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Abstract

Aims Individual risk stratification is a fundamental strategy in managing patients with heart failure (HF). Artificial intelli-
gence, particularly machine learning (ML), can develop superior models for predicting the prognosis of HF patients, and ad-
ministrative claim data (ACD) are suitable for ML analysis because ACD is a structured database. The objective of this
study was to analyse ACD using an ML algorithm, predict the 1 year mortality of patients with HF, and finally develop an
easy-to-use prediction model with high accuracy using the top predictors identified by the ML algorithm.
Methods and results Machine learning-based prognostic prediction models were developed from the ACD on 10 175 HF pa-
tients from the Japanese Registry of Acute Decompensated Heart Failure with 17% mortality during 1 year follow-up. The top
predictors for prognosis in HF were identified by the permutation feature importance technique, and an easy-to-use prediction
model was developed based on these predictors. The c-statistics and Brier scores of the developed ML-based models were
compared with those of conventional risk models: Seattle Heart Failure Model (SHFM) and Meta-Analysis Global Group in
Chronic Heart Failure (MAGGIC). A voting classifier algorithm (ACD-VC) achieved the highest c-statistics among the six ML al-
gorithms. The permutation feature importance technique enabled identification of the top predictors such as Barthel index,
age, body mass index, duration of hospitalization, last hospitalization, renal disease, and non-loop diuretics use (feature im-
portance values were 0.054, 0.025, 0.010, 0.005, 0.005, 0.004, and 0.004, respectively). Upon combination of some of the pre-
dictors that can be assessed from a brief interview, the Simple Model by ARTificial intelligence for HF risk stratification
(SMART-HF) was established as an easy-to-use prediction model. Compared with the conventional models, SMART-HF
achieved a higher c-statistic {ACD-VC: 0.777 [95% confidence interval (CI) 0.751–0.803], SMART-HF: 0.765 [95% CI 0.739–
0.791], SHFM: 0.713 [95% CI 0.684–0.742], MAGGIC: 0.726 [95% CI 0.698–0.753]} and better Brier scores (ACD-VC: 0.121,
SMART-HF: 0.124, SHFM: 0.139, MAGGIC: 0.130).
Conclusions The ML model based on ACD predicted the 1 year mortality of HF patients with high accuracy, and SMART-HF
along with the ML model achieved superior performance to that of the conventional risk models. The SMART-HF model has
the clear merit of easy operability even by non-healthcare providers with a user-friendly online interface (https://
hfriskcalculator.herokuapp.com/). Risk models developed using SMART-HF may provide a novel modality for risk stratification
of patients with HF.
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Introduction

Heart failure (HF) is a growing public health issue, with a
prevalence that increases with age.1 Approximately
0.4–2.2% of the population in industrialized countries suffer
from HF.2 In a meta-study of 39 372 patients from 30 studies
with a 2.5 year median follow-up, comprising the largest
available database of HF patients, Pocock et al. found that
the mortality rate was 40.2%.3 The high morbidity and mor-
tality are burdening the global economy with an estimated
$108 billion annually.4 Risk stratification and mortality assess-
ment for HF patients provide not only fundamental strategies
for clinical decision-making5,6 but also practical information
for health policy and insurance services.

Several researchers have developed risk score models to
stratify HF patients, such as the Seattle Heart Failure Model
(SHFM) and Meta-Analysis Global Group in Chronic Heart
Failure (MAGGIC).3,7,8 Nevertheless, Allen et al. reported that
these models do not necessarily predict the mortality of indi-
vidual HF patients.9 Hence, a superior prediction model is im-
perative for more accurate mortality prediction for HF
patients.

To predict HF patient mortality more accurately, artificial
intelligence, particularly machine learning (ML), may be a
useful tool because ML algorithms can improve accuracy by
analysing large volumes of medical data. Recently, several
studies have demonstrated that ML approaches are superior
to conventional risk models.10–12 For ML analysis, administra-
tive claim data (ACD) are suitable because they are structured
and can be directly fed to the ML algorithm. Desai et al. re-
cently reported that an ML analysis to predict the mortality
of HF patients based on ACD in the USA presented a satisfac-
tory c-statistic of 0.727.13 However, a major concern regard-
ing the versatility of ML analyses is that their utility
depends on the quality and quantity of the variables in the in-
put data. In particular, it is difficult to universally apply
ACD-based ML models for risk stratification of HF on other
databases owing to variation in ACD variables, indicating that
ML model performance can be inferior to that of conven-
tional methods under conditions of insufficient input data.
Therefore, an ML-based prediction model was required that
could be universally applied in practice.

