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Image analysis using multiplex immunofluorescence (mIF) to detect different proteins in a
single tissue section has revolutionized immunohistochemical methods in recent years.
With mIF, individual cell phenotypes, as well as different cell subpopulations and even rare
cell populations, can be identified with extraordinary fidelity according to the expression of
antibodies in an mIF panel. This technology therefore has an important role in translational
oncology studies and probably will be incorporated in the clinic. The expression of different
biomarkers of interest can be examined at the tissue or individual cell level using mIF,
providing information about cell phenotypes, distribution of cells, and cell biological
processes in tumor samples. At present, the main challenge in spatial analysis is
choosing the most appropriate method for extracting meaningful information about cell
distribution from mIF images for analysis. Thus, knowing how the spatial interaction
between cells in the tumor encodes clinical information is important. Exploratory
analysis of the location of the cell phenotypes using point patterns of distribution is
used to calculate metrics summarizing the distances at which cells are processed and the
interpretation of those distances. Various methods can be used to analyze cellular
distribution in an mIF image, and several mathematical functions can be applied to
identify the most elemental relationships between the spatial analysis of cells in the
image and established patterns of cellular distribution in tumor samples. The aim of
this review is to describe the characteristics of mIF image analysis at different levels,
including spatial distribution of cell populations and cellular distribution patterns, that can
increase understanding of the tumor microenvironment.

Keywords: multiplex immunofluorescence, matrix construction, cellular spatial distribution, nearest neighbor,
correlation functions

INTRODUCTION

Multiplex immunofluorescence (mIF) facilitates detection of cell phenotypes (Parra et al., 2020) and
quantification of spatial relationships among cells within the tumor microenvironment (Barua et al.,
2018). Studying the spatial distribution of tumor cells and infiltrating immune cells in tumor samples
using data obtained via mIF-based digital image analysis allows for detailed characterization of cell-
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cell associations and the geographic distribution of cell
phenotypes, which may help in predicting clinical responses
and mechanisms of resistance of cancer to immunotherapies
(Yu et al., 2020). With increases in the volume and complexity
of this type of data, integration of computational analysis with
image analysis has become more important and relevant to better
understanding the tumor microenvironment. Analysis of spatial
data requires specific tools and techniques to look at these data
from different angles. Over the past few years, my group has
applied computational analysis tools in an exploratory way to
measure the intensity of expression of cell phenotypes in cancer
and the spatial distribution of cells in images obtained using mIF
(Barua et al., 2018). We have also applied careful inferential
methods to validate the results of cell distance analysis. In essence,
we attempted to extract features from many mIF images and
captured the most relevant features that can answer our
questions. Once these features are extracted and checked for
anomalies, hypothesis tests and mathematical models can be
designed to assess the effect of certain features or patterns of
cell distribution on cancer (Robinson et al., 2020). This analysis of
spatial cell distribution can be used to determine whether a strong
association exists between cell distribution patterns and
clinicopathologic information or outcome.

Feature extraction frommIF digital image analysis begins with
computing maps for individual markers using the center of the
cells, which then creates a point process object. A point process
from the image analysis is a collection of points that can be
structured using two-dimensional coordinates in the x- and
y-planes using identified cell markers (Parra et al., 2020).
Creating this point process object allows us to superimpose
point patterns of different markers for combined co-
localization analysis, which identifies specific cell phenotypes
that correspond to a unique image identifier, and each image
has a corresponding case. Lastly, each cell has a binary entry for
each marker that the cell expresses. This enables efficient
assignment of a phenotype to each cell.

When we explore image analysis data, the cell phenotype
frequencies on each mIF digital image must be counted to
determine the number of pairwise phenotype incidences. We
count the interaction of protein markers in every cell in the
data and organize by image and case. For each cell phenotype,
we estimate the intensity of another phenotype by counting the
cells in a neighborhood and also increasing the radius (Illian et al.,
2008). This measure of intensity is very important when adjusting
for the effect of other features and computing the space between
cells. Using the coordinates that the images provide after image
analysis, for any image and cell phenotype, we can calculate the
distance to every other cell in the image. Thus, we can construct a
distance matrix that encodes the distances for all pairs of cells,
giving us the opportunity to map cell pathways in every image
(Illian et al., 2008). The spatial distribution of the cell phenotypes
can be used to calculate several characteristics of the cells using a
mathematical function that is most appropriate for the research
question. Using the data provided by this method, we can model
features of cellular spatial distribution to determine whether certain
phenotypes differ in their patterns of distribution. For instance, we
can study patterns of distribution of and distances between cells

across images and cases and correlate this information with clinical
data to see if the spatial distribution of these cells plays an
important role in driving different responses to treatments and
outcomes in the tumor microenvironment.

Herein, I describe strategies and mathematical models and
functions used to study the spatial distribution of cell phenotypes
in tumor tissues, demonstrating a practical approach to study the
tumor microenvironment. I also discuss the integration of these
analyses with their biological interpretation to answer research
questions.

SPATIAL CELLULAR DISTRIBUTION

The tumor microenvironment is a complicated machinery that
includes several groups of cells, such as epithelial and endothelial
cells and a large variety of infiltrating immune cells, including
cells involved in both the innate and adaptive immune responses
to the tumor. The location and organization of these different
immune cell phenotypes have emerged as important pieces of
information for determining the function of these cells across
tumor compartments and recognizing the possible impact of the
cells on clinical outcomes in cancer patients (Masugi et al., 2019).
Knowing the location of different cell populations in a tumor and
the spatial distribution of the cells with other cell groups allows us
to characterize a tumor to predict its response to treatment and
the potential for progression and relapse. The spatial distribution
of different cell phenotypes is known to be important in
characterizing the tumor microenvironment, which influences
recruitment of immune cells, and the microenvironment can be
characterized in different regions within a tumor or studied to
determine whether specific cell phenotypes are present
(Tsujikawa et al., 2020). Therefore, data obtained from mIF-
based digital image analysis are particularly useful for calculating
functional spatial distribution metrics.

