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ABSTRACT

Functional similarity based on Gene Ontology (GO)
annotation is used in diverse applications like gene
clustering, gene expression data analysis, protein
interaction prediction and evaluation. However,
there exists no comprehensive resource of func-
tional similarity values although such a database
would facilitate the use of functional similarity
measures in different applications. Here, we
describe FunSimMat (Functional Similarity Matrix,
http://funsimmat.bioinf.mpi-inf.mpg.de/), a large
new database that provides several different
semantic similarity measures for GO terms. It
offers various precomputed functional similarity
values for proteins contained in UniProtKB and
for protein families in Pfam and SMART. The web
interface allows users to efficiently perform both
semantic similarity searches with GO terms and
functional similarity searches with proteins or
protein families. All results can be downloaded
in tab-delimited files for use with other tools.
An additional XML–RPC interface gives automatic
online access to FunSimMat for programs and
remote services.

INTRODUCTION

Sequencing efforts have produced large amounts of
genomic data, which are functionally characterized
further by experimental techniques and automated meth-
ods (1,2). The controlled vocabulary provided by the Gene
Ontology (GO) consortium is commonly used for anno-
tating gene products with their function (3). GO consists
of three ontologies: biological process, molecular function
and cellular component. Each GO term is represented by a
node in a directed acyclic graph (DAG). Relationships
between different GO terms are established by edges that
connect GO term nodes within the DAG.
Different approaches for computing the functional

similarity between gene products have been proposed.
The simplest, but least sensitive, method is to count the

number of GO terms annotated to two functionally
related proteins. More advanced approaches are based
on the semantic similarity of GO terms and compute a
numerical value of the similarity between two GO terms
(4–9). These semantic similarity measures rely on an
annotation database for defining the importance of every
GO term. One popular method based on semantic
similarity is the calculation of the average semantic
similarity between the GO terms annotated to the two
gene products being compared (10). A modification of this
method is the definition of the functional similarity
between two gene products as the maximal semantic
similarity between two annotated GO terms (11–13). Two
more sophisticated approaches introduced by Zhang et al.
(9) and Schlicker et al. (7), which are practically identical
in most cases, find the most similar GO term of one
protein for every GO term annotated to the other protein
and then take the average of these best matches. Wang
et al. (14) developed a new semantic similarity measure
that distinguishes different types of relationships.
However, regarding the functional similarity measure,
they have adapted a methodology closely related to Zhang
et al. and Schlicker et al. All described methods measure
the functional similarity according to only one of the three
GO ontologies. To our knowledge, the only measure
combining different ontologies into a single similarity
score is the FunSim approach by Schlicker et al. (7).

One important application of GO annotation and
functional similarity is the analysis of gene expression
data. Many methods exist for the identification of over-
represented GO terms in a list of genes (15,16). Khatri and
Draghici recently reviewed methods that apply GO to the
analysis of microarray data (17). Other approaches use
functional similarity for clustering of genes on micro-
arrays because functionally related genes may have similar
expression profiles (11,18,19). A different application of
GO-based functional similarity is the prediction and
validation of molecular interactions. For instance, func-
tional similarity was found to be one of the best predictors
for protein–protein interactions (20,21). In other work,
it was utilized for the quality assessment of protein–
protein or domain–domain interaction data (22–25).
Using functional similarity values, it is also possible to

*To whom correspondence should be addressed. Tel: +49 681 9325 321; Fax: +49 681 9325 399; Email: andreas.schlicker@mpi-inf.mpg.de

� 2007 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://funsimmat.bioinf.mpi-inf.mpg.de/
http://creativecommons.org/licenses/


derive useful confidence thresholds for predicted domain–
domain interactions (22). Another application of func-
tional similarity is the prioritization of putative disease
genes (26–30). For example, GO-based similarity
appears to be a good indicator for disease gene relatedness
(27). Further uses of functional similarity include
the identification of functional modules in interaction
networks (31,32).

Despite the wide applicability of functional similarity
measures, no comprehensive resource of similarity values
exists. Some tools are available for download that can be
used for computing the functional similarity of gene
products (10,33–35). However, like the programs GO
Graph (10) and DynGO (33), these tools require the user
to build a local database or, like FSST (34), to download a
large database before the functional similarity can be
computed on the own computer. Furthermore, some
databases allow functional similarity searches (4,9,36).
The Gene Functional Similarity Search Tool (GFSST)
supports queries for functionally similar proteins, but
restricts the user to either the human or the mouse
proteome (9). The FuSSiMeG web service reports the
functional similarities between two GO terms annotated
to each of them, but the results lack a combined score (4).