In Japan, the Diagnosis Procedure Combination Casemix
patient classification system is used for national ACD. As
ACD are used for insurance reimbursement, they contain ba-
sic patient profiles, diagnoses with International Classification
of Diseases 10th revision (ICD-10) codes, last hospitalization
at individual facilities, activities of daily living (Barthel index),
medications, and medical procedures that are usually en-
tered into the database by hospital clerical staff; they do
not contain detailed clinical variables related to HF, such as
vital, laboratory, and physiological data (the details of the var-
iables included in the Japanese ACD are presented in the
Methods section and Supporting Information, Table S1).

Hence, the prediction model developed from ML analysis
based on the Japanese ACD might have the advantage of op-
erability by non-healthcare providers without any profes-
sional medical assessment.

In this study, we aimed to predict the 1 year mortality of
HF patients using ML algorithms and the Japanese ACD and
to compare the model performance with that of conventional
risk models. We further sought to identify the top predictors
by using the permutation feature importance technique and
establish an easy-to-use ML-based prediction model with
high prediction accuracy equivalent or superior to that of
conventional risk models.

Methods

Trial and participants

The data utilized in this study were obtained from the
Japanese Registry of Acute Decompensated Heart Failure
(JROADHF).14 Across Japan, 128 facilities enrolled in the
JROADHF study were selected by random cluster sampling.
The inclusion criterion was acute HF in patients aged 16 years
or older who were admitted to the enrolled facilities in 2013,
excluding those with acute myocardial infarction. In this study,
using the JROADHF registry and the accompanying ACD, we
developed a predictive model for the patients discharged from
hospitalization due to acute decompensated HF. This prognos-
tic study complied with the Declaration of Helsinki and was ap-
proved by the institutional review board of Kyushu University
Hospital (Approval Number 2020-335).

Outcome

The primary outcome of this study was the all-cause mortality
within 1 year after discharge. It was based on the following
premise: a known high probability of death within 1 year will
prompt clinicians to plan frequent follow-ups or implement
more aggressive life-saving therapies (e.g. implantable
cardioverter–defibrillators or circulatory assist devices).5,6

We obtained the outcome data from the JROADHF
follow-up survey.

Explanatory variables from administrative claim
data

The JROADHF includes the Japanese ACD in addition to the
general HF registry data, such as patient characteristics and
prognosis survey results. As of 2014, the ACD covered approx-
imately 70% of hospital discharges in Japan, that is, 10 million
discharges per year.15 ACD have been collected during nu-
merous projects to construct large-scale data for research
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purposes16,17 and include fundamental data such as age, sex,
hospitalization histories at the participating facilities, dura-
tion of hospitalization, discharge status, diagnoses, New York
Heart Association (NYHA) functional class, medical proce-
dures, and drug prescriptions. These data were recorded
using a uniform submission format. Because of the general-
ized nature of the ACD, detailed clinical data related to HF
such as vital, laboratory, and physiological data are not
included.

The diagnoses obtained from the ACD were coded into
Charlson comorbidities according to the ICD-10.18,19 Variables
were extracted considering the Japanese HF guidelines and
previously reported information regarding treatment during
hospitalization and prescription at discharge. We extracted
a total of 89 explanatory variables available from the ACD
(Supporting Information, Table S1).

Machine learning model development

To extract the dataset for ML development (training and
validation) and testing, the JROADHF study facilities were
randomly divided in an 8:2 ratio with balancing of the num-
ber of subjects per facility. We substituted the missing
values with the median or mode values, a common ap-
proach to dealing with missing values in ML algorithms.20

Categorical data were converted into binary data using a la-
bel encoder or one-hot encoder. Prior to training, the data
were standardized to an average of zero and a standard de-
viation of one.

Using the training set, we constructed six common ML
algorithms: logistic lasso regression, support vector ma-
chine, random forest, gradient boosting tree, voting classi-
fier, and neural network. The hyperparameters of each
model were determined using a grid search and five-fold
cross-validation with the training set. Using the obtained
hyperparameters, we trained the models with the entire
training set and evaluated the performance using the test
set. Further details on the ML models are presented in
the Supporting Information, Text S1. We implemented the
ML models using Python Version 3.7.4 with scikit-learn
Version 0.23.1, LightGBM Version 2.3.0, and TensorFlow
Version 2.0.0. We evaluated the performances of these
six ML models using the test set, as described in the Statis-
tical analysis section.

