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ABSTRACT: Simulations of molecular systems using electronic
structure methods are still not feasible for many systems of
biological importance. As a result, empirical methods such as force
fields (FF) have become an established tool for the simulation of
large and complex molecular systems. The parametrization of FF
is, however, time-consuming and has traditionally been based on
experimental data. Recent years have therefore seen increasing
efforts to automatize FF parametrization or to replace FF with
machine-learning (ML) based potentials. Here, we propose an
alternative strategy to parametrize FF, which makes use of ML and
gradient-descent based optimization while retaining a functional
form founded in physics. Using a predefined functional form is shown to enable interpretability, robustness, and efficient simulations
of large systems over long time scales. To demonstrate the strength of the proposed method, a fixed-charge and a polarizable model
are trained on ab initio potential-energy surfaces. Given only information about the constituting elements, the molecular topology,
and reference potential energies, the models successfully learn to assign atom types and corresponding FF parameters from scratch.
The resulting models and parameters are validated on a wide range of experimentally and computationally derived properties of
systems including dimers, pure liquids, and molecular crystals.

1. INTRODUCTION
Computer based simulations are a powerful tool for the
investigation of chemical systems.1−3 Performing such
simulations requires an accurate description of intermolecular
forces.4 However, due to the computational complexity of ab
initio methods5−9 or density functional theory (DFT),10,11 an
exact description is out of reach for most systems, particularly
systems of biological relevance.12,13 As a result, a variety of
approximate methods has been developed, which can be
broadly categorized into three classes: semiempirical methods,
classical force fields (FF), and machine learning (ML) based
models. Semiempirical methods explicitly describe the
electronic structure.14,15 However, various approximations are
introduced to reduce computational costs. Existing methods
attempt to compensate for these approximations by introduc-
ing a relatively small number of empirical parameters.16−18

Classical force fields, on the other hand, forego an explicit
description of the electronic structure and employ instead a
predefined functional form and associated parameters, which
together encapsulate aspects of a given interaction.19,20 Due to
their simplicity, they can be evaluated much more efficiently
than ab initio or semiempirical methods, but generally require a
larger number of parameters and extensive parametrization. In
recent years, ML-based models have emerged as a third
alternative,21 which assume fewer inductive biases, but require
an even larger number of parameters compared to the two
previous approaches. Even though very promising results have

been reported for ML potentials,21−26 their application to
condensed-phase systems and the prediction of experimentally
measured properties has been fairly limited.27−32

The relative scarcity of application of ML potentials to
propagate molecular dynamics (MD) simulations is likely a
result of insufficient data efficiency due to a lack of inductive
biases as well as difficulties posed by the presence of a large
number of relatively weak and long-ranged interactions in
condensed-phase systems.33 In addition, doubts have been
raised if ML potentials are robust enough to perform MD
simulations.34 There are also discussions whether ML
potentials describe features of the potential-energy surface
(PES), such as its curvature, sufficiently accurate to perform
MD simulations.35 With their predefined functional form,
which is physically motivated, FF have become an established
tool to simulate large condensed-phase systems such as
solvated proteins over long time-scales.1 While the FF
formalism provides a computationally efficient, interpretable
and robust way to describe forces in molecular systems, this
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robustness comes at a price. Most of the commonly used FF
do not account for phenomena such as charge anisotropy or
polarization. In addition, the development of a FF is still a
nontrivial process, despite advances in automation over the
past years.36−42 The OpenFF initiative in particular has
initiated a grand effort to fully automate this process, including
atom-typing,43,44 data generation,45 parametrization,46 and
validation.47

While FF were historically and continue to be (partly) fitted
to experimental data, the advances in computational power and
improved scaling of methods based on quantum-mechanical
(QM) calculations has opened up new opportunities.19 As a
readily accessible data source, focus has shifted to para-
metrization with respect to QM reference data such as torsion
profiles or interaction components. In addition, there is an
increased effort to extract FF parameters directly from electron
densities.48−54 As an example, van Vleet et al.55 developed an
ab initio FF based on a parametrization formalism using Slater
functions from which certain parameters were directly derived.
An alternative approach is to keep a predefined functional form
to describe intermolecular potentials but obtain the parameters
from a ML model.56−58 In a similar fashion, Wang et al.59 and
Harris et al.60 investigated graph neural networks (GNN) and
graph-convolutional neural networks (GCNN) in combination
with automatic differentiation as a method to parametrize FF.
Focusing on intramolecular interactions, they could show that
GNN can be used to predict FF parameters from potential
energies and recover human-defined atom types. Furthermore,
Li et al.61 demonstrated for the case of a ML-DFT functional
that inclusion of physical priors in the learning process by
solving the Kohn−Sham equations during training resulted in
improved generalization. Finally, we also point out recent
efforts which use ML in a complementary fashion to extract
symbolic expressions from data.62−66

In this work, we build on these developments to propose a
universal framework for the parametrization of FF, focusing on
intermolecular interactions. Besides generalizing the para-
metrization process, we describe a formalism for end-to-end
differentiable FF, taking advantage of learned atom types. The
proposed approach is applied to the parametrization of a
nonpolarizable as well as a polarizable FF. Multipoles and
monopoles used to describe electrostatic interactions were
obtained separately from our previously introduced equivariant

GNN model without further modifications.67 For both the
nonpolarizable and polarizable FF, the model is trained on the
PES of dimer interaction potentials of the recently published
DES5M data set68 and a data set of intermolecular potentials
of molecular crystals, which was generated for this work.
Hence, the models learn the parameters from scratch to
reproduce the given PES. We show that a fixed-charge FF
parametrized in such a manner can be used to reproduce
experimental condensed-phase properties. We find that the
resulting models outperform comparable models for the
considered test cases.

2. THEORY
2.1. Formalism. Assuming a chemist’s viewpoint, mole-

cules can be interpreted as graphs G = (A, B) with nodes
(atoms) A and edges (bonds) B. Accordingly, a FF consists of
a function G: , which assigns FF parameters θ to a
molecular graph G and a function

x x( ) ( )
i

i,=
(1)

where the total potential energy of a state x is decomposed into
i, . The function that assigns parameters θ can be

understood as a parametrized, or learnable, function itself. For
commonly used FF, is generally expert-devised and depends
only on atomic features such as element types and hybrid-
ization states. For FF that are parametrized based on electron
densities, partitions and assigns parameters to an electron
density.

Given a parametrization function , a FF can thus be
interpreted as a function with parameters θ and a functional
form , X V: , which maps a PES V ∈ R to the states X
∈ Rn of a system, with n denoting the dimensionality of the
system. A system can thus be propagated in time by integrating
the negative derivative of the potential energy v ∈ V with
respect to its current state x ∈ X,

x v x( ) ( ),x x= = (2)

where F ∈ Rn is the gradient field of the negative potential
energy. Propagating the system for an appropriate amount of
time, a system property P can be derived as X P: with a
function , which assigns a property to a state or set of states

Figure 1. Overview of the proposed parametrization workflow: (I) Atomic environments are encoded as feature vectors with a GNN. (II)
Parameters θij are predicted for tuples of atomic features. (III) In conjunction with predefined parametric interaction potentials V, the predicted
parameters θij are used to evaluate the potential energy of a state. (IV) The prediction is evaluated against reference properties. (V) Using
automatic differentiation, errors with respect to the target properties are backpropagated to improve the quality of the predicted parameters.
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of the system. Generally, system properties can be scalar,
vectorial, or tensorial. They may be defined for each
configuration or ensemble average, and depend on the
functional form of the FF and its parametrization (Figure
1). Given a system property obtained from a simulation, Ppred
and a reference value Pref (e.g., from experiment or a QM
reference calculation), a loss L can be defined as

P P L: ( , )pred ref with a loss function . Due to its
generality, any computable property can be used as target.
Examples include the potential energy, gradients, or Hessians
from QM reference calculations, but also experimental
properties would be possible such as geometrical constraints
from NMR or crystallography, vibrational spectra, or ensemble
properties such as enthalpies of phase transitions.
2.2. Parametrization. Given a loss function and

parameters θ, a FF may be optimized to yield more accurate
properties. Specifically, the derivative of the loss function with
respect to the FF parameters,