Geographic Cell Distribution in Tumors
As shown in Figure 1, studying different cell phenotypes
according to their distribution in tumors, such as in the tumor
and stromal compartments, normal tissue and tertiary lymphoid
structures, vessels, or tumor periphery, can provide important
information about the specific role of that cell phenotype
(Bremnes et al., 2011; Dieu-Nosjean et al., 2014), and cellular
distribution can be associated with outcomes in various tumor
types. For example, T-cell populations in the tumor
compartment, but not in the stromal compartment, are
associated with favorable prognoses in colorectal cancer
(Galon et al., 2006; Nazemalhosseini-Mojarad et al., 2019),
ovarian cancer (Zhang et al., 2003), urothelial carcinoma
(Wang et al., 2015), head and neck squamous cell carcinoma
(Zhou et al., 2019), esophageal adenocarcinomas (Stein et al.,
2017), triple-negative breast cancer (Sugie et al., 2020), pancreatic
ductal adenocarcinoma (Masugi et al., 2019), and non-small cell
lung carcinoma (Parra et al., 2016; Tuminello et al., 2019).
Research has also shown that cytotoxic T-cells in the tumoral
compartment are potential negative prognostic factors in invasive
breast cancer (Catacchio et al., 2019). Furthermore, larger
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populations of specific cell phenotypes, such as FOXP3+
T-regulatory cells, in the tumoral compartment than in the
peripheral compartment can correlate with aggressive tumor
behavior, as observed with some papillary thyroid cancers
(French et al., 2010). The distribution of T-cell phenotype
populations across different geographic compartments can
have therapeutic implications (Cooper et al., 2016; Feldmeyer

et al., 2016; Parra et al., 2018) and drive the improvement and
discovery of new treatments based on T-cell tumor tissue
distribution.

Spatial Distribution at the Single-Cell Level
In spatial cellular image analysis, images show a collection of
various cell phenotypes that are identified by staining for a

FIGURE 1 | Microphotographs of a representative whole tumor section of lung squamous cell carcinoma obtained using multiplex immunofluorescence staining.
(A) Geographic distribution of cells in different tissue compartments. (B) The geographic compartments were delineated using HALO image analysis software (Indica
Labs, Albuquerque, NM) to analyze cells in different compartments. Original magnification, ×4.

FIGURE 2 | Microphotographs of a representative section of lung squamous cell carcinoma obtained using multiplex immunofluorescence staining with a panel
containing cytokeratin, CD3+ T-cells, CD68 + macrophages, and DAPI. (A) A region of interest with basic marker staining. (B) Colored dots representing the individual
cells shown in A, showing the location of each cell in the image. Original magnification, ×20, from VectraPolaris scanner and processed by Inform software (Akoya
Biosciences).
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combination of markers in an mIF panel (Figure 2A), and these
markers are translated as colored dots with x and y coordinates
(Figure 2B). This analysis is not limited to single images but rather
uses groups of images that are related to several tumor samples in a
study. In our analysis, we consider the point pattern from our mIF
image a non-parametric process, which assumes a stationary or
homogeneous point pattern configuration independent of a
specific location. Although only small or a few areas of
observation can be considered non-stationary processes showing
only a few groups of phenotypes, these areas, given the
heterogenicity of the sample across images, ultimately generate
dynamic ecologic patterns that may influence tumor progression
and response to treatment (Gentles et al., 2015). Furthermore,
study of spatial cell distribution has demonstrated its relationship
with outcomes in cancer patients. For example, in non-small lung
cancer, the proximity of macrophages to malignant cells was
inversely correlated with prognosis; those with tumors in which
macrophages were close to malignant cells had worse outcomes
than those with tumors in which macrophages were far from the
malignant cells (Zheng et al., 2020). Similarly, in a gastric cancer
study, the proximity of FOXP3+ T-regulatory cells to CD8+

cytotoxic T-cells was inversely correlated with prognosis (Wang
et al., 2020).

FUNCTIONAL SPATIAL DISTRIBUTION
METRICS

The existing methods used in spatial analysis are many and varied.
Researchers have ample opportunity to explore different
techniques of cellular spatial analysis for tumor tissues and

implement them using mathematical models to extract mIF
image data.

In spatial image analysis, consideration of intensity and
density is needed. Intensity is the absolute number of cells or
their abundance in an image when looking directly into it, and
density is the number of cells per unit area (cells/mm2).

After intensity and density are defined, the distribution of the
cells overall is the first aspect in an image that can be studied. The
cells can be distributed homogeneously or not, and a simple way to
consider this variable is to divide the images into quadrants of
equal size and count the cells in each quadrant. Naturally, if the
number of cells varies greatly among the quadrants, the
distribution of the cells is not homogeneous (Figure 3A). The
distribution of cells in an image is very unlikely to be
homogeneous, and overall, a good assumption is that patterns
of cells will never be homogeneous. One obvious drawback to this
approach to analyzing the distribution of cells across an image is
the dependence on quadrant size or application of other geometric
shapes of the partitions. If the quantification or application of the
quadrants is not done carefully, no useful information will be
drawn. Nonparametric approaches, such as kernel smoothing
(Baddeley et al., 2015), are other popular methods of graphically
determining whether cellular distribution is homogeneous, and
these methods are useful for observing cell proliferation patterns or
hot spots in an image (Figure 3B).

SPATIAL DESCRIPTIVE FUNCTIONS

In studying the spatial relationships among different cells and
their patterns of distribution in an image, several spatial

FIGURE 3 | Characterization of the distribution of cells from a sample of lung adenocarcinoma in a multiplex immunofluorescence image. (A) Results of quadrant
analysis, with each quadrant containing the exact number of cells in a square, represented by dots. (B) Heat map of Kernel smoothing from the same area of the image,
showing areas of high and low proliferation of cells, identified by colored regions (see color scale at right). The images were generated using R studio software
version 3.6.0.
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descriptive functions can be applied. Basically, two groups of
mathematical or computational functions can be used to analyze
the data obtained in digital image analysis. One group is used to
describe the measured distances between cell populations; this
group includes the G-function, F-function, and J-function. The
other group is used to describe the relative intensity of the cells in
terms of distance measured, and this group includes the
K-function, L-function, and pair correlation function. Similar
principles are used to construct both function groups (Baddeley
et al., 2015; Illian et al., 2008), and because these functions
examine the relationship between two cell populations (i-to-j),
all functions are cross-functional or mark-independent.

