4 in hESC confirmed their functional roles.
Furthermore, these networks also facilitated investigation
of the interplay between TF binding and epigenetic modi-
fications. Especially, we observed poised enhancers
marked by both active (H3K4me1) and repressive
(H3K27me3) histone marks that contain enriched Oct4-
and Suz12-binding sites in hESC.

MATERIALS AND METHODS

Dataset

Epigenomic data were available in the H1 human embry-
onic stem cells (hESC), human fetal lung fibroblast IMR90
cells (hFLF) (12,13) and V6.5 mouse embryonic stem cells
(mESC) (14,15). In human (H1 and IMR90), we used 11
histone modification marks and DNA methylation (mCG,
mCHG and mCHH, where H =A, C or T) (13) data gen-
erated by the San Diego Epigenome Center. The 11 histone
marks include H2BK5ac, H3K4me1/2/3, H3K9ac,
H3K9me3, H3K18ac, H3K27ac, H3K27me3, H3K36me3
and H4K5ac. Gene expressions in H1 and IMR90 were
measured by RNA-seq (13). In mESC, we used 8 histone
marks (pan-H3, H3K4me1–3, H3K9me3, H4K20me3,
H3K27me3 and H3K36me3) but no DNA methylation
data were available (14,15). Gene expressions in mESCs
were taken from microarray data in (14) and (16).

Assessment of the reconstructed networks using literature

We developed an automatic literature mining tool called
STAR miner to evaluate the entire network (see
Supplementary Data). STAR miner considers not only
the co-occurrence of a TF and its target in the same
paper, but also the explicit causal regulation between the
entities. For example, an edge from Oct4 to Nanog is con-
sidered to be supported by literature only when statements
like ‘Oct4 activates Nanog’ or ‘Nanog is regulated by
Oct4’ are found, suggesting more reliable retrieval of regu-
latory interactions than those methods that consider only
co-occurrence of two entities (17).

Oct4 knockdown

The short hairpin RNA (shRNA)-knockdown vector was
made based on the episomal vector pCAGIPuro (18).
Briefly, the enhanced green fluorescent protein (EGFP)
was cloned into pCAGIPuro, the expression of which is
driven by the chick b-actin (CAG) enhancer/promoter
that is highly active in hES cells (19). A H1 promoter
followed by multiple cloning sites was then introduced.
The shRNAs were inserted into the vector using the
BglII and SalI sites. The target sequence for knockdown
of human Oct4 (NM_002701) was GGATGTGGTCCGA
GTGTGG. We also constructed a universal negative
control shRNA vector using the sequence, ACTACCGT
TGTTATAGGTG, from pSilencerTM 4.1-CMV
Expression Vectors (Ambion).

The hES cell line HUES9 was cultured under feeder-free
condition using hESC-qualified Matrix (BD Biosciences)
and mTeSRTM1 defined medium (Stem Cell Technolo-
gies). Cells were passaged using TrypLE (Invitrogen).
Negative control shRNA or the Oct4 shRNA constructs
were transfected into HUES9 cells using electroporation.
Puromycin (0.3 mg/ml) was added to the media the next
day to selectively enrich the shRNA-expressing cells. The
hES cell line H1 was cultured and transfected the same
way as the HUES9 line, except that a rho-associated
kinase inhibitor Y27632 (Stemgent) was added to the
media after passaging or transfection for 24 hours.

Whole cell lysates were subject to electrophoresis on
sodium dodecyl sulfate polyacrylamide gel electrophoresis
and transferred to Immun-blot PVDF membrane
(Bio-Rad). The antibodies used were Oct4 (Santa Cruz
Biotechnology), Nanog (Abcam), Sox2 (Millipore) and
a-Tubulin (Sigma). The blots were developed with the
SuperSignal system (Thermo Scientific).

Total RNA was isolated using the RNeasy kit (Qiagen).
cDNA was synthesized using SuperScript reverse tran-
scriptase III (Invitrogen). qPCR assay was performed
using an Applied Biosystems Prism7000 Sequence
Detection System. The levels of Oct4 and Nanog were
measured using Taqman gene expression assays and
Ubiquitin C (UBC) was used as the endogenous control.
The levels of other genes were assayed using SYBR Green
PCR Master mix (Roche), and Glyceraldehyde 3-
phosphate dehydrogenase was used as the endogenous
control.