... ,=
(3)

can be used to update FF parameters successively with gradient
descent based optimization methods analogously to back-
propagation used in deep learning.69 With the help of
automatic differentiation libraries, these gradients can be
evaluated with minimal additional programming effort and
computational cost.70,71

2.3. Graph Neural Networks as Universal Para-
metrization Functions. GNN are ML models parametrized
by artificial neural networks (ANN) that process graph-
structured data. In the commonly used form, node, edge and/
or global features are iteratively refined based on the current
features. GNN models differ mainly by the features used, the
way the underlying graph is constructed, and the updating or
feature-refinement process applied.72−75

Considering a molecular graph G = (A, B) with nodes ai ∈ A
and edges bij ∈ B, message passing can be defined as

m h h b

m m

h h m

( , , )

( , ),

ij b i
l

j
l

ij

i
j N i

ij

i
l

h i
l

i

( )

1

=

=

=+
(4)

with hil ∈ Rn describing the hidden feature vector of node ai
after l graph processing steps, bij ∈ Rn the bond feature of bond
bij between node i and j, N(i) denoting the set of neighbors of
ai and mij the message from node j to node i. ϕb and ϕh
represent ANN parametrized edge and node update functions.
The superscript l denotes the current layer or the current
iteration in the recurrent realization. After n iterations, the
refined node feature hin is used as an atomic-environment
descriptor in subsequent steps. We note that hin does not
necessarily have to be obtained from a GNN. In principle, any
other descriptor can be used, for instance atom-based
topological fingerprints. However, GNN present themselves
as a natural choice to work with graph-structured data, which
in turn is ideally suited for a classical description of molecules.
2.4. Parameter Prediction. To predict atomic parameters,

learned atom features hin obtained from the GNN serve as
descriptors of the atomic environment. Assuming that FF
parameters are a function of the atomic environment, such

features can be used to distinguish atom types and to assign FF
parameters. Hence, atomic parameters are predicted as

h( ),i i
n

atom= (5)

with ϕatom denoting the readout function that assigns the
parameter θi for a given interaction to an atom type. In general,
FF also describe how parameters of two particles are combined
to describe a given interaction. Standard biomolecular FF use
combination rules to derive parameters of two distinct atom
types.19 By design, combination rules must be symmetric
under arbitrary permutations of types present in the
interaction. Instead of using established combination rules
such as arithmetic or geometric means, pairwise parameters are
predicted as a function of two atom types. Specifically, the
following approach was chosen

h h h h( , ) ( , )ij i
n

j
n

j
n

i
n

pair pair= + (6)

In this case, ϕpair is an ANN parametrized function, which
assigns the parameters of a specific interaction to a pair of
atomic environments. This approach guarantees symmetry
with respect to permutation of two atoms and allows for more
complex combination rules.
2.5. Force-Field Parametrization Function. Combining

the previously introduced concepts with the formalism
described in section 2.1, the FF parametrization can be
defined as the combination of the following two components:
(i) a typing function to assign atom types to a given system,
and (ii) a combination rule, which returns parameters for a set
of atoms partaking in a given interaction. In the current work,
the function assigning atom types is modeled with a GNN
consisting of a node and edge update layer, ϕh and ϕb, and a
combination rule ϕAtom or ϕPair for atomic and pairwise
parameters, respectively. In the context of the GNN formalism,
ϕθ can be considered a readout function, which maps the
hidden state of node features to a label. In our case, FF
parameters are mapped to interactions between given atom
types. Evidently, established FF atom type definitions and
parametrization procedures can be viewed as a special case of
the described formalism. For example, the SMARTS patterns
used for chemical perception in OpenFF44 can be cast as
graph-based operations that account for features such as the
element, its coordination number, bonded neighbors, or
subgraph features. In the case of models, which derive
parameters from electron densities, the partition function
used to decompose the electron density into atomic
contributions takes up the role of the typing functions. In
these cases, the combination rules are often derived from first
principle considerations or empirically fitted.48,50

2.6. Models. Besides the aforementioned components,
which assign parameters to a given interaction or atom, a FF
must further define potential-energy terms and an associated
functional form. The chosen functional form reflects the
assumptions of the model, and thus determines the accuracy of
the model, its computational cost, and its capabilities.

In this work, we consider two models. The first model is
based on three interactions: (i) repulsive, (ii) attractive, and
(iii) electrostatic. The first two components follow the
functional form of the Mie potential76 with a repulsive C9
term and an attractive C6 term. The electrostatic component is
described with Coulomb’s law and fixed partial charges. Hence,
this model assumes an isotropic-pairwise-additive form, and we
will refer to it as “IPA model”. The second model considered in
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this work is based on multipole electrostatics and polarizable
atoms, therefore violating isotropy and pairwise additivity. We
will refer to this anisotropic-nonadditive model as “ANA
model”. The IPA model is similar to the functional form of the
most widely used fixed-charge FF.19,46,77−81 The functional
form of the ANA model, on the other hand, is an attempt to
explore the limits of a purely classical model through an
implicit description of the electron distribution based on
atomic multipoles and induced dipoles. Its functional form is
similar to the class of polarizable and QM derived FF.56,57,82−87

A detailed description of the functional forms and the included
terms is provided in the Methods section.

In addition to the two functional forms used, we also
investigated two training data regimes. The IPAd and ANAd
models were only trained on dimer interaction potentials in
vacuum using the SNS-MP288 reference values of the DES5M
data set.68 The model labeled with IPAd+c was additionally
trained on intermolecular potentials of molecular crystals,
which were obtained with B86bPBE-XDM.89,90 The perform-
ance of the IPAd, IPAd+c, and ANAd models was investigated
for a wide range of systems and environments. For the IPAd+c
model, emphasis is put on the performance in condensed-
phase systems, which are generally challenging for nonclassical
methods or ML-based models. With its more sophisticated
functional form, the ANA model is applied to intermolecular
potentials of small-molecule dimers, which permits a direct
comparison with first-principle and DFT methods. Finally,
further explorations of parameters learned by both approaches
are presented. We note that the ANA model has not been
applied to condensed-phase systems.

3. RESULTS AND DISCUSSION
3.1. Intermolecular Potentials in Vacuum. Small-

molecule dimers are accessible to highly accurate wave
function methods. As such they present a valuable validation
case to probe the accuracy of the description of specific
interactions. For this purpose, several established noncovalent

interaction benchmarks were taken as test sets from the
Biofragment database91−97 and the noncovalent interaction
(NCI) atlas98−102 (Figure 5). In addition, the models are
tested on the S7L103 data set. For systems in the S7L data set,
estimated CCSD(T) binding energies from a recent study104

were used as reference. In all cases, only systems consisting of
neutral monomers with more than two atoms were included.
The performance results on the benchmarking sets with a total
of 10,896 data points are summarized in Table 1. The full error
statistics are given in Table S1−S3 in the Supporting
Information.

The results of the three models investigated in this study are
shown in Table 1. Consistent results over these diverse sets are
observed. For comparison, reference values are given for the
data sets in the Biofragment database where available. Three
methods were chosen to represent classical force fields
(CHARMM General FF (CGenFF)107), semiempirical models
(PM6-DH2108), and DFT methods (PBE0-D3109−111). The
IPA models perform comparable to previously reported results
for empirical (FF) or semiempirical models. In general, the
simpler models are outperformed by the ANAd model, which
achieves for some data sets an accuracy comparable to
dispersion corrected hybrid functionals like PBE0-D3BJ.
Exceptions are the BBI data sets, where the IPAd model
performs better than ANAd, and the S7L data set for which
IPAd+c outperforms the other models.

Comparison between IPAd+c and IPAd suggests that
additional training on crystal data points does not necessarily
lead to a strong negative impact on the description accuracy for
dimers in vacuum. This is surprising for two reasons: (i) The
method used to compute the potential energy of crystal
structures is considerably less accurate than the methods used
to compute the dimer interaction potentials in the bench-
marking data sets and the DES5M training data set. (ii)
Polarization effects, which the IPA models must implicitly take
into account, differ between vacuum and condensed-phase
environments. This effect is most pronounced for the S7L data
set, where IPAd+c outperforms the IPAd and ANAd models.