To apply these functions to spatial image analysis data from
mIF images, users are encouraged to employ the well-known
spatstats package in the R computing language (Baddeley and
Turner, 2005) because it has correction tools such as edge
correction, which are important for any spatial image analysis
(Figure 4).

DISTANCE MATRIX

Construction of a distance matrix is the first step in developing
any tool to reveal spatial properties of cells in an image. To
maintain the simplicity of the analysis, we can assume that
distances between cells are always measured in a two-
dimensional Euclidean space on images that are flat. Only the
cell coordinates are needed to build a distance matrix; this allows
extraction of spatial information regarding the interaction

between two distinct types of cells by applying various
mathematical formulas on the matrix itself (Figure 5A).

Depending on the specific formula applied, various features of
the spatial interaction between cells can be studied. In
constructing a distance matrix, the coordinates of the cell
phenotypes are first ordered in rows and columns, where the
rows in the matrix correspond to the number of cells from one
specified cell phenotype and the columns correspond to the
number of cells from another specified cell phenotype. A good
visual representation of the connection between cell markers in
the matrix can be obtained using a chord diagram (Figure 6).

Each matrix entry is the distance between one cell phenotype
and another cell phenotype; in this way, all entries between two
groups of cell phenotypes are displayed in the distance matrix. As
mentioned above, the distance is measured for every pair of cells,
i.e., from one cell phenotype of interest to another cell phenotype
of interest, or, in a more simplistic way, from point A (i) to point
B (j) in a given radius (r; Figure 5B). The maximum distance
between two cells is the farthest distance between A and B in the
image; this distance is limited by the region of interest analyzed. A
meaningful measure must be constructed by determining the
distance between each entry in column (i) from one cell
phenotype and each entry in row (j) from the other cell
phenotype, for example malignant cells and CD3+ T-cells
(Figure 7). This is important when constructing other metrics
for other cell phenotypes to observe the distribution of cells and to
obtain a vector of distances from each cell phenotype to its nearest
neighbor of another cell phenotype.

NEAREST NEIGHBOR

The nearest neighbor distance is used to determine the
probability (P) of encountering a cell (point, X) of a specific
phenotype (j; e.g., cell phenotype B, CD3+) within a certain
radius (r) centered on another cell phenotype (i; e.g., cell
phenotype A, malignant cells; Figure 8A) (Barua et al.,
2018). This approach allows you to determine the minimum
distance between each cell of phenotype A and the nearest
neighbor cell of phenotype B. Of note, this distance will be
completely different if measured in the opposite direction (from
cell phenotype B to cell phenotype A). The direction to be
evaluated (from cell phenotype A to B or vice versa) depends on
the research question and is based on biological knowledge of
the tumor. For instance, a researcher may wish to measure the
distance from malignant cells to the nearest neighbor T
lymphocytes in a certain radius, assuming that the T
lymphocytes are there because of the malignant cells.

The most common way to study the random process of cell
placement, given certain intensity patterns of spatial
distribution between two groups of cell phenotypes (i-to-j),
is to compare the theoretical curve with the empirical nearest
neighbor cross-G-function, Gi,j(r) � P{d(u,X_j)|u ∈Xi}
(Baddeley and Turner, 2005). Overall, there are theoretically
three possible patterns of distribution when the empirical curve
is above, close, or below the theoretical curve: regular, random,
and cluster, respectively. However, the regular pattern does not

FIGURE 4 |Distribution of dots representing the cell distribution patterns
in an image with edge correction, showing a square marked by a red line
constructed using spatstats software in the R computing language. Only the
dots inside the red line were considered in the analysis of the spatial
distribution pattern. The image was generated using R studio software
version 3.6.0.
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tend to occur in nature, and hence a situation in which the
empirical curve is very far above the theoretical curve should be
used with caution. Empirical curves that occur only slightly
above the theoretical curve are more accurately interpreted as
close to a random pattern than as a potential regular pattern.
When studying the distribution of two different cell
phenotypes, such as cell phenotype A (malignant cells) and
cell phenotype B (lymphocytes), a researcher should typically
recognize only two patterns—random or mixed (when the
empirical curve is close to the theoretical curve, either above
or below) and cluster or unmixed (when the empirical curve is
below the theoretical curve)—related to cell phenotype A.
These two patterns of distribution can be represented
graphically (Figure 9). Specifically, when the empirical
cross-G-function is plotted against the theoretical
expectation or Poisson curve, the shape of the function

indicates how the events are spaced in a point pattern of
two cell phenotypes. If the events of cellular distribution are
random or mixed (e.g., cell phenotype B and cell phenotype A
are mixed together in the plot, Figures 9A,C), then the nearest
neighbor cross-G-function is very close to the Poisson curve
because the probability of a neighbor being close is high. In
contrast, as the distance increases between the empirical cross-
G-function and the Poisson curve, the events are more spaced
and a cluster or unmixed pattern can be identified in the plot, as
shown in Figures 9B,D, where cell phenotype B is in separate
clusters from cell phenotype A. To determine the probability
that cell phenotypes have a random or cluster pattern related to
the theoretical curve, the researcher must process several
images from the project to ensure that a clear threshold is
present to eliminate the possibility of a random pattern (Parra
et al., 2021).