For the Oct4 intracellular staining, cells were fixed in 4%
paraformaldehyde, permeabilized with 1% Triton X-100
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and blocked in PBS-5% fetal calf serum. Cells were then
incubated with 1:100 dilution of an anti-Oct4 antibody
(Abcam), Phycoerythrin followed by staining with a
Cy3-conjugated donkey-anti-rabbit IgG antibody
(Jackson ImmunoResearch). For staining of surface
antigens, cells were incubated with PE-conjugated anti-
bodies against stage-specific embryonic antigens
(SSEA)-3, Tra-1-60 and Tra-1-81 (Becton Dickison) for
20minutes in the dark. All samples were analysed on a
LSRII flow cytometer (Becton Dickison). Total RNA
from control shRNA- and knockdown shRNA-transfected
cells were sent to Seqwright for microarray experiment.
The Human U133 Plus 2.0 array (Affymetrix) was used.

RESULTS

A systematic approach to reconstructing
transcription network

To conduct a comprehensive search for new regulators of
self-renewal and differentiation of ESC, we first integrate
epigenomic and genomic data to reconstruct transcription
networks in a cell-type-specific manner (Figure 1), which
consists of the following steps.

Step 1: Genome-wide prediction of promoters and enhancers
Based on the characteristic spatial patterns of chroma-

tin modifications (Supplementary Table S1 and Figure S1)
associated with promoters and enhancers, we used
Chromia (8) to predict at least 12,000 promoters and
17,000 enhancers in any of the three cell types
(Supplementary Figure S2 and Table S2). Presumably,
these predicted promoters/enhancers are actively regulated
as they are marked by open chromatin.

Step 2: Predicting TFBSs at a genomic scale
Encouraged by the success of Chromia on predicting

TFBSs in mESC by incorporating chromatin modification
information (11), we searched for TFBSs by scanning 732
known human/mouse motifs in the predicted promoters
and enhancers. Additionally, we penalized a motif score
if the sequence contained a methylated cytosine(13). In
hESC we found 130 enriched (hypergeometric
P-value< 10�5) motifs in promoters and 161 in enhancers
(P-value< 10�5) including the master regulators in ESC
(Oct4, Sox2 and Nanog).

Step 3: Reconstructing transcription network
Given the genome-wide TFBSs, one needs to assign TFs

to their target genes to reconstruct a transcription network.
We hypothesized that (i) a gene is regulated by a TF bound
to its promoter and (ii) all genes with an actively regulated
promoter, as predicted in Step 1, that reside in the same
CTCF block of a predicted enhancer can be regulated by
TFs bound to the enhancer. Predicted enhancers that did
not co-localize with any predicted promoters within a
CTCF block were discarded. Such an enhancer-promoter
assignment is not perfect but consistent with the recent
finding of transcriptional domain in which boundaries
of these domains coincide with CTCF-binding sites sug-
gesting the validity of CTCF block (20). On average an

enhancer was mapped to 1.7, 1.4 and 1.6 genes in hESC,
hFLF and mESC, respectively. False positive enhancer-
target assignment can be further reduced when additional
data such as HiC (21) or chromatin interaction analysis
by paired end tag sequencing (ChIA-PET) (22) become
available in these cells. In addition, we also incorporated
TF ChIP-seq data (Oct4, Nanog and Sox2) in hESC (12),
and 12 TFs in mESC ((Supplementary Table S1) (23)) into
the network. To eliminate nonfunctional binding sites in
the ChIP-Seq data, we only included the binding peaks
supported by the predicted promoters or enhancers (see
Supplementary Data).