Table 1. Mean Absolute Error (MAE) in [kJ/mol] for the IPAd, IPAd+c and ANAd Models for Intermolecular Interactions in
Dimersa

Data set Data points IPAd+c IPAd ANAd CGenFF PM6-DH2 PBE0-D3

S66x898 528 2.9 2.3 1.1 3.3105 1.0106

SSI91 2596 1.4 1.1 1.0 1.3 1.1 0.5
BBI91 100 3.3 0.8 1.1 2.1 2.9 0.3
UBQ95 81 3.9 1.7 1.4 3.7 1.4
ACHC97 54 2.7 5.8 2.7 1.8
JSCH96 123 5.9 6.5 2.3
HSG94 16 1.8 1.3 0.9 1.3 1.8 1.3
D120099 401 4.2 2.1 1.9
D442x1099 1230 4.6 3.1 2.9
R739x5100 1370 4.5 3.7 3.6
HB375x10101 3750 4.4 4.9 1.9
HB300SPXx10102 640 3.5 3.8 2.3
S7L103,104 7 8.8 13.9 10.3

aTest sets from the Biofragment database (SSI, BBI, UBQ, ACHC, JSCH, HSG)91−97 and the non-covalent interaction (NCI) atlas (S66x8,
D1200, D442x10, R739x5, HB375x10, HB300SPXx10).98−102 IPAd+c refers to the fixed-charge model, which included training on crystal structures.
The IPAd and the polarizable ANAd models were trained exclusively on dimer interaction potentials from the DES5M data set.68 The full error
statistics are given in Tables S1−S3 in the Supporting Information. Where available, values for the classical force field CGenFF,107 the semi-
empirical model PM6-DH2,108 and the DFT method PBE0-D3109−111 are reported for comparison. Reference values were taken from the
publication of the corresponding data set if not indicated otherwise. Values were converted to kJ/mol using a factor of 4.184. Note that PBE0-D3
does not use the same basis sets in all cases. Values for the largest available basis set (def2-QZVP or aug-cc-pVTZ) and counterpoise correction
were chosen if available.
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Interestingly, training on crystal potential energies appears to
provide a regularizing effect for the IPAd+c model, offering not
the most accurate but the most consistent results over a wide
range of applications beyond dimers (see below).

The biggest deviations are observed for the large systems in
the S7L data set. While not larger in relative terms, it is
interesting to note that the error for the two models trained on
dimer data only (i.e., IPAd and ANAd) is almost completely
due to a systematic overestimation of the binding energy, with
a mean error equal to the mean absolute error and with errors
for each system roughly proportional to the magnitude of the
interaction (Table S1 in the Supporting Information).

For the ANAd model, which includes an explicit treatment of
polarization, this observation may indicate an imbalance
between pairwise and many-body interactions that is not
present for the small-molecule dimers in the DES5M data set.
Finding a way to improve this balance might be an important
step to construct potentials that generalize from dimers to
larger assemblies and condensed-phase systems. Developing
additional benchmark data sets with a broader coverage of the
space from medium to large structures and resolving the
disagreement between CCSD(T) and fixed-node diffusion
Monte Carlo for large structures, which was brought up in ref
104 could be beneficial to validate such efforts.
3.2. IPAd+c Model�Crystalline Systems. Reproducing

properties of liquid or crystalline systems is an important
validation task for intermolecular potentials. QM methods are
in general not feasible to simulate such systems, and the wide
range of interactions poses considerable challenges to ML
models.

Intermolecular Potentials in Crystals. Intermolecular
potential energies calculated for a wide range of molecular
crystals were used to parametrize the IPAd+c model in addition
to the dimers in vacuum. Table 2 shows the mean absolute

error on the molecular crystals for the IPAd+c and the IPAd
models. Only equilibrium structures of the crystals were
included. The training set and test set contained 10,000 and
1,489 data points, respectively. As expected, the IPAd model
performs considerably worse than the IPAd+c model. As the
latter model performs also comparatively well on dimers in
vacuum, these results point at a general advantage for the
training of IPA-type models on both gas-phase and condensed-
phase data. For this reason, only the IPAd+c model is used in
the following sections.

To obtain a picture of the range of van der Waals parameters
predicted by the model, Figure 2 shows the C6 and C9
parameters from the IPAd+c model for all pairwise interactions
in the crystal data set. Further information is given in Figures
S2 and S3 in the Supporting Information, showing the
resulting well-depth and the minimum distance by atom
pairs. The nature of the electrostatic interaction is indicated by

the color, with blue for attractive interactions and red for
repulsive interactions. Interestingly, a large part of the
correlation between C6 and C9 parameters might be captured
by a power law. This observation could potentially be used to
construct FF based on a single parameter and appropriate
scaling laws, for instance based on a notion of atomic volumes.
Furthermore, the predicted C6 and C9 parameters form a
continuum over large ranges. While there are some distinct
islands, in particular interactions with hydrogens in the bottom
left, the results in Figure 2 are nevertheless an indication that
the model takes advantage of continuous atom types.

Lattice Enthalpies: X23 and G60. Performance on crystal
structures was evaluated on the X23 benchmark112,113 using
the revised values from ref 114 as well as the G60 data set115

(Table 3). Note that these data sets differ in the way the

experimental heat of sublimation was corrected for vibrational
contributions. Two settings were considered: For setting (1),
labeled with ‘Nonrelaxed’, the lattice energy was approximated
with the intermolecular potential for the nonrelaxed exper-
imental geometries. In setting (2), labeled with ‘Relaxed +
intra’, structures were relaxed and the potential-energy
difference between the gas-phase minimum conformation
and the crystalline phase minimum was included. For the
second setting, six systems had to be excluded due to problems
with the bonded terms from OpenFF (i.e., X23: CO2 and
UREAXX12; G60: CTMTNA03, METNAM08, MTNANL,
OCHTET13).

For both data sets, the cohesive energy is systematically
underestimated with the IPAd+c model (i.e., positive mean
errors in Table 3) and the MAE is above chemical accuracy.

Table 2. Mean Absolute Errors (MAE) [kJ/mol] for
Intermolecular Potentials of Molecular Crystals at
Equilibrium Calculated with the IPAd+c and the IPAd
Modelsa.

Data set IPAd+c IPAd

Training 5.3 28.7
Test 5.3 28.2

aThe training set and test set contained 10,000 and 1,489 data points,
respectively.

Figure 2. Predicted C6 and C9 parameters by the IPAd+c model on log
scale for all atom pairs in the data set of intermolecular potentials of
crystals (11,489 molecules). The color indicates the strength and sign
of the electrostatic interaction (blue = attractive, red = repulsive).

Table 3. Mean Absolute Error (MAE) and Mean Error (ME)
in [kJ/mol] for the IPAd+c Model on the X23 and G60
Benchmark Sets Based on Revised Values from ref 114 and
reference values collected in ref 115a.

MAE ME

Data set Nonrelaxed Relaxed + intra Nonrelaxed Relaxed + intra

X23 7.1 6.1 4.2 2.2
G60 9.5 12.1 5.4 9.5

aThe full error statistics are provided in Table S4 and S5 in the
Supplementary Information.
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Nevertheless, the IPAd+c model reproduces lattice energies
more accurately than most existing models reported so far in
the literature, e.g., DFTB-D3 with a MAE of 10.38 kJ/mol for
the X23 data set,116 except for some of the best performing
dispersion corrected DFT functionals such as PBE0-MBD with
a MAE of 3.9 kJ/mol on the X23 data set.112,113 This shows
that the accurate description of the lattice energy of molecular
crystals remains a particularly challenging problem, which will
continue to serve as an important reality check, specifically for
models that are not parametrized on condensed-phase data.
3.3. IPAd+c Model�Pure Liquid Properties. Properties

of pure organic liquids are commonly used to validate classical
FF, serving in many cases also as parametrization targets (see,
e.g., refs 79, 117, 118). To further explore the performance of
the IPAd+c model beyond vacuum and crystals, applications to
the liquid phase are shown in the following. Three benchmarks
covering a wide range of systems and properties are considered
for this: (i) 13 sulfur compounds taken from the publication of
the OPLS4 release,119 (ii) 29 molecules containing H, C, O
taken from a recent investigation of condensed-phase para-
metrization of OpenFF,118 and (iii) 57 organic compounds
from the validation of the GROMOS 2016H66 FF.117 Unlike
the referenced FF, parametrization of the IPAd+c model did not
include experimental liquid properties such as the density or
heat of vaporization. Therefore, pure liquid properties present
an interesting test case for this model. For the liquid
simulations with the IPAd+c model, bonded interactions (i.e.,
bonds, angles, dihedrals, and 1−4 nonbonded interactions)
were treated with OpenFF 2.0,120 while all other interactions
(i.e., nonbonded terms) were treated with the IPAd+c model. A
detailed description of the simulation protocol is given in
section 5.13.