FIGURE 5 |Distancematrices. (A) Identified cell coordinates and distance measurements from one cell phenotype (red dots) to another cell phenotype (black dots)
in a lung adenocarcinoma image. (B) The intensity of one cell phenotype (black dots) was calculated at a given radius (red circle, 300 μm) from the other cell phenotype
(red dots). The images were generated using R studio software version 3.6.0.
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CORRELATION FUNCTIONS

Correlation functions basically provide information about how
many specific cells of a certain phenotype (e.g., intensity of cell
phenotype B) are within a certain radius (r) from another cell
phenotype (e.g., cell phenotype A) and can give a good sense of
the different levels of interaction between two cell populations
in terms of point intensity level (λ) or number of cells
(Figure 8B). A commonly used correlation function for
spatial analysis is the K-function: Ki,j(r)�(E{n[Xj∩b(u,r)]|
u∈Xi})/λj (Baddeley and Turner, 2005; Lagache et al., 2013).
The K-function essentially normalizes the spatial distribution

from one cell phenotype to another cell phenotype by the
intensity of the cells present in the radius. As in the cross-G-
function, to determine if cell phenotype B has a distinct pattern
of distribution related to cell phenotype A, one can calculate the
theoretical correlation function for a random process using the
same principle, and observed graphical changes can indicate
that cells of phenotype B are displaced in random patterns
(Figures 10A,C) or cluster patterns related to cells of phenotype
A (Figures 10B,D). This function determines the consistency of
the observed distribution of distances among all cells located in
spatial images, using the theoretical distribution for the Poisson
model as a benchmark.

FIGURE 6 | Graphic representation of a distance matrix using a chord diagram showing the flows or connections between the markers included in a multiplex
immunofluorescence panel. The chord diagram shows various connections betweenmarkers that generate cell phenotypes from amultiplex immunofluorescence panel;
these markers include cytokeratin (CK), CD3, CD8, FOXP3, PD-1, PD-L1, KI67, and CD68. The graphic was generated using R studio software version 3.6.1.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6683407

Parra Cellular Spatial Distribution Analysis

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


COMPLEMENTARY FUNCTIONS

Thus far, I have described two spatial functions, the G- and
K-functions, which are the most common functions used for
spatial image analysis. These two functions combined can provide
valuable characterization of the distribution of different cell types
in an image. In the learning theory literature, this is known as
feature construction or extraction. The G-function provides
information about the distribution of the closest cells to
another cell type, and the K-function provides the context for
the density of these neighbors. In some scenarios, the G-function
demonstrates that cells of phenotype B are likely to be within a
certain radius of cells of phenotype A, but the K-function
demonstrates the intensity of the cell phenotype B distribution
from cell phenotype A at the same ratio. Combined, these two
distance functions can generate a compressive analysis about the
tumor microenvironment, characterizing the proximity and level
of interaction between one cell phenotype and another (Parra
et al., 2021; Parra, Ferrufino-Schmidt, et al., 2021).

Understanding of the data provided by these two basic
functions, in terms of spatial analysis of cell distribution in an

image, may be improved by using a complementary function.
Complementary functions are derived from the cross-G- and
K-function to provide more information about cell distribution
patterns and correct transformation that can occur in the image
to better reflect the features observed visually.

One transformation correction that can be incorporated into
the basic functions described above is the J-function: Ji,j(r) � [1 −
Gi,j(r)]/[1 Fj(r)] (Baddeley and Turner, 2005). This function is
used to compare distances from an arbitrary point to the nearest
neighbor (empty-space F-function: [Fj(r) � P{d(u,Xj)≤r}])
(Baddeley and Turner, 2005) and distances from a typical
point in the pattern measured using the nearest neighbor
distance cross-G-function (Figure 8C). If the distance in the
J-function distribution follows the Poisson process, deviation of
the J-function by more than 1 indicates spatial randomness and
deviation by less than 1 indicates clustering (Figure 11). One can
then estimate the empty-space F-function, which is identical to
the G-function when the pattern is random but different from it
when the probability of not observing another cell fluctuates
(Kather et al., 2015; Zheng et al., 2020). Hence, this J-function
aids in identifying any pockets of empty space around cells.

FIGURE 7 | Bar graph showing the distribution of CD3+ T-cell distances from malignant cells across different radii, from representative data extracted from a lung
adenocarcinoma sample. The graphic was generated using R studio software version 3.6.1.
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In addition, the L-function—Li,j(r) � √[(Ki,j(r)]/π) (Baddeley
and Turner, 2005)—can complement a spatial imaging study.
Mathematically, this function is simply the square root of
K-function divided by pi, and it helps visualize the K-function
as a linear shape when it is graphically represented and can
identify small differences in cell pattern distributions that are
sometimes difficult to identify with the K-function. When the
L-function is represented graphically, one should observe a
seemingly straight line whenever the pattern is random
(Figure 12).

Lastly, the pair correlation function—gi,j(r) � [Ki,j’(r)]/2πr
(Baddeley and Turner, 2005)—is easy to understand but more
complicated to estimate than the other functions (Gavagnin et al.,
2018). The pair correlation function is related to the K- and
L-functions; it is a modified version of the K-function where
instead of summing all points (cell phenotypes) within a given
radius, points falling within a narrow distance band are summed,
and the result is the dependence between two different points or
two different cell populations. If the g(r) is more than 1, then the
points or the correlation between the two cell groups at or around
a certain radius are more clustered and the g curve is far below the
Poisson curve process. If the g(r) is less than 1, then the points or
the correlation between the two cell groups are more dispersed
and the g curve is just below the Poisson curve process
(Figure 13). The g(r) can never be less than 0.

STATISTICAL ANALYSIS MODELING

As with any other statistical analysis, the data obtained from
spatial analysis can be used to perform univariate or multivariate
analysis with several metrics, and data may be associated with
clinicopathologic information in some meaningful way. A simple

mathematical model can be applied to investigate the effect of
different patterns of distribution for different cell phenotypes in
the images on clinical information. Researchers would like to
determine if the spatial distribution of certain cell phenotypes can
be influenced by the type of tumor and, moreover, as the ultimate
goal, if the cellular distribution pattern can predict response to
treatment. Several statistical methods, including some of the more
common methods such as generalized linear models, form the
basis of most supervised machine learning methods,
nonparametric testing, clustering methods, Bayesian methods,
penalized regression models, survival analysis, dimensionality
reduction, and others that can be applied to interpret the data
(Baddeley and Turner, 2005; Illian et al., 2008; Demidenko 2020).