To overcome the described limitations of other tools,
we implemented the database FunSimMat accessible
from a convenient online user front-end (http://funsim
mat.bioinf.mpi-inf.mpg.de/) and through a XML–RPC
interface. FunSimMat offers the semantic comparison of
GO terms and several search options for functionally
similar proteins or protein families. FunSimMat contains
precomputed functional similarity values for proteins
and protein families from UniProtKB (37), Pfam (38)
and SMART (39). We implemented three different
semantic similarity measures and apply them in the
calculation of various functional similarity scores.

MATERIALS AND METHODS

Annotation classes

The current revision of FunSimMat contains more than
4.6 million proteins and protein families. Since functional
similarity measures are symmetric, roughly 10 trillion
computations of functional similarity values would be
required for a complete all-against-all comparison.
However, not every protein or protein family is annotated
with a unique combination of GO terms. Therefore, we
define an annotation class to be a specific, lexically sorted,
list of GO terms from one ontology. An annotation class
can be identified by a unique accession number.

Each protein or protein family is assigned to three
annotation classes that correspond to the annotated GO
terms, one class for biological process (BPclass), one for
molecular function (MFclass) and one for cellular
component (CCclass). For example, the terms ‘mitochon-
drion inheritance’ (GO:0000001) and ‘actin cortical patch
assembly’ (GO:0000147) constitute one BPclass. If A and
B are two annotation classes, then all pairs of proteins
p und q that belong to A and B, respectively, obtain
the same functional similarity value. This decreases the

amount of required computations by several orders of
magnitude. In addition to the definition of BPclasses,
MFclasses and CCclasses, we also defined GO annotation
classes (GOclasses). Each GOclass consists of one BPclass,
one MFclass and one CCclass. Theoretically, more than
a trillion different GOclasses could be derived from the
available BPclasses, MFclasses and CCclasses. However,
only 52 493 GOclasses occur in practice, which reduces
the search space considerably when comparing one
protein or protein family against the complete database.
The definition of annotation classes as well as the mapping
of proteins and protein families to annotation classes are
available for download on the website.

Data sources

As of September 2007, our MySQL database FunSimMat
includes 4 629 251 proteins with GO annotations from
UniProtKB release 10.5. Additionally, the database
contains 8957 Pfam families (Pfam release 21.0) and 704
SMART families (from InterPro release 15) annotated to
one of the proteins. Currently, the proteins and protein
families can be assigned to 17 140 biological process
annotation classes, 20 649 molecular function classes and
4978 cellular component classes. Since the number of
annotation classes is small in contrast to the number of
proteins in the database, we anticipate that our approach
will scale well with the growing number of proteins
and annotations that can be expected in the upcoming
years. We intend to update the databases every 3 months,
which takes about 1 week of computation time using
two CPUs.

Semantic similarity measures

We implemented four different semantic similarity
measures. These measures are based on the information
content (IC) of a GO term (6). The more specific a GO
term is, the smaller is its probability and the higher its IC.
The probability of a GO term is defined as its relative
frequency in UniProtKB:

freqðt1Þ ¼ annotðt1Þ þ
X

c2childrenðt1Þ

freqðcÞ;

pðt1Þ ¼
freqðt1Þ

freqðrootÞ
;

where annot(t1) is the number of proteins annotated in
UniProtKB with term t1, and children(t1) is the set of child
terms of term t1 in the GO graph. The IC of a GO term t1
is then defined as follows:

ICðt1Þ ¼ � logðpðt1ÞÞ:

Resnik’s semantic similarity measure uses the IC of the
most informative common ancestor (MIA) to capture the
common information shared by two terms t1 and t2. It is
defined as follows (6):

simResðt1,t2Þ ¼ ICðMIAÞ:
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Lin’s measure of semantic similarity additionally takes
into account the differences between two terms and is
defined as follows (5):

simLinðt1,t2Þ ¼
2 log pðMIAÞ

log pðt1Þ þ logðt2Þ
,

where p(t1), p(t2) and p(MIA) are the probabilities of the
two terms and their most informative ancestor.
The simRel measure combines both semantic similarity

measures and is defined as follows (7):

simRelðt1, t2Þ ¼
2 log pðMIAÞ

log pðt1Þ þ log pðt2Þ
ð1� pðMIAÞÞ:

Jiang and Conrath defined a semantic distance measure
based on the IC (40), which can be transformed into a
similarity measure. The similarity is defined as follows
(41):

simJCðt1,t2Þ ¼
1

ICðt1Þ þ ICðt2Þ � 2ICðMIAÞ þ 1
:

Functional similarity measures

We implemented several functional similarity measures for
proteins and protein families that are based on the DAG
structure of GO or on the semantic similarity measures.
For two proteins p and q that are annotated with two GO
term sets GOp and GOq of sizes N and M, respectively, the
different functional similarity measures are calculated and
are described as follows.
The UI score is calculated from the number of terms in

the intersection of the two induced graphs and the number
of terms in the union of the two graphs. It is defined as
follows (13):

UIðp, qÞ ¼
gp \ gq
�� ��
gp [ gq
�� �� ,

where gp and gq are the GO terms in the graphs induced by
GOp and GOq, respectively.
Pesquita et al. defined a functional similarity measure

based on the IC of the terms annotated to the two proteins
or protein families (42):

simGICðp, qÞ ¼

P
t2gp\gq ICðtÞP
t2gp[gq ICðtÞ

:

The functional similarity measures based on the semantic
similarity scores for GO terms are calculated as follows.
First, the similarity matrix S containing all pair-wise
semantic similarity values (sij) between all terms GO

p
i in

GOp and all terms GO
q
j in GOq are computed (7):

sij ¼ simðGO
p
i , GO

q
j Þ, 8i 2 f1, . . . ,Ng, 8j 2 f1, . . . ,Mg

The row vectors and column vectors of the matrix S
represent the two possible directions of comparing protein
p to protein q and vice versa. The GOscoremax is defined as
the maximum over all sij according to Lord et al. (10):

GOscoremaxðp, qÞ ¼ max sij, 8i 2 1, . . . ,Nf g,8j 2 1, . . . ,Mf g

GOscoreavg is defined as the average over all sij according
to Speer et al. (11):

GOscoreavgðp, qÞ ¼
1

N �M

X
sij,

8i 2 1, . . . ,Nf g,8j 2 1, . . . ,Mf g

The average over the row maxima is defined as the
rowScore, and the average over the column maxima is
defined as the columnScore. This amounts to finding, for
every GO term of one protein, the best-matching GO term
annotated to the other protein. GOscoreBM between two
proteins p and q is then computed as follows according to
Schlicker et al. (7):

GOscoreBMðp, qÞ ¼ max rowScoreðp, qÞ,columnScoreðp, qÞ
� �

GOscoremax, GOscoreavg and GOscoreBM can be com-
puted using either of the four semantic similarity
measures. The lowest similarity value is 0 for all measures.
The maximum similarity is 1 except for Resnik’s measure,
which has no upper bound. For each protein pair or
protein family pair, three different functional measures
can be computed: one for biological process (BPscore),
one for molecular function (MFscore) and one for cellular
component (CCscore).

The GOscores quantify the similarity of two proteins or
protein families according to their annotation to one
ontology. Full functional similarity can be established by
considering all three ontologies and the corresponding
three GOscores. Joining different GOscores into one score
provides an overall assessment of functional similarity.
However, a composite score should be able to distinguish
protein or protein family pairs that score average in all
ontologies from pairs that score high in one or two
ontologies and low in the other ontologies. The funSim
and the rfunSim measures combine BPscore and MFscore
and are defined as follows (7):

funSimðp, qÞ ¼
1

2

BPscoreðp, qÞ

maxBPscore

� �2

þ
MFscoreðp, qÞ

maxMFscore

� �2
" #

,

rfunSimðp, qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
funSimðp, qÞ

p
:

Here, max(BPscore) and max(MFscore) denote the max-
imal score for biological process and molecular function,
respectively. The funSim score and the rfunSim score are
computed using simRel and GOscoreBM. They range from
0 for no functional similarity to 1 for maximum functional
similarity.

In addition, we introduce the funSimAll and the
rfunSimAll scores that also take the cellular component
annotation into account. They are defined as follows:

funSimAllðp, qÞ ¼
1

3

BPscoreðp, qÞ

maxBPscore

� �2

þ
MFscoreðp, qÞ

maxMFscore

� �2
"

þ
CCscoreðp, qÞ

maxCCscore

� �2
#
,

rfunSimAllðp, qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
funSimAllðp, qÞ

p
:
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Here, max(BPscore), max(MFscore) and max(CCscore)
denote the maximal score for biological process, molecular
function and cellular component, respectively. They range
from 0 for no functional similarity to 1 for maximum
functional similarity.

FunSimMat

Query options

FunSimMat consists of a web front-end and a XML–RPC
interface for providing the results returned by a back-end
server in a suitable matrix format. The back-end server is
responsible for executing the user queries and is imple-
mented in Java 1.5. FunSimMat offers several query
options. The first option is the semantic all-against-all
comparison of GO terms contained in an input list
provided by the user. The GO terms have to be entered
using their accession numbers, for example, GO:0000001.
The results table contains the computed semantic similar-
ity values.