Sulfur Compounds. Systems containing sulfur are challeng-
ing for fixed-charge FF due to the polarizability of sulfur and
the presence of higher-order multipole components. Recent
work on the OPLS4 FF119 improved the performance on
several challenging motifs, including sulfur interactions and σ-
holes. Specifically, OPLS4 improved the RMSE of the heat of
vaporization (Hvap) for 13 sulfur-containing systems by more
than 1 kJ/mol (i.e., 0.3 kcal/mol) compared to the previous
OPLS3 version.119 With an RMSE of 2.5 kJ/mol for Hvap, the
IPAd+c model performs comparable to OPLS4 (Table 4). This

result is remarkable for several reasons. First, unlike the IPA
model, OPLS4 uses virtual-sites to represent lone pairs and
anisotropic Lennard-Jones interactions, which were specifically
introduced to improve the description of systems containing
sulfur and halogens. Second, the OPLS FF family was
specifically parametrized with respect to liquid properties

such as Hvap,
79 whereas the IPAd+c model was only trained on

QM intermolecular potential energies. Third, the intra-
molecular potential of OPLS4 is jointly optimized with the
intermolecular potential, allowing for a higher degree of
consistency between the two parts. It is likely that considering
the above points in future work on the IPA model could result
in further improvements.

Test Systems from OpenFF. To gain a better understanding
for the role of the bonded terms taken from OpenFF, results
for 29 pure liquids from a recent benchmark of OpenFF are
presented here.118 The compounds contain only H, C, and O.
The referenced work is particularly interesting for its
investigation of opposing forces during the parametrization
with respect to mixing enthalpies, vaporization enthalpies, and
densities. Only pure liquid properties were considered here.

As can be seen in Table 5, similar errors are observed for the
IPAd+c model and the standard OpenFF 1.0. Reoptimization of

the FF with respect to the pure liquid properties of the training
set (also compounds containing only H, C, and O) improved
the accuracy of OpenFF 1.0 considerably118 (Table 5). The
authors observed thereby opposing gradient components for
the simultaneous optimization with respect to densities and
heats of vaporization. No further liquid properties were
considered in ref 118 (such as dielectric permittivity, thermal
expansion coefficient, etc.). It would thus be interesting to see
the performance of the reoptimized OpenFF (termed ‘Pure
only’) on other properties.

The fact that all models shown in Table 5 use the same
functional form with very similar bonded terms may indicate
that liquid properties cannot be reproduced more accurately
without either improving the description of the bonded
interactions and/or extending the functional form, for instance
through the use of a polarizable model and multipoles. We
note that the simulations with the IPAd+c model used bonded
terms from OpenFF 2.0, while OpenFF 1.0 was employed in
ref 118.

Test Systems from GROMOS 2016H66. The 57 pure liquids
from the GROMOS 2016H66117 release include extended
coverage of the chemical space and additional properties such
as the isobaric thermal expansion coefficient (α), the static
relative dielectric permittivity (ϵ), and the isothermal
compressibility (κ). For the considered properties, the IPAd+c
model performs comparable to the 2016H66 FF (Table 6).
While Hvap is less accurately reproduced by the IPAd+c model,
smaller errors are observed for the remaining properties. Note
that 2016H66 was parametrized on the Hvap and density values
of 27 of the considered 57 molecules. The observation that the
IPAd+c model outperforms 2016H66 on properties that were
not used for its parametrization may be an indication that the

Table 4. Root-Mean-Square Error (RMSE) for the Heat of
Vaporization (Hvap) and Density (ρ) for 13 Sulfur-
Containing Compounds Investigated in Reference 119a.

Property IPAd+c OPLS4119

Hvap [kJ/mol] 2.5 2.6
ρ [kg·m−3] 26.0

aValues for OPLS4 from ref 119 are given as comparison and were
converted from kcal/mol to kJ/mol by a factor of 4.184. Note that
densities were not reported for OPLS4 in ref 119. The full error
statistics and scatter plots are provided in Table S6 and Figure S4 in
the Supporting Information. The individual numerical values are given
in Table S11.

Table 5. Root-Mean-Square Error (RMSE) for Pure Liquid
Properties of 29 Systems Used As Test Set in ref 118a

Property IPAd+c OpenFF 1.0118 OpenFF (‘Pure only’)118

Hvap [kJ/mol] 9.2 9.9 7.5
ρ [kg·m−3] 32.1 30.0 18.0

aValues for OpenFF were taken from the referenced publication. The
label ‘Pure only’ refers to a version of OpenFF 1.0, which was re-
optimized on the densities and heats of vaporization of the training set
in ref 118. The full error statistics and scatter plots are provided in
Table S7 and Figure S5 in the Supporting Information. The individual
numerical values are given in Table S12.
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‘bottom-up’ approach of the IPA model, focusing on the
reproduction of the PES, is a promising parametrization
strategy. It further demonstrates that there is still room for
improvement for fixed-charge FF.
3.4. ANA Model�Learned Parameters. 3.4.1. Compar-

ison with Experimental Dispersion and Polarizability. As the
ANA approach cannot be used yet for condensed-phase
simulations, we validated the ANAd model by comparing the
predicted molecular polarizabilities and intermolecular C6
dispersion coefficients to experiment. The data set consists of
molecular polarizability values for 87 compounds121−126 and
C6 coefficients for 231 molecular pairs.127 Since the ANA
model predicts atomic parameters, the molecular polarizability
is obtained as the sum of all atomic contributions. Dispersion
coefficients are summed over all intermolecular atom pairs as
in previous work.90,110,128

Figure 3 shows the comparison between predicted and
experimental values. Mean absolute relative errors of 19.4%

and 2.1% and Spearman correlation coefficients of 0.95 and
0.94 were observed for the C6 coefficients and the molecular
polarizabilities, respectively. For the C6 coefficients, two sets of
outliers were found. One set includes interactions with
tetrachloromethane (labeled with CCl4) while the second set
includes interactions with chloromethane (labeled as CH3Cl).

In Figure 3, we observe a systematic overestimation of C6
coefficients by the ANAd model, which could be a result of two
factors: First, the value of the damping function in the Becke-
Johnson scheme87,129 is related to the dispersion coefficients
through eqs 19 and 18. Since all dispersion coefficients are

treated as free parameters, compensation effects may arise.
Second, the magnitude for higher-order coefficients might be
too weak compared to other components. As a result, the
relationship assumed in eq 19 might not hold in the same way
as for coefficients obtained from DFT densities. Similarly, a
weak overestimation is found for the molecular polarizabilities.
As noted previously, this may be caused by the neglect of
higher-order polarization terms or by an imbalance between
pairwise short-range induction, the dispersion potential, and
many-body polarization terms. Inclusion of induced dipoles in
the exchange potential and the parameter used for the Thole
damping might also play a role. In addition, it should be noted
that topology-based parameters must compensate for damping
effects due to the surrounding environment, which are not
taken into account but may play an important role.130

3.4.2. Variance of Parameters. In addition to the
comparison with experimental properties, the dependence on
the random initialization of the models was investigated. For
this purpose, ten ANAd models were trained using different
initial weights for the underlying deep neural networks. Of
those ten models, half did not converge. This phenomenon
indicates that “failed” parameter sets can occur from which the
training cannot recover. While not of concern in the present
work, this issue might easily be fixed by conditioning,
regularizing parameter ranges, pretraining on a set of known
parameters, or improved model normalization. Only the five
models that converged (labeled A-D) were used for the
following analysis.

For the systems in the S66x8 data set, we find a relative
standard deviation of 3% for the C6 coefficients and 11% for
the molecular polarizabilities. The magnitude of each FF term
and the relative standard deviation of the five models A-D
averaged over all equilibrium data points in the S66x8 data set
are shown in Table 7. In general, the FF components and

parameters are relatively consistent with relative deviations in
the single digit percentage range. The largest deviations were
observed for the molecular polarizability α and the resulting
Vind component. It is important to note here that Vind also
contains the pairwise charge-transfer term and that the
resulting induced dipoles also influence Vex. Especially models
D and E show evidence for compensatory effects, i.e., in model
D a stronger electrostatic term appears to compensate for a
weaker induction, while in model E a weaker dispersion is
balanced with stronger induction. Although relatively small,
such fluctuations could indicate that these FF terms are
underdetermined, which could in turn explain the observed
issues with transferability to larger systems seen for the S7L
data set.