Cluster Analysis Methods
To characterize the tumor microenvironment data obtained from
mIF imaging, researchers must identify different cell
subpopulations, and this can be achieved via cluster analysis.
Although cluster methods are not a measurement of distance and
are not frequently used to interpret the type of data presented in
this paper, cluster methods can be used for exploratory analysis of
the data, in which observations are divided into different groups
with standard features to ensure that the groups meaningfully
differ as much as possible.

The two main types of classification are K-means clustering
and hierarchical clustering. K-means clustering can be used when
the number of classes is fixed; this method is infrequently used in
mIF data. In contrast, hierarchical clustering can be used for an
unknown number of classes and is probably more appropriate for
classifying cell phenotypes.

K-means clustering comprises unsupervized learning methods
of vector quantization that have an iterative process in which data
are grouped into k predefined non-overlapping clusters or

FIGURE 8 |Graphics of nearest neighbor distance, K-function and empty-space F-function. (A)Distancematrix showing the concept of nearest neighbor distance,
used to determine the probability of encountering a cell of a specific phenotype [Xi, inflammatory cell (phenotype B)] within a certain radius (r) centered on another cell
phenotype [Xj, malignant cell (cell phenotype A)]. (B) Distance matrix showing the concept of the K-function to determine the intensity level (λ) of cells of a certain
phenotype within a certain radius (r) of another cell phenotype. In this example, the function is calculating the λ of cell phenotype B (Xj) from cell phenotype A (Xi) in a
point pattern. (C) Graphic representation of the empty-space F-function, which compares distances from an arbitrary point (x) to the nearest neighbor cell or point. The
graphics were generated using R studio software version 3.6.1.
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subgroups, making the inner points of the cluster as similar as
possible (Figure 14A). To maintain different clusters in distinct
spaces, K-means clustering allocates the data points to a cluster in
such a way that each observation belongs to the cluster with the
nearest mean (cluster center or centroid), so that the sum of the
squared distance between the cluster centroid and the data point
is minimized; at this position, the centroid of the cluster is the
arithmetic mean of the data points that are in the clusters
(Figure 14B). This results in a partitioning of the data space
into Voronoi cells (Schuffler et al., 2015). Less variation in the

cluster results in similar or homogeneous data points within the
cluster.

To identify the number of clusters in determinate data, we use the
elbow or the purpose method. In the elbow method, the sum of
squares and the number of clusters are plotted into a curve resembling
a human elbow; the point of the elbow in the curve indicates the
optimum number of clusters and the point after the elbow point
indicates the final value of the number of clusters (Figure 14C).

Although the K-means clustering algorithm can be used in
image segmentation, image compression, vector quantization,

FIGURE 9 | Representative graphs showing the G-function [G(r)] curve of point pattern distributions for cell phenotype A (malignant cells) to cell phenotype B
(T-cells) in a representative multiplex immunofluorescence image of lung adenocarcinoma. (A) Random point pattern distribution of cell phenotype A and B. (C) Graphic
representation of the image shown in A using the cross-G-function, showing the proximity of the G(r) curve to the theoretical estimate curve (Poisson curve),
characterizing a random or mixed cell distribution pattern of one cell population in relation to another cell population. (B) Unmixed point pattern distribution of cell
phenotype A and B. (D)Graphic representation of the image shown in B using the cross-G-function, showing the increased distance of the G(r) curve from the theoretical
estimate curve (Poisson curve), characterizing a clustering or unmixed cell distribution pattern of one cell population in relation to another cell population. The graphics
were generated using R studio software version 3.6.1.
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clustering analysis, machine learning, and other methods, the
algorithm requires prior specification of the number of cluster
centers, and if there are overlapping data the algorithm cannot
distinguish clusters very well. Depending on how the data are
presented, the results generated can be different every time the
algorithm is run, and the Euclidean distance can unequally weight
factors and can be used only if the meaning is defined. In contrast,
hierarchical clustering can be agglomerative when similar objects
are grouped into clusters and into a set of clusters, where each
cluster is distinct from the others and the objects within each
cluster are broadly similar to each other (Comin et al., 2014; Lin

et al., 2015) (Figure 15A). Divisive hierarchical clustering is done
by initially grouping all observations into one cluster and then
successively splitting these clusters, typically by sequentially
merging similar clusters (Figure 15A). The similarity here is
the distance among points, which can be computed inmany ways,
and this distance is the crucial element of discrimination.
However, in practice, divisive hierarchical clustering is rarely
done. Unfortunately, it is not possible to undo the previous steps
after applying the algorithm, and when the clusters have been
assigned, they can no longer be moved around. In addition, this
method is not suitable for large datasets, the order of the data

FIGURE 10 | Representative graphs showing the K-function [K(r)] curve of cellular distributions between two groups of cells from a representative point pattern of
multiplex immunofluorescence images of lung adenocarcinoma. (A)Random point pattern distribution of cell phenotype A and B. (C) K(r) curve extracted from the image
shown in A, showing the proximity of the curve to the theoretical estimate curve (Poisson curve), characterizing a random or mixed distribution pattern of the two cell
phenotypes. (B) Unmixed point pattern distribution of cell phenotype A and B. (D) K(r) curve extracted from the image shown in B, showing the increased distance
of the curve from the theoretical estimate curve (Poisson curve), characterizing a clustering or unmixed distribution pattern of cell phenotype A and B. The graphics were
generated using R studio software version 3.6.1.
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affects the results, and the method is very sensitive to data
outliers.

With any data, the efficiency of multivariate parameter
estimation and prediction must be increased by exploring
variation of the data, which is done using envelope methods.
Envelopes achieve efficiency gains by basing estimation on the
variation of the data. The Monte Carlo method (Figure 14D) is
a type of computational envelope algorithm that uses the
random repletion of the sampling to obtain numeric results
that optimize, integrate, and generate draws from a probability
distribution of the data (Sanchez et al., 2021). Monte Carlo tests

are related to the randomization tests commonly used in
nonparametric statistics.