Transcription networks in hESC, hFLF and mESC

We reconstructed transcription networks, referred as
hESnet, hFLFnet and mESnet, respectively, consisting of
presumably direct regulatory interactions in hESC (H1),
hFLF (IMR90) and mESC (V6.5) (Supplementary Table
S3). These are the largest transcription networks recon-
structed to date in these cells. For example, the hESC
network (hESnet) is composed of 786,250 edges and
13,777 nodes including 174 TFs that are densely intercon-
nected (Figure 2 and Supplementary Table S3). Compared
with the yeast network (24), the hESnet has a high cluster-
ing coefficient (0.731 compared with 0.189 in yeast). We
also reconstructed a conserved ESC network (ESnet) using
the intersection between hESnet and mESnet, which rep-
resents the evolutionarily conserved regulatory circuitry in
the ESC. Note that the corresponding TFBSs are not ne-
cessarily aligned in the human and mouse genomes, which
avoids errors introduced by the loss/gain/shuffling of the
TFBSs during evolution. Interestingly, the ESnet contains
more edges resulted from TFs binding to promoters than
to enhancers (Supplementary Table S3).
Using the ES-specific gene list obtained from (25), we

checked the regulatory relationship among the genes in
hESnet (Figure 2 and Supplementary Figure S3). In this
sub-network, the key master regulators (Oct4, Sox2 and
Nanog) as well as Foxo1, Sox21, Foxm1, HMGA1 and
Sox4 are hubs (Supplementary Figure S3). There are
notable differences between hESnet and mESnet. For
example, Prdm14, a PR domain-containing protein, is
highly expressed in hESCs (26) and regulates key
pluripotency genes (1), but shows low expression in mES
and mouse embryonic germ cells (27). Consistently, Oct4,
Sox2 and Nanog regulate Prdm14 in hESnet but not in
mESnet. Indeed, Prdm14 was affected by knocking down
Oct4 in hESC (Supporting website), but not affected by
either Oct4 or Nanog knockdown in the mESC (28),
which was confirmed by another independent study that
Prdm14 shares many target regions with Nanog and Oct4
but not affected by Oct4 knockdown (29). This example
illustrates the advantage of using the context-dependent
epigenomic data to identify regulatory interactions specific
to species or cell type.

Assessment of the reconstructed networks

Comparison with the networks in public databases
We first compared the predicted regulatory interactions
with two networks in the public databases. The first
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network is the integrated stem cell molecular interaction
database (iScMiD) (30) literature-based network that is
reconstructed based on 271 publications and contains
both cell-signalling and TF-gene regulatory links
(Supplementary Table S4). A caveat of using the iScMid
database to evaluate the predicted network is that the
iScMid network includes protein–protein interactions
(e.g. Nanog-MTA1) and indirect transcriptional regula-
tion (e.g. Sox15-CTGF), which are not expected to be

detected by our method. Especially, many Oct4 bindings
in iScMid are indeed protein–protein interactions.
The overlap between the iScMid literature network and
the ESnet is very significant (P-value=2.0� 10�5). The
second network is embryonic stem cells atlas of
pluripotency evidence (ESCAPE) ChIP network (http://
www.maayanlab.net/ESCAPE) that is assembled from
ChIP-seq experiments of 12 ES-related TFs in mESC
(Supplementary Table S5). For the TFs whose targets

Figure 1. Reconstruction of transcription network using genomic and epigenomic information. (1) Genome-wide prediction of promoters and
enhancers based on their chromatin signatures using Chromia (8). (2) Prediction of TF-binding sites (TFBSs). Motif scores for each TF were
calculated using a sliding window in the predicted promoters and enhancers. The motif score of a window containing a methylated cytosine was set
to 0. We only considered the regions of �4�+1 kbps around the predicted transcription start sites (TSSs) and �2.5�+2.5 kbps around the predicted
enhancers. (3) Direct target genes of each TF were assigned based on their proximity to promoters or enhancers located within the same CTCF
block. A TF binding in the promoter of a gene was considered to regulate the gene. A TF bound in enhancers was linked to all the actively regulated
genes (with a predicted promoter) within the same CTCF block. In this example, E1 regulates G1, but not G2 or G4 because E1 is insulated from G2
and G4 by CTCF. Gene G1 encodes a TF that binds to E3 and it thus regulates G2 and G4. G3 is not regulated by any TF because it is not actively
regulated (no predicted promoter). Finally, all regulatory interactions were assembled into a transcription network.
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were only predicted from computation in mESnet, the/’
overlap between the predicted and the ChIP-seq the
ChIP-seq targets was extremely significant (the least sig-
nificant P-value was still 4.1� 10�17). Since the ESCAPE
ChIP network consists of only small fraction of binding,
such a significant overlap with the predicted network
provides a solid validation of our network.