Table 6. Root-Mean-Square Error (RMSE) for Pure Liquid
Properties of 57 Systems Used in the Calibration and
Validation of the GROMOS 2016H66 FF117a.

Property IPAd+c GROMOS 2016H66117

Hvap [kJ/mol] 4.5 3.5
ρ [kg·m−3] 26.3 32.4
α [10−4 K−1] 1.7 4.4
ϵ [1] 12.8 14.0
κ [10−5 bar−1] 1.8 3.6

aValues for GROMOS 2016H66 were taken from the referenced
publication. The full error statistics and scatter plots are provided in
Table S8 and Figure S6 in the Supporting Information. The individual
numerical values are given in Table S13.

Figure 3. Comparison of the C6 dispersion coefficients (right) and
molecular polarizabilities (left) obtained from experiment and
predicted by the ANA model. Experimental values for the molecular
polarizability of 87 compounds were taken from refs 121−126, and
experimental C6 coefficients of 231 molecular pairs were taken from
ref 127.

Table 7. Magnitude and relative standard deviation (RSD)
[%] of the molecular polarizability α, the cumulative C6
coefficient, and different FF terms. All FF terms are
attractive except for Vex.

Model α C6 Vele Vdisp Vind Vex

[Å3] [MJÅ6/mol] [kJ/mol] [kJ/mol] [kJ/mol] [kJ/mol]

A 12.7 61.8 27.6 17.6 9.9 31.9
B 13.1 62.0 27.5 17.2 8.8 31.4
C 15.8 59.4 27.6 17.7 9.5 32.1
D 14.1 60.8 28.4 17.3 8.5 32.2
E 15.6 60.4 27.6 16.8 10.3 32.2
RSD 10.9 3.0 6.5 5.6 23.9 7.2
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Finally, we noticed that averaging over the predictions of all
five models slightly improves the MAE for the S66x8 model to
1.0 kJ/mol compared to 1.1 kJ/mol for the single ANAd model
reported in Table 1. However, averaging over model
parameters results in an increase of the error to 1.7 kJ/mol.
These observation suggests a relatively fine balance between
the FF terms of the model, underscoring the importance of a
parameter set, which is consistent within itself. In practice, an
ensemble prediction might be helpful to quantify the model
uncertainty. The presence of a large variance for a specific
system may warrant further training.

Overall, the results show that the ANAd model predicts
physically meaningful parameters from scratch given a
physically motivated functional form. As such, including
constraints through the use of predefined functional forms or
known (in)equalities and parameter relations might be the
method of choice to regularize ML models applied to physical
problems. Further improvements may take into account the
relationship between polarizabilites and dispersion coefficients
with atomic volume ratios, which has been shown in several
studies.128,130−133 Using an independent model to handle
polarizabilities and dispersion coefficients could not only
introduce sensitivity to the surrounding environment and
conformational changes but also reduce the number of fitted
parameters and the resulting interdependencies.

4. CONCLUSION
In summary, the presented results attest to the power and
feasibility of the proposed approach to use ML to predict the
parameters of a physically motivated functional form of a FF.
On one hand, the development of FF may benefit from the use
of the proposed parametrization formalism due to the small
computational costs of the model training, which takes only a
couple of hours on a standard desktop computer, and a fully
automatized workflow that can take advantage of large data
sets. On the other hand, our results show that the inclusion of
information about the underlying physical interactions might
be highly beneficial for ML models, particularly when applied
to systems that exhibit a large number of weak and long-ranged
interactions. Both models learned all parameters from scratch
using only information about the PES obtained from reference
calculations. To explore whether the ML models can truly
learn parameters from the atomic environments alone, no
baseline parameters were used in the present work. However,
introducing such baseline parameters and additional physical
models may improve the models in the future. Atomic
polarizabilities and dispersion coefficients obtained from
atomic volume ratios might be particularly suitable candidates
for such a strategy. We found that the IPAd+c model, i.e., a
fixed-charge FF parametrized on intermolecular potentials of
dimers in vacuum and molecular crystals from DFT
calculations, can provide consistent results over a wide range
of systems, ranging from dimer interaction potentials in
vacuum to pure liquid properties and molecular crystals. In
particular, the implicit description of the electron distribution
through atomic multipoles offers a promising alternative to
semiempirical models, providing a comparable or even higher
accuracy for the considered test systems at smaller costs.
Automatic differentiation presents a powerful tool for the
development of parametrized models, which could also be
applied to problems other than molecular interactions. ML-
based techniques, such as the presented GNN-based atom
typing, may thus ideally complement FF parametrization.

5. METHODS
In the following sections, the components used in the
respective models are described. For consistency, the following
notation is used: Capitalized letters refer to pairwise
parameters, i.e., parameters given for a pair of atoms. Small
letters are used for atomic parameters, i.e., parameters assigned
to one specific atom. Subscripts are used to further clarify
interaction partners. In general, the indices i, j iterate over each
unique pair of atoms.
5.1. Potential-Energy Terms: IPA Model. The IPA

model for the nonbonded potential energy includes three
components: attractive−repulsive described with the Mie
potential,76 and the electrostatic interaction described with
atomic partial charges interacting through Coulomb’s law,

V V Vpot,IPA Mie ele= + (7)

As the simplest form with two parameters that can
reproduce the qualitative features of the dissociation of
uncharged atoms, the Mie potential76 is used,
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where Cn and Cm denote the coefficients to describe the
strength of the repulsion and the attraction, respectively, and rij
is the distance between two atoms i and j. For n = 12 and m =
6, the well-known Lennard-Jones potential is obtained.134

While the attractive part is often set to m = 6 motivated by the
asymptotic behavior of the dispersion interaction, there is no
such obvious choice for the repulsive part. In the past, n = 12
was commonly chosen for its computational efficiency. In this
work, a softer n = 9 repulsive interaction is used as in ref 135.
This choice allows for a more accurate description of the
repulsive interaction while still retaining computational
efficiency and comparability with the more common C12−C6
formulation.

Electrostatic interactions in the IPA model are treated on the
basis of atomic monopoles (partial charges),
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with monopoles qi and qj, and the vacuum permittivity ϵ0. In
this work, the monopoles are obtained from our previously
introduced equivariant GNN model,67 which was trained on
minimal basis iterative Stockholder multipoles (MBIS).136

5.2. Predicted Parameters: IPA Model. The IPA model
predicts a set of C6 and C9 parameters for each atom pair,
whose features were represented with the permutation-
invariant pairwise feature combination shown in eq 6. No
prior knowledge such as baseline or default parameters is used
in the training of the IPA model. As mentioned above, the
monopoles qi are obtained from a separate GNN model67 and
not further modified for the present work.

The atomic monopoles and the parameters of the Mie
potential are considered fixed parameters, i.e., they remain
constant during a simulation and do not change in response to
changes in the molecular geometry. This setting was chosen to
be comparable with existing FF.19

5.3. Potential-Energy Terms: ANA Model. Unlike the
IPA model, the second model includes explicit treatment of
polarization effects and anisotropy, resulting in an anisotropic
and nonadditive model, abbreviated as ‘ANA’ model. The
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model is motivated by the desire to develop a fully classical
description that performs with an accuracy expected from
semiempirical methods. In addition, we aim to demonstrate
the power of the proposed parametrization strategy through its
application to a model with several interdependent compo-
nents. At its core, the ANA model is based on an implicit
description of the electronic structure through the use of
atomic multipoles and a polarization model. Adding additional
interaction terms allows for a more detailed decomposition of
the total energy. Consistent with the decomposition by
symmetry adapted perturbation theory (SAPT),137 compo-
nents for the dispersion, electrostatic, induction, and exchange
potential energy are used. As a further benefit, it is possible to
include SAPT terms in the fitting procedure.