Dimensional Reduction Methods for Data
Visualization
Because we generate highly multiparametric single-cell data using
mIF, statistical methods can be used for better visualization and
dimensional reduction, providing a location for each data point
on a two- or three-dimensional map. This type of visualization
through dimensional reduction algorithms tends to fall into one

FIGURE 11 | Representative graphs showing the J-function [J(r)] for two different cell populations, illustrating the cellular distribution between the two groups of
cells using a representative point pattern in multiplex immunofluorescence images of lung adenocarcinoma. (A) Random point pattern distribution of cell phenotype A
and B. (C) Graphic representation of the J(r) curve showing its lineup with the theoretical estimate (Poisson line), characterizing a random or mixed pattern of one cell
population in relation to another cell population. (B) Unmixed point pattern distribution of cell phenotype A and B. (D) Graphic representation of the J(r) curve
showing highly increased distance above the theoretical estimate (Poisson line), characterizing a clustering or unmixed pattern of one cell population in relation to another
cell population. The graphics were generated using R studio software version 3.6.1.
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of two overall categories, algorithms that seek to preserve the
distance structure within the data and algorithms that favor the
preservation of local distances over global distance; these
algorithms are applied for cell phenotype data visualization.
Algorithms such as principal component analysis (PCA),
multidimensional scaling, and Sammon mapping fall into the
first category, and t-distributed stochastic neighbor embedding
(t-SNE) and uniform manifold approximation and projection
(UMAP), as well as others, fall into the second category (Tsogo
et al., 2000).

PCA is an unsupervized algorithm that can create linear
combinations of the original features, and then the new

features are orthogonal, which means that they are
uncorrelated (Rohde, 2002). Because the reduction of the data
is dependent on scale, the dataset must be normalized before this
technique can be performed (Rohde, 2002). Several algorithm
variations, such as kernel PCA or sparse PCA, can be applied to
compare the performance of the data, but an important
disadvantage is the necessity of manually setting or tuning the
threshold for cumulative explained variance.

Multidimensional scaling is another reduction method
frequently used to translate information about pairwise
distances obtained from data among a set number of points
mapped into an abstract Cartesian space (Jackle et al., 2016). This

FIGURE 12 | Representative graphs showing the L-function [L(r)] for two different cellular distribution patterns between two group of cells from a representative
point pattern in multiplex immunofluorescence images of lung adenocarcinoma. (A) Random point pattern distribution of cell phenotype A and B. (C) Graphic
representation of the L(r) line showing its proximity to the theoretical estimate (Poisson line), characterizing a random or mixed pattern of one cell phenotype in relation to
another cell phenotype. (B)Unmixed point pattern distribution of cell phenotype A and B. (D)Graphic representation of the L(r) line showing that it is located far from
the theoretical estimate (Poisson line), characterizing a clustering or unmixed pattern of one cell phenotype in relation to another cell phenotype. The graphics were
generated using R studio software version 3.6.1.
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method allows construction of a distance matrix with the
distances between each pair of objects in a set placing each
object into a dimensional space, providing a point pattern to
be visualized on a scatter plot.

Sammon mapping is another algorithm used in exploratory
analysis. This method translates a map with a high-dimensional
space to a space of lower dimensionality by trying to preserve the
structure of inter-point distances from the high-dimensional
space in the lower-dimension projection. Sammon mapping is
considered a nonlinear approach because the mapping cannot be
represented as a linear combination of the original variables, as is

possible in techniques such as PCA, and this also makes Sammon
mapping more difficult to use for classification applications.

For high-dimensional data such as that obtained by image
analysis, a reduction and visualization can be made through t-SNE
or UMAP reduction analysis (Wu et al., 2019). t-SNE is a statistical
method for visualizing high-dimensional data by giving each data
point a location in a two- or three-dimensional map. It is based on
SNE, originally developed by Sam Roweis and Geoffrey Hinton
(Van der Maaten and Rey Hinton, 2008). t-SNE constructs a
probability distribution over pairs of high-dimensional objects
in such a way that similar objects are assigned a higher

FIGURE 13 | Representative graphs showing the pair correlation function [g(r)] for two different cellular distribution patterns between two group of cells from a
representative point pattern in multiplex immunofluorescence images of lung adenocarcinoma. (A) Random point pattern distribution of cell phenotype A and B. (C)
Graphic representation of the g(r) curve showing a line forming downward from the theoretical estimate (Poisson line), characterizing a random or mixed pattern of one
cell phenotype in relation to another cell phenotype. (B) Unmixed point pattern distribution of cell phenotype A and B. (D) Graphic representation of the g(r) curve
showing increased distance below the theoretical estimate (Poisson line), characterizing a clustering or unmixed pattern of one cell phenotype in relation to another cell
phenotype. The graphics were generated using R studio software version 3.6.1.
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probability while dissimilar points are assigned a lower probability
using the Euclidian distance between objects (Figures 15C,D). The
visual clusters often require good understanding because they can
be influenced by the parameterization, forcing exploration of
different parameters to validate the results. Although t-SNE is
incredibly flexible and can often find structure where other
dimensionality-reduction algorithms cannot, that very flexibility
makes t-SNE tricky to interpret.

UMAP is another dimension reduction technique that can
be used for data visualization similar to that described for
t-SNE, but UMAP can be applied for general nonlinear
dimension reduction (Becht et al., 2018). UMAP is based on
distances between the observations obtained by the data rather
than the source features, and it does not have an equivalent of
the factor loadings that are required for linear techniques such
as PCA. Importantly, as a way to improve the computational

FIGURE 14 | K-means unsupervized clustering, elbow, and envelope applied in multiplex immunofluorescence image data. (A) K-means unsupervized clustering
showing ten groups (represented by the colored points) of non-overlapping clusters in which the inner points of the cluster are as similar as possible within the image. (B)
Different clusters are maintained in different spaces, and the center (+) of each cluster is located such that it is the arithmetic mean of the data points in the cluster. (C)
Graphic representation of the elbow method, showing the sum of squares and the number of clusters plotted into a curve. The point of the elbow in the curve
indicates the optimum number of clusters. (D) Graphic representation of an envelope to estimate the variation of data to achieve efficiency gains, showing the minimal
variation of the envelope related to the random process curve from a representative sample of multiplex immunofluorescence data points. The graphics were generated
using R studio software version 3.6.1.
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efficiency of the UMAP algorithm, several approximations can
be made and small data sizes (less than 500 samples) can be
analyzed (Wu et al., 2019).