The second query option is the comparison of one
query protein or protein family with a list of proteins or
protein families, which can be compiled in different ways.
The simplest one is to enter the corresponding accession
numbers into the query form of the website. It is also
possible to upload a text file containing these accession
numbers. Alternatively, users may use all proteins and
protein families from a certain taxon by entering the
corresponding NCBI Taxonomy identifier. The query
form also contains a drop-down box to quickly select
from common taxa. It is also possible to compare the
query protein or protein family to the whole database.
The computation results contain the functional similarity
scores between the query protein or protein family
with every protein or protein family from the list.
If the user selected a taxon or the whole database, the
results table contains the annotation classes corresponding
to the selected proteins or protein families. By clicking on
one annotation class, the user can obtain a list of selected
proteins or protein families belonging to that class.

The third query option is the definition of a functional
profile. A functional profile consists of a list of GO terms
from biological process, molecular function or cellular
component. This functional profile is treated as an
annotation class and is compared to a list of proteins or
protein families. The user can either choose a taxon, as
in the case above, or compare the profile to the whole
database. This helps finding protein and protein families
that are similar to a prototype protein the user is
interested in. Similar to the second query option,
the results table contains the comparison between the
functional profile and the annotation classes. The list of
selected proteins or protein families belonging to one class
can be accessed by clicking on the class identifier.

Web front-end

The web front-end provides HTML forms for all of the
different query options that FunSimMat offers. The
results are displayed in a table (Figure 1), and can
be downloaded as tab-delimited text file or printed.

The results table can be customized to a large extent. It
can be sorted according to one column by clicking on the
corresponding column header. The score values are
colored with a gradient from white for low similarity to
blue for high similarity. This gradient can be changed
to red or green. Additionally, it is possible to hide and
show specific columns or groups of columns, for example
all biological process scores at once. However, it is
important to note that the features to change the color
gradient and to hide columns are only available if
JavaScript is enabled. The first two columns of
the table contain the GO, UniProtKB, Pfam or SMART
accessions linked to the respective source database, or the
annotation class accessions. Annotation class accessions
are linked to a page listing all proteins and protein
families belonging to this annotation class together with
their complete GO annotation. Tooltips containing the
GO annotation of proteins or protein families are
shown when the mouse hovers above an accession. More
details can be found in the help pages on the website.

XML–RPC interface

Extensible markup language remote procedure call
(XML–RPC) is a protocol for accessing remote services
and programs over a network. The XML–RPC interface
allows for automatically querying FunSimMat over the
Internet and to process the results. This interface is
implemented using PHP and is available at http://
funsimmat.bioinf.mpi-inf.mpg.de/xmlrpc.php. It provides
the same query options as the web front-end. For instance,
in order to semantically compare a list of GO terms,
the function Semantic.getSemSims() can be called.
It accepts the accession numbers of the GO terms as
comma-delimited list and returns the rows of the
results table in the form of an array. A detailed description
can be found in the help pages on the website.

CONCLUSIONS

Functional similarity measures are used in many different
applications like gene clustering, protein–protein interac-
tion prediction and validation and disease gene prioritiza-
tion. However, there is no comprehensive resource of
functional similarity values available. Therefore, users
have to compute these values themselves using one of
the existing tools or their own implementation. Those
tools, however, typically require large databases to be
downloaded or created. Furthermore, the computation of
functional similarity measures is rather time-consuming.
In order to remedy these problems, we have implemen-

ted a database of functional similarity values,
FunSimMat. The database contains functional similarities
between more than 4.6 million proteins and protein
families. The web front-end provides several query options
for flexible, simple and fast retrieval of these values.
All query results are accessible online for 2 days and may
be downloaded in tab-delimited files, which facilitates
their use in many applications. The additional XML–RPC
interface makes it possible to automatically query
FunSimMat. This greatly supports the integration of
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FunSimMat and the use of functional similarity in many
existing and new data analysis pipelines and tools.
Additionally, FunSimMat provides a novel way of
performing rapid functional similarity searches within
large protein databases. Future work will include the setup
of a Distributed Annotation System (DAS) server (43)
that provides functional similarity as annotation of
protein–protein and domain–domain interactions.
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Figure 1. Application example of querying FunSimMat with a functional profile. (A) Query form with the user input data. (B) Results table listing
the similarity scores for the comparison of the functional profile with different BPclasses. (C) Web page showing all proteins belonging to BPclass
number 1232 and the corresponding GO annotations.
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