The functional form of the nonbonded potential energy of
the ANA model is inspired by previous work on polarizable FF
and intermolecular potentials.57,82,83,138

V V V V V Vpot,ANA ele disp ind ct ex= + + + + (10)

The dispersion interaction (Vdisp) is described with
dispersion coefficients in conjunction with the Becke-Johnson
damping model.87,129 Following the model used in AMOEBA/
AMOEBA+, induction is included through the Thole damping
model (Vind) and a charge-transfer potential (Vct).82,83,139,140

Exchange and electrostatic interactions (Vex and Vele) are based
on anisotropic potentials derived for atomic multipoles
following the work by Rackers et al.84−86,140 The potential
energy terms are described in more detail in the following
paragraphs.

Electrostatics. The electrostatic interaction is described
through the use of multipoles up to quadrupoles. Multipoles
were in all cases obtained from our previously published
equivariant GNN67 for the prediction of atomic multipoles,
which was trained on MBIS reference data.136 The
implementation follows the formalism in refs 141−143.
According to the formalism introduced in ref 141, the total
potential energy due to the interaction of point multipoles at
site i and site j is obtained as
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with r r rij i j= and r rij ij= | |. The radial functions Bl(r) are

defined as Bl(r) = (2l−1)!!/r2l+1 and the coefficients G r( )l arise
through the interactions between components of two multi-
pole sites. For the considered case of a treatment up to
quadrupoles, terms up to l = 4 are included. Coefficients G r( )l

can be thought of as contributions due to the interactions of
multipoles of a given order. A list of G r( )l is given in ref 141.

Deficiencies of the multipole description at short ranges are
compensated through the use of the charge penetration model
introduced in ref 84. In this model, effects of interactions
between charge distributions are treated through the use of
damping functions. Specifically, a damping function for the
interaction between a charge distribution and a point charge

f r br( ) 1 exp( )ij ij
damp = (12)

and a damping function for the interaction between two charge
distributions
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are introduced. The damping parameter bi describes the extent
of an exponentially decaying charge distribution centered on
atom i. The above damping functions give rise to damping
coefficients of a given order λl(r) which are given in the
Supporting Information of ref 84. Combining the damping
coefficients with the radial functions Bl(r) gives rise to the
damped radial functions

B r r B r( ) ( ) ( )l ij l ij l ij
damp = (14)

In the charge penetration model, the standard radial functions
are replaced with the damped radial functions. In addition,
core−core, core−multipole, and multipole−core interactions
are included. Thus, the complete description of the electro-
static potential is obtained as
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with zi representing the core charge of atom i. Bldamp(r) and
Bloverlap(r) label the aforementioned damping coefficients for a
single site and for a pair of charge distributions, respectively.
GCM
l , GMC

l and GMM
l describe the core-multipole, multipole-

core, and multipole-multipole interactions, respectively. The
core-multipole and multipole-core coefficients are obtained by
replacing the monopole with the respective core charge.

Dispersion. The dispersion interaction is described based on
the formalism used in the XDM model proposed by Becke and
Johnson,87
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with dispersion coefficients Cn and a damping function
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depending on a damping parameter RvdW, which is obtained as
follows,129
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In the present work, a1 was set to 1 and a2 to 0, i.e., RvdW = Rc.
Induction. Polarization is treated based on the Applequist

model144 including the modification proposed by Thole139 and
follows the formalism described by Stone.4 The long-ranged
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component is treated on the basis of atomic dipoles, which are
induced by the external electric field and scaled by the atomic
polarizability4

M B FD(1),ind 1= (20)

where FD gathers the electric field components at each atom
formed by the static multipoles of the surrounding molecules,
i.e., only intermolecular contributions. The polarizability
matrix B is formed as4

l
m
ooo
n
oooB

i j

T i j

for

for

ij

ij

1

=
=

(21)

with the atomic polarizability αi and the elements Tij of the
dipole−dipole interaction matrix. The 3N × 3N polarizability
matrix is inverted to obtain the induced dipoles. Given self-
consistently induced dipoles, the potential energy due to
induction is given as the inner product with the external field4

V M F
1
2

Dind (1),ind=
(22)

To prevent the divergence of induced dipoles (‘polarization
catastrophe’), elements of the polarizability matrix B are
damped based on the modifications proposed by Thole
analogously to the damping function used to model charge
penetration effects.139

The exponential damping function as used in AMOEBA was
used for this purpose82

f r au r( ) 1 exp( ( ))ij ij
Thole 3= (23)

using a damping factor a and the polarizability-normalized
distance

u r
r

( )
( )ij

ij

i j
1/6=

(24)

As in the original AMOEBA FF, the damping factor a was
globally set to 0.39.82 In addition, a charge transfer potential
was added to improve the treatment of polarization at short
ranges. This potential is based on work proposed for the
AMOEBA+ FF83 using an exponential form

V r A Cr( ) exp( )ct
ij ij= (25)

where A describes the strength of the interaction and C is used
to approximate the degree of electron density overlap between
the respective atom pair.

Exchange. The exchange interaction is treated with the
anisotropic repulsion model proposed by Rackers et al.86 Using
atomic multipoles, their work derives a description for the
overlap between two atoms analogously to the electrostatic
interaction between atomic multipoles leading to the following
expression consistent with the expression obtained by
Salem.145 Specifically, the damping function used to construct
the damped radial functions Bldamp as shown above is replaced
with the following damping function
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for the case bi = bj and
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for the case bi ≠ bj. With ( )( )X b b

2

2
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2
i j= leading to the

radial function for the exchange potential

B r
b b

r
f r( ) ( )ij

i j

ij
ij0

damp
3 3

damp 2=
(28)

with higher order radial functions B0
damp(r) following

analogously to the damped radial functions presented in the
description of the electrostatic potential.

The overlap defined as

S r B r G r( ) ( ) ( )ij
l

l ij
l

ijtotal
2

0

damp=
= (29)

is then used to obtain the exchange potential-energy
contribution,

V r
k k

r
S r( ) ( )ij

i j

ij
ij

ex 2=
(30)

with ki being the relative size of atom i, and S2 being the
multipole derived orbital overlap.

We note that b used to damp the exchange interaction (eqs
26 and 27) and the electrostatic interaction (eqs 12 and 13)
are treated as independent parameters despite relating to the
same underlying feature, i.e., an exponentially decaying charge
distribution. Induced dipoles are added to the static dipoles. As
in the original work,86 the monopole is replaced with an
additional atomic parameter qval, which weights the influence
of the multipole interaction coefficients present in G r( )l .
Following ref 86, qval is set to 1 for all hydrogens and >2 for all
other elements. This parameter is added to the negative
monopole, yielding the final qex parameter, which is used in
place of the monopole used to compute the multipole
interaction coefficients in G r( )l .
5.4. Predicted Parameters: ANA Model. As in the IPA

model, atomic multipoles were obtained using our previously
developed equivariant GNN.67 In total, five atomic parameters
and five pairwise parameters were predicted by the ANA
model.

Atomic parameters include the atomic polarizability (α in eq
20), the exponential factor for the electrostatic damping
function (b in eqs 12 and 13), the exponential factor used in
the damping function of the exchange potential (b in eqs 26,
27, and 28), the scaling factor used to adjust the strength of the
exchange potential (k in eq 30), and the number of valence
electrons (qval), which is added to the negative atomic
monopole to obtain a scalar that replaces the atomic monopole
in the anisotropic exchange potential. Further, pairwise C6, C8,
and C10 parameters were independently predicted for each
atom pair as well as the exponents for the short-range
induction potential (A and B in eq 25).
5.5. Differentiable Force Field. To achieve end-to-end

differentiability, all FF terms and parametrization models were
implemented in TensorFlow (version 2.6.2),70,146 taking
advantage of its automatic differentiation capabilities as well
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as (batched) GPU accelerated computation. The particle-
mesh-Ewald method (PME)147,148 implemented in OpenMM
(version 7.7)149 was used to obtain the long-range electrostatic
contributions for periodic systems.
5.6. Software Used. Pipelines were written with Python

(3.9.5)150 and Numpy (1.19.5).151 Plots and visualizations
were created with Matplotlib (3.5.1)152 and Seaborn
(0.11.2).153 Trajectories were processed and analyzed with
MDTraj (1.9.7).154 RDKit (2021.09.2) was used to manipulate
molecules and generate conformations.155,156