Significant predictors and simple model
development

The significant variables of the developed ML model that
achieved the best performance were evaluated by permu-
tation feature importance, which is defined as the decrease
in the model score when a single feature value is randomly

shuffled.21 In this study, we evaluated the decrease in the
c-statistic or area under the receiver operating characteris-
tic curve. The permutation was repeated 100 times
for each variable. Furthermore, via selection of the
significant predictors of the original ML model obtained
from this result, we proposed a simple model for universal
utilization.

Comparison with conventional risk models

To compare the ACD-based ML models (the original ML
model and the simple model) with the conventional HF risk
models, SHFM and MAGGIC, we extracted the variables of
those models not only from ACD but also from the JROADHF
registry data (Supporting Information, Tables S2 and S3) be-
cause these conventional models include detailed clinical var-
iables related to HF, which the Japanese ACD do not contain.
We evaluated the performance of the conventional risk
models SHFM and MAGGIC derived from the previously vali-
dated formulae3,7 and compared the discrimination and cali-
bration with those of the ACD-based ML models using the
test set. In addition, to evaluate the net effects of the ACD
variables, we compared the ACD-based ML models with the
ML models based on the variables in the conventional risk
models. We pre-processed each variable in the conventional
HF risk models described earlier and utilized the ML algo-
rithm that achieved the highest performance for ML model
development. Because the JROADHF registry included many
elderly patients, we evaluated the prediction performance
for the subgroup aged ≤80 years.

Statistical analysis

For model comparison, we evaluated discrimination and cali-
bration indices. The discrimination was evaluated by plotting
receiver operating characteristic curves and calculating the c-
statistic,22 whereas the model calibration was assessed using
a calibration plot and the Brier score.23 The Brier score is the
mean squared difference between the observed and pre-
dicted outcomes and ranges from ‘0’ to ‘1’, with ‘0’
representing the best calibration. Using these evaluations,
we identified the most suitable model for predicting the
1 year mortality in HF patients. To address the classification
with imbalanced data (i.e. low proportions of events), we
chose the prediction threshold based on the Youden index24

used to classify disease status in the framework of medical di-
agnosis. The 95% confidence interval for the c-statistic was
estimated using the Delong method. We performed all statis-
tical analyses using SAS 9.4 (SAS Institute, Cary, North
Carolina).
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Results

Patient characteristics and events

A total of 13 238 patients with acute decompensated HF from
128 facilities were enrolled in the JROADHF study (Figure 1).
We excluded 1023 patients who died in hospital and 2040 pa-
tients without follow-up data during 1 year after discharge.
Hence, this study comprised a total of 10 175 patients. The
1 year mortality was 17.0% (n = 1727). The baseline charac-
teristics of the patients obtained from the JROADHF study
are summarized in Table 1. The median age was 80 years (in-
terquartile range = 70–86 years), and 45.3% of the study pop-
ulation were female. Patients with NYHA functional class
symptoms of III or IV at discharge accounted for 9.0%,
whereas 38.0% of the study population presented reduced
left ventricular ejection fraction (LVEF). The JROADHF study
facilities were divided into 102 facilities with 8163 patients
for the training set and 26 facilities with 2012 patients for
the testing set.

Machine learning model development

The discrimination and calibration of all ML models are
shown in Figure 2 and Table 2. Although there are no appar-
ent differences between the six ML models, the voting classi-
fier achieved the highest c-statistic of 0.777 [95% confidence
interval 0.751–0.803] for 1 year mortality. Each ML model
was well calibrated, as shown in Figure 2B, and the minimum
value of the Brier score was achieved by the voting classifier.
We selected the voting classifier as the most promising ap-
proach among the six ML algorithms. We refer to the

developed voting classifier model consisting of 89 ACD vari-
ables as the ACD-based voting classifier (ACD-VC) model in
the following sections.

Significant predictors and development of the
simplified model

We identified the most significant predictors via the permuta-
tion feature importance technique to translate the ACD-VC
model into a universally applicable prediction model
(Figure 3). We also assembled a simplified ML model called
the Simple Model by ARTificial intelligence for HF risk stratifi-
cation (SMART-HF), incorporating high-ranking and readily
available variables, namely, the Barthel index, age, body mass
index, duration of hospitalization, last hospitalization, furose-
mide dose, non-loop diuretics, and gender. The SMART-HF
achieved a c-statistic of 0.765 [95% confidence interval
0.739–0.791] and a Brier score of 0.124.