Literature evidence found by a literature mining tool
To have a large-scale assessment of the predicted networks
using literature, we developed STAR miner that automat-
ically retrieves transcriptional regulatory relationships
from the published papers (see Supplementary Data,
Figure S4). Note that this method does not only
consider co-occurrence of a TF and its target in the
same paper, but also explicitly considers the causal regu-
lation between the entities. Because TFs are often better
studied and have more literature evidence than the other
genes, we specifically examined the TF network, which
consists of only TF nodes. We observed impressive
positive prediction values (PPVs) of 35%, 29% and 41%
for hESnet, mESnet and ESnet, respectively. If TFs with

low gene expression levels in ESCs were removed, the
PPVs in these networks became even higher (38%, 34%
and 44%) (Supplementary Figure S7). Because many
regulatory interactions discovered in this study might be
new, it is not surprising that the PPVs for the entire
network were not as high as those for the TF network
and the predicted regulatory interactions would be
useful in guiding further experimental investigations
(The literature evidence is available at http://wanglab
.ucsd.edu/star/hESnet/index.jsp).

Oct4 knockdown experiment in hESC
To identify functional targets of Oct4, we silenced Oct4
using an episomal vector-based shRNA knockdown
vector and measured gene expression changes on day 3,
5 and 7 using microarray (Figure 3). The microarray
measurements were validated using QRT-PCR and the
correlation was >0.95 for all 3 days (Supplementary
Table S8). When a cutoff of fold change compared with
control is 4, the predicted targets include 209 out of 1877
RNAi-affected genes (11.1%), which indicate likely direct
targets of Oct4 (Figure 3g). This percentage is comparable

Figure 2. (A) The hESnet (ESC and lineage specific genes are highlighted). (B) The sub-network composed of ESC-specific TFs (25). (C) The largest
clique found in hESnet with different seeds.
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with the overlap between Oct4 ChIP-seq peaks and genes
affected by Oct4 knockdown in mESC (11,23,28).
Compared with the results of using ChIP-seq peaks
(genes within the same CTCF blocks assigned to an
Oct4 binding peak), the epigenetic information could con-
sistently improve the prediction accuracy (Figure 3h).

Systems-level analyses of the networks

Identification of new regulators of pluripotency
and differentiation
To uncover new regulators of pluripotency and differen-
tiation of ESC, we focused on the TFs that form

reciprocal regulations with the known regulators such as
Oct4, Sox2 and Nanog. We searched for cliques of TFs in
the networks using a heuristic searching algorithm (see
Supplementary Data). We defined a clique as a set of
nodes that are fully connected by bi-directional edges.

Using Oct4 as a seed, we found 24 unique cliques in
hESnet. We ranked TFs based on their occurrences in
these cliques. Tfap2a, Lef1, Mafb, Ikzf2, and Stat3 form
cliques with Oct4 even more frequently than Sox2 and
Nanog (Supplementary Table S9). Consistently, the TFs
that more frequently form cliques with Oct4 tend to be
more sensitive to Oct4 silencing. Except STAT3, all TFs