5.7. Graph Neural Networks (GNN). GNN models were
implemented with TensorFlow (2.6.2)70,146 and the Graph-
Nets library (1.1.0)73 using the InteractionNetwork model.75

The parametrization model consisted of a GNN and a readout
layer or combination-rule layer. Node and edge features were
initially embedded as 64-dimensional vectors. The GNN
consisted of independent graph-updating layers, which were
composed of two fully connected feed-forward layers with 64
units, each combined with the Mila nonlinearity using β =
−1.157 Each edge and node update layer consisted of the
following module ([64, Mila, 64, Mila]) for the IPA model and
([64, Mila]) for the ANA model. For both models, three
graph-updating layers were used. The impact of the number of
graph-updating layers on the model accuracy is shown in
Figure S1 in the Supporting Information. The GNN module
was followed by a readout module/combination rule para-
metrized by two fully connected layers and an output layer
with n output neurons equivalent to the number of predicted
parameters [64, Mila, 64, Mila, n, Softplus+ϵ]. For the ANA
model, a small term (ϵ = 10−3) was added to the output of the
Softplus activation to avoid numerical instabilities, and two
independent readout modules were used. Layer weights were
initialized with the method introduced by He.158

Graph Construction. The approach applied in this work is
based on graphs constructed from the molecular topology,
referred to as ‘topological graphs’. Topological graphs do not
include information about the Euclidean distance between
atoms but only atomic connectivity. Including geometrical
information could be advantageous for certain applications but
would require frequent recalculation of parameters, which
would limit the performance. In addition, model robustness
might suffer from insufficient sampling of intramolecular
degrees of freedom. On the other hand, topological graphs
may be ill-defined for certain cases and are unable to describe
phenomena such as bond forming and breaking. For the
envisioned application, i.e., the classical description of
molecular motion, the shortcomings of topological graphs are
acceptable while presenting a robust and efficient solution. We
note that some degree of conformational dependence is
present in the overall approach due to the GNN model used
for the prediction of atomic multipoles.67

No chemical concepts such as bond types or hybridization
states were included in the graphs. Hence, graphs only
contained a description of the element type of an atom and the
presence of a covalent bond between two atoms. Since
topological information is not available for all data sets, graphs
were constructed from monomer coordinates. Each graph was
built by adding a node for each atom and an edge between
bonded nodes. Bonds were added by first assigning hydrogen
and halogen atoms to its nearest neighbors. For all other
elements, all nearest neighbors within a given cutoff were
assigned as bonded neighbors to the respective central atom.
For C, N, O, and S, a cutoff of 2.0 Å, 1.8 Å, 1.8 Å, and 2.25 Å,

respectively, was used. Element types were encoded as one-hot
vectors serving as initial node features. Edge features were built
by concatenating the node features of the binding partners.
Construction of the graphs is illustrated in Figure 4. We note

that no distance information or chemical concepts, such as
bond types, were included in the graph except for the
aforementioned assumptions regarding the extraction of
bonded neighbors.

Loss Weighting. Models were optimized by minimizing the
mean square error L between the predicted intermolecular
potential energy Vpot,θ and a reference intermolecular potential
energy Vpot,ref, which was used as the target property

L
N

w V x V x V x1
( ( )) ( ) ( )

i

N

i i i i
pot,ref pot, pot,ref 2= ·[ ]

(31)

with N denoting the batch size, and i iterating over each
sample of the batch. wi is a scalar used to weight the
contribution of each sample. The importance of each sample
was scaled according to its Boltzmann weight in the following
manner
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Samples beyond the equilibrium distance req were weighted
with wi = 1, and samples closer than the equilibrium distance
were weighted with the Boltzmann weight of the difference
between the potential of the given sample and the potential of
the equilibrium sample for a given system. The inverse-
temperature β was used to determine the relative importance.
To give more importance to near-equilibrium energy samples
toward the end of the training procedure, an exponential decay
was used to simulate annealing

T T nexp( )n 0= (33)

with a decay rate γ and an initial temperature T0 and a stopping
temperature Tmin.

Model Optimization. Model parameters were optimized
using ADAM and the same exponential decay schedule used
for annealing with learning rates (4 × 10−4, 4 × 10−6).159

Gradients were clipped by their global norm with a clip norm
of 1.160

5.8. Training Data. In the following sections we provide an
overview of the data sets used. Generally, only neutral

Figure 4. Example of the graph construction: For a given molecule,
the topology (shown in the middle) is extracted using the heuristics
described in the subsection ‘Graph Construction’. The topology is
turned into a graph (shown on the right), which is used as the input
to the GNN. The nodes of the graph are labeled with a one-hot vector
encoding the element. Each edge is labeled by the combination of the
two one-hot vectors of the bonding partners. Neither distances or
topological information such as bond-types or hybridization are
included in the graph on the right side.
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molecules with elements included in {H, C, N, O, F, S, Cl}
were used.

Data Set I: Dimers in Vacuum. All models were initially
fitted to a recently published DES5M data set of small-
molecule dimer dissociation curves published by Donchev et
al.68 Both, the SAPT0 components137,161 and the spin-
network-scaled-MP29,88,162 total intermolecular potential
were used during training.

Data Set II: Crystal Intermolecular Potentials. To fit
intermolecular potentials in the crystalline phase, a new data
set with DFT energies of molecular crystals was built. The
selection of the structures and the relaxation is described first.
Calculations for this data set were performed on the Euler
cluster of ETH Zürich.

Selection. Experimental crystal structures from the CSD,
which satisfy the following requirements, were selected:

1. A single molecule in the asymmetric unit
2. Up to 100 atoms in the unit cell
3. No disorder or missing coordinates
4. Unit-cell volume up to 1600 A3

5. Elements in {H, C, N, O, F, Cl, S}
A total of 35,577 structures were found to satisfy these
requirements.

Relaxation. Of those structures, 32,811 were successfully
relaxed in less than 192 CPU hours under the following
settings. Structures were relaxed with the L-BFGS optimizer
using QuantumEspresso (QE, 6.8) under the PBE functional
and XDM dispersion correction.90,129,163−167 Coordinates were
relaxed under fixed lattice parameters with default QE settings,
i.e., an energy convergence threshold of 10−4 Ry and a force
convergence threshold of 10−3 a.u. The plane wave cutoff was
set to 70 Ry and the charge density cutoff to 560 Ry. A
uniformly spaced k-point grid was used with the number of k-

points for each dimension chosen such that
Ä
Å
ÅÅÅÅÅÅ

É
Ñ
ÑÑÑÑÑÑnk x

25
i i
= | | . The

publicly available projector augmented-wave (PAW) pseudo-
potentials (PP)168 were used.

Calculation of Intermolecular Potentials. For a subset of
10,489 minimized structures obtained from the previous steps,
five additional geometries were generated by scaling the unit
cell by factors of (0.95, 0.975, 1.0, 1.05, 1.1) without modifying
the intramolecular geometry. For each of the five resulting
geometries, a single-point calculation was performed using the
XDM dispersion corrected B86bPBE functional.166,169 In
previous work, B86bPBE-XDM was shown to accurately
reproduce lattice energies with a small systematic error.89

PAW PP for the B86bPBE functional were generated with the
pslibrary (1.0).168 The same k-points scheme was used, while
the plane wave cutoff and the charge density cutoff were set to
80 and 800 Ry, respectively. Monomers were calculated with a
single k-point sampled at Γ in a cubic box with lengths chosen
such that the minimal distance between atoms of the central
cell and its periodic images was larger than 12 Å. The
intermolecular potential energies used to train the IPAd+c
model were then obtained as

V
V
Z

Vuc
ginter =

(34)

The crystal data set is available in the ETH research collection
(10.3929/ethz-b-000549359).
5.9. General Training Strategy. The recently published

DES5M data set68 (see section 5.8) was used as main data

source for the model training (Figure 5). The data set includes
spin-network-scaled MP2 (SNS-MP2)9,88,162 intermolecular

potentials and SAPT0 components137,161 for a large number of
small-molecule dimers in vacuum. In total, 113,800 dimer sets
were included with 100,000 sets randomly selected for training
and the remaining 13,800 used for validation. Training was
performed over 512 epochs. During each epoch, a total of 1024
batches were presented. Each batch contained one dimer set,
i.e., all interaction potentials of one dissociation curve or set of
clusters for the same two monomer molecules.
5.10. Training Strategy: IPAd Model. The IPA model

was first optimized against dimer intermolecular potential
energies in vacuum from the DES5M data set68 through
minimization of the expression found in eq 31, with SNS-MP2
energies serving as Vpot,ref. Annealing was performed for the
loss weight term wi(Vpot,ref(xi)) using the described exponential
decay with T0 = 8000 K, γ = − 8 × 10−3, and n being
incremented after every epoch. Annealing was stopped at Tmin
= 400 K. Annealing was of particular importance for the IPA
model as the attraction-repulsion potential used is not able to
describe very short-ranged interactions accurately.