Figure 1 Data extraction from the Japanese Registry of Acute Decom-
pensated Heart Failure (JROADHF) study.

Table 1 Baseline patient characteristics

Characteristics N = 10 175

Age, years 80 [70–86]
Female, n (%) 4606 (45.3)
Body mass index, kg/m2 22.4 [19.9–25.3]
Aetiologies, n (%)
Ischaemic 3657 (35.9)
Hypertensive disease 2578 (25.3)
Valvular disease 3587 (35.3)
Cardiomyopathy 1571 (15.4)

Comorbidities, n (%)
Hypertension 7411 (72.8)
Diabetes mellitus 3637 (35.7)
Dyslipidaemia 3329 (32.7)
COPD 663 (6.5)
Chronic kidney disease 3980 (39.1)

NYHA class on admission, n (%)
I or II 1566 (15.6)
III or IV 8461 (84.4)

NYHA class at discharge, n (%)
I or II 8800 (91.0)
III or IV 868 (9.0)

Blood pressure, mmHg
Systolic 137 [118–160]
Diastolic 78 [65–92]

Pulse rate, b.p.m. 88 [73–107]
LVEF, % 46 [32–61]
LVEF < 40%, n (%) 3444 (38.0)
Serum sodium, mmol/L 139 [137–141]
Serum potassium, mmol/L 4.3 [4.0–4.7]
Estimated GFR, mL/min/1.73 m2 44.1 [29.4–59.5]
Haemoglobin, g/dL 11.5 [10.1–13.2]
Barthel index 100 [65–100]
Medication, n (%)
Diuretics 8408 (82.8)
RAS inhibitor 6140 (60.5)
Beta-blockers 6099 (60.1)
MRA 4512 (44.4)

COPD, chronic obstructive pulmonary disease; GFR, glomerular fil-
tration rate; LVEF, left ventricular ejection fraction; MRA, mineralo-
corticoid receptor antagonist; NYHA, New York Heart Association;
RAS, renin–angiotensin–aldosterone system.
Values are medians [interquartile ranges] or n (%).
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Comparison with conventional risk models

To validate the developed ACD-VC and SMART-HF models, we
compared them with conventional risk models. As shown in
Figure 4 and Table 2, the c-statistics of the conventional
models were 0.713 [0.684–0.742] and 0.726 [0.698–0.753]
for SHFM and MAGGIC, respectively, indicating that the per-
formance of the ML models was significantly superior to that
of the conventional HF risk models. The Brier scores of the
ML models were better than those of SHFM and MAGGIC
(0.139 and 0.130, respectively). The calibration plot in Figure
4B shows that the SHFM underestimated the mortality risk. In
addition, we compared the developed ML models to the
modified conventional risk models with the present voting
classifier algorithm. Both conventional risk models improved
their discrimination (c-statistic values: SHFM-VC, 0.760;

MAGGIC-VC, 0.754) and calibration (Brier scores: SHFM-VC,
0.125; MAGGIC-VC, 0.126) when recalculated with an ML al-
gorithm. However, the performance of the developed
ACD-VC model and SMART-HF remained equal or superior
to that of both of the modified conventional models with
the VC algorithm.

Furthermore, we analysed the predictive performance of
the developed ML models for the subgroup aged
≤80 years. The results demonstrated a similar trend
(Supporting Information, Table S4). Compared with the con-
ventional models, both ACD-based ML models achieved
higher c-statistics (ACD-VC, 0.777; SMART-HF, 0.768; SHFM,
0.728; MAGGIC, 0.725; SHFM-VC, 0.764; MAGGIC-VC,
0.750) and lower Brier scores (ACD-VC, 0.084; SMART-HF,
0.086; SHFM, 0.088; MAGGIC, 0.092; SHFM-VC, 0.087;
MAGGIC-VC, 0.086).