Figure 3. Silencing of Oct4 in HUES9. (A) The episomal shRNA vector. The negative control or the Oct4 knockdown shRNA sequence was inserted
into the BglII/SalI sites downstream of the H1 promoter. (B–F) Silencing of Oct4 in HUES9 cells by the Oct4 shRNA construct. HUES9 cells
growing under feeder-free condition were transfected with either the negative control (Neg) or the Oct4 knockdown (KD) construct. Subjected to
puromycin selection after 24 hours, cells were harvested at day 3, 5 and 7 post transfection. (B) Western blot analysis using an Oct4-specific antibody.
(C) Total RNAs from day 3, 5 and 7 samples were reverse-transcribed and qPCR experiments were performed using a Taqman probe for Oct4.
(D) FACS histogram of intracellular Oct4 level in GFP-positive live cells from Neg- or KD-transfected HUES9 at day 3. (E) Phase contrast
microscopy of cells transfected with Neg or KD construct at day 5. (F) FACS histogram of SSEA-3 expression on the surface of live cells from
Neg- or KD-transfected HUES9 at day 5. (G) Overlap between the Oct4 targets in the hESnet and the genes affected by knocking down Oct4 using a
fold change cutoff of 4 or 2 (in parentheses). (H) Epigenetic information improved identification of functional targets. Among the 6288 Oct4 ChIP
binding peaks, 1611 were close to promoter/enhancer predictions. We compared the 1611 RNAi-affected genes with those assigned to the top 1611
ChIP binding peaks (the union of affected genes on day 3, 5 and 7, and the fold change cutoff=2).
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appearing �5 cliques had an absolute fold change >2 in
Oct4-knockdown experiments (an example shown in
Figure 2c). These evidence suggest functional roles of
these TFs in pluripotency maintenance or differentiation.

Intrigued by this analysis, we investigated all TFs that
form cliques with different combinations of the three key
regulators (Oct4, Sox2 and Nanog) (Supplementary Table
S10) and found four unique cliques that all contain Lef1
and Ikzf2. The TFs that form the largest clique in hESC
are known to play crucial roles in pluripotency mainten-
ance (STAT3) or differentiation (IKZF2, LEF1, FOXD1
and FOXJ1). The distinct cliques for Oct4, Sox2 and
Nanog suggest their own unique roles besides their
shared functions. (Supplementary Table S11 and Figure
S5). This observation is reminiscent of the overlapping but
distinguishable binding sites of these TFs in both human
and mouse (23,31) as well as a previous study that showed
Nanog and Oct4 function in parallel pathways (32).

Functional cooperation between TFs revealed by common
target genes
To investigate the functional cooperation between TFs, we
clustered TFs using their normalized common targets (see
Supplementary Data) and several major clusters were
found (Figure 4 and Supplementary Figure S6). For
example, GATA4 and Foxa2 in hESnet, and Runx2 and
VDR in hFLFnet share many targets even though they
recognize distinct motifs (Figure 4, motifs in Supple-
mentary Table S12). GATA and Fox proteins are part
of the evolutionarily conserved network regulating
endoderm development (33) and play roles in the hepatic
development (34). Their common targets are indeed
involved in embryonic morphogenesis (P-value=
8.0� 10�10) and pattern specification process (P-value=
1.2� 10�6), which confirmed their roles in development.
Runx2 and VDR, key TFs for osteoblastogenesis, form a
complex to bind to DNA during skeletal development

(35), which is consistent with the functions of their
common targets: cell death (P-value=2.9� 10�10),
blood vessel development (P-value=3.4� 10�7) and
skeletal system development (P-value=2.6� 10�4).

Network rewiring during differentiation
Because hESC and hFLF are at the two ends of differen-
tiation, the networks in the two cell types allow us inves-
tigate how the transcription network is rewired during
differentiation. We first found the gain and loss of edges
caused by enhancer activity change in the hESC and
hFLF. We only examined genes that are actively regulated
(with a predicted promoter in both cell types) and also
differentially expressed, i.e. high expression in one cell
type and low in another (see Supplementary Data).
Among the 241 genes up-regulated in hFLF from hESC,
109 genes show changes of enhancer activity. Among the
301 down-regulated genes in hFLF from hESC, 98 genes
show changes in enhancer activity. For example,
Adamts19 has a low gene expression in hFLF but high
in hESC (Supplementary Figure S8). The chromatin
patterns at its promoter are quite similar between hESC
and hFLF. However, an enhancer was found upstream of
the gene only in hESC but not in hFLF (Supplementary
Figure S8).
DNA methylation often prevents TF binding to DNA