The IPA model was regularized with the following term

L C Clog(exp( ) 1)C9 9 6
1= + (35)

During the training on dimers, an additional term LC6 = C6
−1

was added. Both regularization terms were averaged over all
interaction pairs of a molecule. The model obtained in this
manner is referred to as IPAd.
5.11. Training Strategy: IPAd+c Model. The IPAd model

was optimized in a second step with respect to intermolecular
potentials of molecular crystals. Intermolecular potentials were
calculated with Quantum Espresso163−165 using the B86bPBE
functional in conjunction with the XDM dispersion correc-
tion.89,90,129,166,167 For this step, a total of 11,489 molecules
from the CSD database were used.170 10,000 molecules were
randomly assigned to the training set, and the remaining 1489
molecules formed the validation set. Each molecule entailed
five intermolecular potentials, which served as one batch.
These five potentials were obtained from the relaxed crystal
structure and through the expansion/contraction of the lattice
of the relaxed structure. Further details on this data set are
given in section 5.8.

Again, the mean square error between the predicted and the
reference intermolecular potentials was minimized. The
electrostatic component was independently calculated with
the PME method147 and not optimized. Fixed partial charges

Figure 5. Data sets used for training, validation, and testing of the IPA
and ANA models. The number of molecular systems in the respective
data set is given below the set indication. For dimers in the DES5M
data set,68 a variable number of samples is found, indicated by ’xN’.
Details on the data sets are given in section 5.8.
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were obtained as described in section 5.13. The loss was
weighted with

w V x V x nexp ( ( ) ( ))/i i
pot,ref pot,ref

eq= [ ] (36)

Unlike the weighting function used for dissociation curves in
eq 31, the weight was only set to one for the equilibrium
structure. In addition, the potential-energy terms were scaled
by the number of atoms in the respective molecule. Loss
weighting is necessary since contracting/expanding the relaxed
crystal structures resulted in highly unfavorable structures in
certain cases. Training was performed over 512 epochs. During
each epoch, 512 randomly sampled batches were presented.
Each batch contained five intermolecular potentials of one
specific molecule. Throughout, the temperature was set to T0 =
128 K. A cutoff of 10 Å was used for nonbonded interactions.
5.12. Training Strategy: ANA Model. Optimization of

the ANAd model followed the same procedure used to
optimize the IPAd model based on the dimer data set, except
for the following differences. Since the functional form of the
ANA model allows for a more accurate description of short-
range interactions, the annealing schedule was modified to T0
= 40,000 K, γ = − 7.5 × 10−3, and Tmin = 2000 K. Furthermore,
the LC6

and LC9
terms were replaced with additional loss terms

for the energy components as the ANA model permits a
decomposition of the total energy into components, which can
be related to SAPT components.137,161
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with λ iterating over all SAPT components, i.e., exchange,
induction, electrostatic, and dispersion. The weights wi were
calculated for the total reference potential.

The SAPT loss term was scaled by a factor κ and added to
the total loss in eq 31. The weight for the total energy
component with respect to the SNS-MP2 calculation was kept
at 1. κ was initially set to 0.5 and reduced to 0.01 after 256
epochs had passed. We note that the inclusion of the SAPT
loss term is a double-edged sword. Preliminary investigations
indicated that the SAPT loss term serves on one hand as a
regularizer, which also accelerates convergence. On the other
hand, larger values for κ limit the degree of error cancellation
between potential-energy terms. It is further important to keep
in mind that the accuracy of the employed SAPT0 method is
lower than SNS-MP2. Specifically, for the considered subset of
the DES5M data set, a MAE of 4.19 kJ/mol and 0.77 kJ/mol
was found when using the weighting in eq 36 with T = 2000 K.
With a mean error of − 4.11 kJ/mol and − 0.71 kJ/mol,
SAPT0 overbinds relative to the SNS-MP2 results. This
observation is consistent with previous benchmarks.137

5.13. Calculation of Condensed-Phase Properties.
Condensed-phase simulations as well as the evaluation of the
electrostatic potential for intermolecular potentials of crystals
were performed under periodic boundary conditions using
OpenMM (7.7).149 Bonded terms were parametrized with
OpenFF 2.0120 as our model does currently not provide
bonded terms. The C6−C9 potential was implemented using
the CustomNonbondedForce class in OpenMM.

For the IPAd+c model, monopoles were predicted for each
conformation of an ensemble generated with the ETKDG
conformation generator156 implemented in the RDKit.155 A

RMS pruning threshold of 0.1 Å was used, and up to 32
conformations were generated. Monopoles were predicted for
each conformation using our previously introduced equivariant
GNN.67 Fixed partial charges were then obtained by averaging
over all monopoles obtained for the conformational ensemble.
Charges remained fixed during the simulation, and the same
charges were used for the condensed-phase as well as the
vacuum simulations. The 1,4-electrostatic interactions were
scaled with the same factor as in OpenFF. The 1,4-Lennard-
Jones interactions were described with the C6−C12 parameters
from OpenFF 2.0, and a scaling factor of 0.5 was used. Long-
range electrostatics beyond the cutoff were treated with the
smooth particle-mesh-Ewald (PME) method.148 C6−C9 terms
were included up to a distance of 10 Å. No long-range
correction or shifting function was used for the van der Waals
interactions.

Initial configurations were generated using packmol171 and
conformations generated with ETKDG.155,156 The number of
molecules was chosen such that a cubic box with side lengths
50 Å at the experimental density would be filled. Config-
urations were sampled from an NPT ensemble at 298.15 K
using a Langevin integrator172 with a time step of 2 fs and a
collision frequency of 1 ps−1. To maintain constant pressure, a
Monte Carlo barostat173 with a target pressure of 1 bar and a
trial move every 25th step was applied to the system. Bonds
with hydrogen atoms were fixed at the equilibrium distance
with the LINCS algorithm.174

Each box was equilibrated for 2 ns followed by a 20 ns
production run, with system data being saved to disk every 4
ps. System properties were averaged over the whole production
run. To obtain the potential energy in the gas phase, a single
molecule was simulated in vacuum using the same settings and
simulation times as for the condensed-phase simulation.

Lattice Energy. In the present work, the lattice energy Vlattice

is approximated as

V
V

Z
lattice

pot,inter

(38)

ignoring the contribution of the intramolecular interactions. Z
refers to the number of molecules in the unit cell, and Vpot,inter

to the total intermolecular potential energy for a unit cell with
Z molecules under periodic boundary conditions. Vpot,inter was
calculated for the experimental geometries without relaxation.
A list of CSD codes is given as Supporting Information.

Heat of Vaporization. The heat of vaporization was
computed from the difference between the mean potential
energy in the gas phase ⟨Vpot, gas⟩ and the mean potential
energy per molecule in the condensed phase ⟨Vpot, liq⟩
corrected by a factor of RT,

H V V RTvap
pot,gas pot,liq= + (39)

where R is the gas constant, and T the absolute temperature.
Density. The condensed-phase density was calculated as the

total mass mbox in the simulation box divided by its average
volume ⟨Vbox⟩

m
V

.box

box
=

(40)

Dielectric Permittivity. Dielectric permittivities ϵ were
obtained from the fluctuation of the dipole M of the system
as described in ref 175,
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Isothermal Compressibility. Similarly, isothermal compres-
sibilities κ were obtained for fluctuations of the system volume
Vbox,
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where P is the system pressure.
Thermal Expansion Coefficient. Thermal expansion co-

efficients α were computed via the following relation,175
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where Hl is the total enthalpy of the box.
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Poltavsky, I.; Schütt, K. T.; Tkatchenko, A.; Müller, K.-R. Machine
Learning Force Fields. Chem. Rev. 2021, 121, 10142−10186.
(22) Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, I.;
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