Table 2 Predictive performances of the machine learning models and conventional risk models

Model Accuracy Sensitivity Specificity c-statistic Brier score

Logistic lasso regression 73.3 66.8 74.7 0.776 [0.750–0.802] 0.121
Support vector machine 69.6 69.7 69.6 0.764 [0.738–0.791] 0.123
Random forest 72.4 66.5 73.6 0.767 [0.740–0.794] 0.125
Gradient boosting tree 75.0 61.0 77.9 0.765 [0.738–0.792] 0.123
Voting classifier (ACD-VC) 70.7 71.1 70.6 0.777 [0.751–0.803] 0.121
Neural network 73.8 66.8 75.2 0.776 [0.750–0.802] 0.121
SMART-HF 71.2 67.9 71.8 0.765 [0.739–0.791] 0.124
SHFM 80.5 26.6 91.7 0.713 [0.684–0.742] 0.139
MAGGIC 70.4 58.7 72.9 0.726 [0.698–0.753] 0.130
SHFM-VC 73.5 64.5 75.3 0.760 [0.734–0.785] 0.125
MAGGIC-VC 64.8 75.1 62.6 0.754 [0.728–0.781] 0.126

ACD-VC, voting classifier based on administrative claim data; MAGGIC, meta-analysis global group in chronic heart failure risk score;
MAGGIC-VC, voting classifier based on the variables in MAGGIC; NYHA, New York Heart Association; SHFM, Seattle Heart Failure Model;
SHFM-VC, voting classifier based on the variables in SHFM; SMART-HF, simple model by artificial intelligence for heart failure risk
stratification.
Values are means [95% confidence intervals].

Figure 2 (A) Comparison of the receiver operating characteristic curves of the six machine learning models when applied to the test set. All six models
have similar predictive performance. (B) Calibration plot of six models. The data points are subdivided into deciles of predicted probability. Each mean
observed mortality is plotted against the mean model probability. Perfect model calibration corresponds with the y = x line.
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Discussion

In this paper, we showed that the performance of the ML ap-
proach using the Japanese ACD is superior to that of conven-
tional risk models. Furthermore, combining some of the top
variables uncovered by the ML analysis, we developed a
new easy-to-use prediction model, SMART-HF. The perfor-
mance of SMART-HF was equivalent or superior to those of
the conventional risk models. This new model requires a

small number of easily available variables, which can be
assessed from a brief interview even by non-healthcare
providers.

All six ML algorithms considered in this study are fully
established and commonly used for artificial intelligence pre-
diction tasks. Among them, the voting classifier algorithm,
which is designed to overcome the limitations of individual
classifiers,25 achieved the best performance in our study by
a narrow margin. However, the difference between the ML
models was not significant for predictive modelling of mortal-
ity in HF patients.

We then sought to develop a refined prediction model
using the top predictors identified by the ACD-VC model.
The permutation feature importance technique is an effec-
tive way to uncover the predictive power of each variable
in an ML model. This technique showed that the top predic-
tive variables were the Barthel index, age, body mass index,
duration of hospitalization, last hospitalization, renal disease,
diuretics use, and gender. In particular, the Barthel index
played the most important role in the ACD-VC model perfor-
mance. The Barthel index represents activities of daily living
and frailty, and it is reportedly critical for predicting HF pa-
tient mortality.26,27 This result agrees with the ML-based find-
ings of Desai et al., who also identified frailty as the most
significant predictor of 1 year mortality in HF patients.13 In
the conventional risk models, the potential relationships be-
tween symptoms and daily activity are evaluated using NYHA
classification. However, the Barthel index, which aids in accu-
rate evaluation of daily activity, may be more useful than the
NYHA classification for mortality prediction. Given that these
variables incorporated in SMART-HF—excluding the Barthel
index—are common in pre-existing models such as SHFM
and MAGGIC,3,7 the high accuracy of prognostic prediction

Figure 4 (A) Comparison of ACD-based models (ACD-VC and SMART-HF) with the conventional risk models of SHFM and MAGGIC when applied to the
test set. (B) Calibration plot of the four models. Data points are subdivided into deciles of predicted probability. Each mean observed mortality is plot-
ted against the mean model probability. ACD, administrative claim data; ACD-VC, ACD-based voting classifier; MAGGIC, Meta-Analysis Global Group in
Chronic Heart Failure; SHFM, Seattle Heart Failure Model; SMART-HF, Simple Model by ARTificial intelligence for HF risk stratification.

Figure 3 Top 20 significant predictors of the developed machine learning
model for 1 year mortality in heart failure patients calculated by permu-
tation feature importance. ARB, angiotensin II receptor blocker; DOAC,
direct oral anticoagulant; RHC, right heart catheterization.
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in SMART-HF is dependent on the Barthel index, and this un-
derlines the significance of frailty in HF, as uncovered by the
permutation feature importance technique.