(36,37). To investigate its effect on transcriptional regula-
tion, we checked the 19 TFs that are highly expressed in
both hESC and hFLF, and artificially applied the DNA
methylation profile of the hFLF to hESC in the promoters
of their target genes (Supplementary Figure S9): among
241 genes expressed highly in hFLF and lowly in hESC,
159 edges would be added between the 19 TFs and 67
genes; among 301 genes expressed highly in hESC and
lowly in hFLF, 172 edges in hESnet formed between 19
TFs and 71 genes would be removed by the hFLF DNA
methylation. This observation confirms the repressive role

Figure 4. Clustering TFs based on their common targets in hESnet and hFLFnet (complete figures in Supplementary Figure S3).
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of DNA methylation in promoter regions. Gene ontology
analysis shows that large portion of these genes
is related to membrane (Supplementary Figure S10),
which indicates a broad role of DNA methylation in
regulating membrane proteins during differentiation (38).
Furthermore, we found a majority of the genes up-
or down-regulated in hFLF contain promoters that
lack a TATA box, regardless of the CpG content
(Supplementary Figure S11). In summary, either the
change of enhancer activity or DNA methylation in pro-
moters can explain 249 out of 542 (46%) of differentially
expressed genes in hESC and hFLF (Supplementary
Table S13).
The cell-type-specific networks also allow identification

of putative lineage-specific TFs. We collected 80
mesoderm-, 257 ectoderm- and 19 endoderm-specific
genes (see Supplementary Data) and examined the
change of edges between these genes and their regulators
in hESnet and hFLFnet. As the hFLF IMR90 cell is endo-
dermal, we found increase of regulatory interactions from
hESC to hFLF between six TFs and the endoderm-specific
genes, suggesting possible roles of these TFs in endoderm
differentiation (Figure 5). Indeed, Smad4 has a known
function in endodermal cell migration observed in the
mouse development (Supplementary Table S14). Inter-
estingly, we observed a set of TFs regulating less
mesoderm-specific genes in hFLF than in hESC, including
Runx1, Nkx2-5, Tcf3, Gata1, Ikzf2 (Figure 5), all of which
are supported by literature (Supplementary Table S14).
Similarly, SETD2 regulates less ectoderm-specific genes
in hFLF than in hESC.

Interplay between TF binding and epigenetic modifications
in hESC
Determination of TF-binding sites provides an opportunity
to investigate how their bindings interact with epigenetic
modifications. We focused on enhancers in hESC
and categorized them based on their distinct epigenetic
signals (Supplementary Figure S12 and Figure 6).
Enrichment of Oct4, Sox2 and Nanog binding in the
hESnet was examined in each cluster. All three key regula-
tors bind preferentially to cluster 1 (Table 1,
Supplementary Tables S15, S16 and S10). In contrast,
only Sox2 but neither Oct4 nor Nanog prefers cluster 4,
which lacks the dip of mCG at the enhancer centers as
shown in cluster 1. It is noteworthy that enhancer predic-
tions were made only using histone modifications without
considering DNA methylation. This observation may
suggest that CG and non-CG methylation may play
distinct roles in interplaying with histone modifications or
protein binding.
Cluster 2, 6 and 7 also present biased binding of these

TFs (Table 1). Especially, only Oct4 binding is enriched in
cluster 7 and 42% of the Oct4 targets in this cluster are
confirmed by the knockdown experiments (Table 1,
Supplementary Tables S15 and S16). Enriched functions
of these Oct4 targets are related to development
(Supplementary Data). Cluster 7 shows strong active
H3K4me1/2 and repressive H3K27me3 marks, which is
reminiscent of the bivalent H3K4me3/H3k27me3 pattern
found in promoters (39) and consistent with the poised

enhancers (40,41). All the genes within the same CTCF
blocks of these enhancers (particularly those actively
regulated ones) are expressed significantly lower in hESC
(t-test P-value< 2.2� 10�16) than other clusters
(Supplementary Table S15) but much higher than other
clusters upon Oct4 knockdown (Figure 6b). Notably, the
poised enhancers contain enriched binding sites of Suz12
(42), a subunit of the Polycomb Repressive Complex 2
(PRC2) (Table 1 and Supplementary Table S16), which
is consistent with the role of Oct4–Polycomb interaction
for lineage specific repression (42,43). Cluster 7 also lacks
the characteristic non-CG methylation in hESC. To search
for additional TFs that may bind to the bivalent enhan-
cers, we conducted motif enrichment analyses and found
additional TFs such as Myc and Znf219 that may inter-
play with the bivalent enhancers (see Supplementary
Data).