In summary, spatial distance analysis methods can be applied
to analyze the spatial distribution of cells determined by mIF
data. There are several methods to analyze the distribution of
different cell phenotypes, but the most simple approach is a
combination of cell phenotype compartmentalization at a tissue
level with nearest neighbor distance measurement through the
cross-G- and K-function at a cellular level to identify patterns of
distribution and interaction between cell phenotypes. Although

cluster analysis and visualization methods are important in
exploring mIF data, overall no single cluster or visualization
method described here outperforms another in terms of
identifying the characteristics of the data, and for this reason
researchers can choose the most convenient method for
interpreting their results. Given this situation, approaches for
cellular cluster identification should allow subsequent in-depth
analysis to identify new clusters of special cell phenotypes and
permit interpretation of features that contribute to the analysis,
thus effectively answering the research question or providing a
potential clinical application.

FIGURE 15 | Representative schema of hierarchical and divisive clustering to agglomerate similar objects into groups (A). Uniform manifold approximation and
projection (UMAP) showing different cell population distribution patterns extracted from two different lung adenocarcinoma cases analyzed with multiplex
immunofluorescence against malignant cells [cytokeratin (CK)+] and CD3+, CD4+, CD8+, PD-1+, PD-L1+, and CD68+ antibodies (B, C). The graphics B and C were
generated using R studio software version 3.6.1.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 66834016

Parra Cellular Spatial Distribution Analysis

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


AUTHOR CONTRIBUTIONS

EP conceived the idea and the theme developed in this
manuscript.

FUNDING

This study was supported in part by the scientific and financial
support for the CIMAC-CIDC Network provided through the
National Cancer Institute (NCI) Cooperative Agreement
U24CA224285 of The University of Texas MD Anderson
Cancer Center CIMAC and for the Translational Molecular
Pathology Immunoprofiling Laboratory, as well as by National
Institutes of Health/NCI through Cancer Center Support Grant
P30CA016672 (Institutional Tissue Bank) and SPORE grant

5P50CA070907-18 from the Cancer Prevention and Research
Institute of Texas through MIRA RP160688.

ACKNOWLEDGMENTS

The author acknowledges the Department of Translational
Molecular Pathology at The University of Texas MD
Anderson Cancer Center and the immunoprofiling
laboratory members in this department. I also thank Jose
de Jesus Martinez for guidance and for teaching me to apply
several spatial mathematical functions for image analysis, as
well as Don Norwood and Erica Goodoff from Editing
Services, Research Medical Library at MD Anderson for
editing this article.

REFERENCES

Baddeley, A., Rubak, E., and Turner, R. (2015). Spatial Point Patterns: Methodology
and Applications with R. Chapman and Hall/CRC Press. doi:10.1201/b19708

Baddeley, A., and Turner, R. (2005). ’spatstat: An R Package for Analyzing Spatial
Point Patterns. J. Stat. Softw. 12, 1–42. doi:10.18637/jss.v012.i06

Barua, S., Solis, L., Parra, E. R., Uraoka, N., Jiang, M., Wang, H., et al. (2018). A
Functional Spatial Analysis Platform for Discovery of Immunological
Interactions Predictive of Low-Grade to High-Grade Transition of
Pancreatic Intraductal Papillary Mucinous Neoplasms. Cancer Inform. 17,
1176935118782880. doi:10.1177/1176935118782880

Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I. W. H., Ng, L. G., et al.
(2018). ’Dimensionality Reduction for Visualizing Single-Cell Data Using
UMAP. Nat. Biotechnol. 37, 38–44. doi:10.1038/nbt.4314

Bremnes, R. M., Dønnem, T., Al-Saad, S., Al-Shibli, K., Andersen, S., Sirera, R.,
et al. (2011). The Role of Tumor Stroma in Cancer Progression and Prognosis:
Emphasis on Carcinoma-Associated Fibroblasts and Non-small Cell Lung
Cancer. J. Thorac. Oncol. 6, 209–217. doi:10.1097/jto.0b013e3181f8a1bd

Catacchio, I., Silvestris, N., Scarpi, E., Schirosi, L., Scattone, A., and Mangia, A.
(2019). Intratumoral, rather Than Stromal, CD8+ T Cells Could Be a Potential
Negative Prognostic Marker in Invasive Breast Cancer Patients. Transl. Oncol.
12, 585–595. doi:10.1016/j.tranon.2018.12.005

Comin, C. H., Santos, J. R., Corradini, D., Morrison, W., Curme, C., Rosene, D. L.,
et al. (2014). ’Statistical Physics Approach to Quantifying Differences in
Myelinated Nerve Fibers. Sci. Rep. 4, 4511. doi:10.1038/srep04511

Cooper, Z. A., Reuben, A., Spencer, C. N., Prieto, P. A., Austin-Breneman, J. L.,
Jiang, H., et al. (2016). Distinct Clinical Patterns and Immune Infiltrates Are
Observed at Time of Progression on Targeted Therapy versus Immune
Checkpoint Blockade for Melanoma. Oncoimmunology 5, e1136044. doi:10.
1080/2162402x.2015.1136044

Demidenko, E. (2020). Advanced Statistics with Applications in R. First edition.
John Wiley & Sons IncWiley Series in Probability and Statistics.