We demonstrated the superiority of the ACD-VC and
SMART-HF models over the conventional SHFM and
MAGGIC risk models, as shown in Figure 3. The
c-statistics of the SHFM and MAGGIC models were previ-
ously reported as 0.729 and 0.734, respectively,7,28 which
are consistent with the present results, and a similar trend
was evident in the results for the subgroup aged ≤80 years.
However, given that their superiorities in prediction accu-
racy might be marginal, the higher c-statistics in the
ACD-VC and SMART-HF models do not have much impact
on clinical utility for predicting the prognosis of HF pa-
tients. Indeed, several researchers have reported that the
ML approaches predicted mortality with over 0.8 c-
statistics.29,30 Nevertheless, the SMART-HF model has two
distinct advantages over conventional risk models. First,
the variables in SMART-HF are readily available because
the Japanese ACD has no clinical variables. Most previous
models were developed based on the registry and elec-
tronic health record containing detailed clinical data, such
as echocardiographic and blood biochemistry data. Some
clinical variables incorporated in pre-existing models are of-
ten lacking in clinical practice, and the lack of these param-
eters has a critical negative effect on prediction accuracy.
In contrast, SMART-HF was developed only on the ACD
and could be applied to the information obtained from a
brief interview. As most of the variables in the Japanese
ACD were generally entered by hospital clerical staff,
SMART-HF can be easily operated even by non-healthcare
providers. Second, a prediction model based on ACD would
prove useful for a national medical policy or an insurance
market. As there are many such claim databases available
with the government or insurance companies, appropriate
decisions can be made for medical policy and actuarial ser-
vices by utilizing ACD-based prediction models. This advan-
tage may enable those in the government and actuarial
services to potentially optimize the medical services in ac-
cordance with the prediction model based on ACD and re-
duce the increasing economic burden. These advantages
will further promote research on ML-based modelling using
ACD in many other diseases in the future.

SMART-HF, developed from the ACD-VC model, can yield
an accurate prediction of the 1 year prognosis in patients
with HF through the inputting of easily available variables, al-
though the original ACD-VC could vary between databases,
and the performance of the ML approach largely depends
on the quality of the ACD. To facilitate the usability of
SMART-HF by healthcare and non-healthcare providers, we
have launched an online calculator implementing SMART-HF
with a user-friendly interface (https://hfriskcalculator.
herokuapp.com/). This online system provides a novel modal-
ity for risk stratification of HF patients.

Limitations

This study has some limitations. First, Japan has the largest
proportion of older adults (>65 years old) worldwide, be-
cause of which it is referred to as a ‘super-ageing’ society
(https://population.un.org/wpp/Download/Standard/Popula-
tion/). Therefore, the overall profile of patients with HF in
the JROADHF also showed a greater degree of ageing than
that observed in the previous cohort database,14 and the
median age of the participants in this study was 80 years.
This difference in the ageing population between the
JROADHF and previous studies might lead to an increased
proportion of HF patients with preserved ejection fraction
and average of LVEF in the JROADHF. Although the ‘ageing
society’ phenomenon is progressing worldwide, especially
in many developed countries, SMART-HF should be care-
fully utilized with consideration for the age distribution of
the population in each region. Second, we excluded 2040
subjects with missing prognosis data for 1 year, which can
potentially cause selection bias. Third, the Barthel index
was not documented in many previous studies, and thus,
further investigation will be required to validate the effi-
cacy of SMART-HF by analysing ulterior databases using
SMART-HF in the future. Finally, the ACD-VC and
SMART-HF models showed high prediction accuracy with-
out the requirement for any detailed clinical parameters,
which have been proven to play pivotal roles in predicting
the prognosis of patients with HF, such as in terms of vital
signs, echocardiography, laboratory data, and optimal med-
ical treatment. This might be because the accessibility to
medical care is firmly ensured, and medical treatment for
HF is well optimized in most HF patients in accordance
with frequently documented clinical parameters and guide-
lines for HF. This medical scenario in Japan might lead to
lower predictive values of LVEF and optimal medical treat-
ment; thus, the lack of fully examined clinical parameters
and guideline-based optimal medical treatment can nega-
tively affect the prediction accuracy of SMART-HF in some
populations where clinical parameters are not well assessed
and medical therapy is not optimized.

Conclusions

The voting classifier model developed using the Japanese
ACD can predict 1 year mortality more reliably than con-
ventional risk models. Further, the SMART-HF model de-
rived from the ACD-based model delivers high prediction
performance and only requires a small number of readily
available variables with easy operability. Our new predic-
tion model is a useful tool for accurately predicting the
1 year mortality and optimizing the management of HF
patients.
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