DISCUSSION

We demonstrate here the first attempt to identify new
regulators of pluripotency and differentiation in ESCs
using a systems biology approach. We reconstructed tran-
scription networks using epigenomic data at a genome-
wide scale, which revealed many new TFs that likely
cooperate with the known master regulators to regulate
self-renewal and differentiation. The Oct4-knockdown
experiments further supported the possible functional
roles of these TFs in ES cells. Regulatory interactions

Figure 5. Lineage specificity of TFs. The normalized TF target differ-
ences (hFLFnet� hESnet) were calculated as the metric to cluster TFs
using a hierarchical clustering algorithm.
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suggested by our analyses may shed light on the mechan-
isms of pluripotency maintenance and lineage-specific
differentiation.

The integrative analysis of genomic and epigenomic
data revealed interplay between TF binding and epigenetic
modifications. Particularly interesting, a set of bivalent
enhancers regulating genes poised in stem cells coincide
with preferred Oct4 and Suz12 binding. Target genes of
these enhancers are up-regulated upon Oct4 knockdown,
which further illustrates the cooperation of Oct4 and
Suz12 in repressing cell differentiation and maintaining
self-renewal.

Inferring transcription networks based on the cell-state-
specific epigenetic modifications also provides a unique
opportunity to study the dynamic rewiring of transcrip-
tion networks. Comparison of gene expression and regu-
latory interactions in different cell types suggests possible
mechanisms such as DNA methylation and enhancer
activity change, through which the cell-type-specific gene
expression is achieved.

There is still a great room for improvement of the
method to reconstruct transcription networks. First, the
assignment of enhancers to genes is obviously not
optimal. The fast accumulation of genomic and epigenetic
data in large number of cells provides an unprecedented
opportunity to improve the inference of enhancer-
promoter regulation, and these additional data can be
incorporated into network reconstruction. Second, the

predicted enhancers included both active and poised
ones. A further distinction between the two groups of en-
hancers will no doubt further improve the quality of the
reconstructed transcription network. Third, we predicted
the binding of expressed TFs based on the presence of their
motif in the promoters or enhancers, which is an assump-
tion that is not always true because the TF binding may
depend on the binding of its co-factors. To completely
resolve these issues, both new experimental techniques
and computational methods are needed and are indeed
being actively pursued.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–17 and Supplementary Figures
1–12.
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Table 1. Occurrence of the TF targets in each cluster. Hypergeometric P-value was calculated to evaluate the significance of the enrichment

Cluster Number of
enhancers

Number
of genes
mapped to
enhancers

Average
RPKMs of
genes mapped
to enhancers

Oct4 target genes Sox2 target genes Nanog target genes Suz12
binding
peaks (%)Number

of targets
P-value RNAi-affected

genes
Number
of targets

P-value Number
of targets

P-value

1 4967 2717 24.4 142 2.8� 10
�11 52 1813 6.3� 10

�320 1681 2.8� 10
�295 0

2 519 494 58.3 39 5.15� 10�6 17 248 0.02 239 2.1� 10�4 0
4 4366 2647 20.6 21 1.0 11 1116 8.9� 10�3 914 0.97 0
6 360 422 50.4 25 0.01 8 294 1.3� 10�29 264 7.3� 10�24 0
7 758 667 7.7 33 7.8� 10�4 14 119 1 120 1 27

RNAi-affected genes are genes whose expression values changed more than 2 fold after Oct4 knockdown on day 3, 5 or 7. For Suz12 binding, the
percentages of the enhancers containing the Suz12-binding sites were calculated. The average reads Per kilobase per million mapped read (RPKM) of
all genes is 26.2 in hESC and 22.6 in hFLF (complete table in Supplementary Table S15).
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