Dieu-Nosjean, M.-C., Goc, J., Giraldo, N. A., Sautès-Fridman, C., and Fridman, W.
H. (2014). Tertiary Lymphoid Structures in Cancer and beyond. Trends
Immunol. 35, 571–580. doi:10.1016/j.it.2014.09.006

Feldmeyer, L., Hudgens, C. W., Ray-Lyons, G., Nagarajan, P., Aung, P. P., Curry,
J. L., et al. (2016). Density, Distribution, and Composition of Immune Infiltrates
Correlate with Survival in Merkel Cell Carcinoma. Clin. Cancer Res. 22,
5553–5563. doi:10.1158/1078-0432.ccr-16-0392

French, J. D., Weber, Z. J., Fretwell, D. L., Said, S., Klopper, J. P., and Haugen, B. R.
(2010). Tumor-Associated Lymphocytes and Increased FoxP3+ Regulatory
T Cell Frequency Correlate with More Aggressive Papillary Thyroid Cancer.
J. Clin. Endocrinol. Metab. 95, 2325–2333. doi:10.1210/jc.2009-2564

Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pages,
C., et al. (2006). Type, Density, and Location of Immune Cells within Human

Colorectal Tumors Predict Clinical Outcome. Science 313, 1960–1964. doi:10.
1126/science.1129139

Gavagnin, E., Owen, J. P., and Yates, C. A. (2018). ’Pair Correlation Functions for
Identifying Spatial Correlation in Discrete Domains. Phys. Rev. E 97, 062104.
doi:10.1103/physreve.97.062104

Gentles, A. J., Newman, A. M., Liu, C. L., Bratman, S. V., Feng, W., Kim, D., et al.
(2015). The Prognostic Landscape of Genes and Infiltrating Immune Cells
across Human Cancers. Nat. Med. 21, 938–945. doi:10.1038/nm.3909

Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. (2008). Statistical Analysis and
Modelling of Spatial Point Patterns. Hoboken, NJ: John Wiley & Sons. doi:10.
1002/9780470725160

Jackle, D., Fischer, F., Schreck, T., and Keim, D. A. (2016). Temporal MDS Plots for
Analysis of Multivariate Data. IEEE Trans. Vis. Comput. Graphics 22, 141–150.
doi:10.1109/tvcg.2015.2467553

Kather, J. N., Marx, A., Reyes-Aldasoro, C. C., Schad, L. R., Zöllner, F. G., andWeis,
C.-A. (2015). Continuous Representation of Tumor Microvessel Density and
Detection of Angiogenic Hotspots in Histological Whole-Slide Images.
Oncotarget 6, 19163–19176. doi:10.18632/oncotarget.4383

Lagache, T., Lang, G., Sauvonnet, N., and Olivo-Marin, J. C. (2013). ’Analysis of the
Spatial Organization of Molecules with Robust Statistics. PLoS One 8, e80914.
doi:10.1371/journal.pone.0080914

Lin, J. R., Fallahi-Sichani, M., and Sorger, P. K. (2015). ’Highly Multiplexed
Imaging of Single Cells Using a High-Throughput Cyclic
Immunofluorescence Method. Nat. Commun. 6, 8390. doi:10.1038/
ncomms9390

Masugi, Y., Abe, T., Ueno, A., Fujii-Nishimura, Y., Ojima, H., Endo, Y., et al.
(2019). Characterization of Spatial Distribution of Tumor-Infiltrating CD8+
T Cells Refines Their Prognostic Utility for Pancreatic Cancer Survival. Mod.
Pathol. 32, 1495–1507. doi:10.1038/s41379-019-0291-z

Nazemalhosseini-Mojarad, E., Mohammadpour, S., Torshizi Esafahani, A., Gharib,
E., Larki, P., Moradi, A., et al. (2019). Intratumoral Infiltrating Lymphocytes
Correlate with Improved Survival in Colorectal Cancer Patients: Independent
of Oncogenetic Features. J. Cel Physiol 234, 4768–4777. doi:10.1002/jcp.27273

Parra, E. R., Behrens, C., Rodriguez-Canales, J., Lin, H., Mino, B., Blando, J., et al.
(2016). Image Analysis-Based Assessment of PD-L1 and Tumor-Associated
Immune Cells Density Supports Distinct Intratumoral Microenvironment
Groups in Non-small Cell Lung Carcinoma Patients. Clin. Cancer Res. 22,
6278–6289. doi:10.1158/1078-0432.ccr-15-2443

Parra, E. R., Ferrufino-Schmidt, M. C., Tamegnon, A., Zhang, J., Solis, L., Jiang, M.,
et al. (2021). ’Immuno-profiling and Cellular Spatial Analysis Using Five
Immune Oncology Multiplex Immunofluorescence Panels for Paraffin
Tumor Tissue. Sci. Rep. 11, 8511. doi:10.1038/s41598-021-88156-0

Parra, E. R., Jiang, M., Solis, L., Mino, B., Laberiano, C., Hernandez, S., et al. (2020).
Procedural Requirements and Recommendations for Multiplex
Immunofluorescence Tyramide Signal Amplification Assays to Support
Translational Oncology Studies. Cancers 12, 255. doi:10.3390/cancers12020255

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 66834017

Parra Cellular Spatial Distribution Analysis

https://doi.org/10.1201/b19708
https://doi.org/10.18637/jss.v012.i06
https://doi.org/10.1177/1176935118782880
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1097/jto.0b013e3181f8a1bd
https://doi.org/10.1016/j.tranon.2018.12.005
https://doi.org/10.1038/srep04511
https://doi.org/10.1080/2162402x.2015.1136044
https://doi.org/10.1080/2162402x.2015.1136044
https://doi.org/10.1016/j.it.2014.09.006
https://doi.org/10.1158/1078-0432.ccr-16-0392
https://doi.org/10.1210/jc.2009-2564
https://doi.org/10.1126/science.1129139
https://doi.org/10.1126/science.1129139
https://doi.org/10.1103/physreve.97.062104
https://doi.org/10.1038/nm.3909
https://doi.org/10.1002/9780470725160
https://doi.org/10.1002/9780470725160
https://doi.org/10.1109/tvcg.2015.2467553
https://doi.org/10.18632/oncotarget.4383
https://doi.org/10.1371/journal.pone.0080914
https://doi.org/10.1038/ncomms9390
https://doi.org/10.1038/ncomms9390
https://doi.org/10.1038/s41379-019-0291-z
https://doi.org/10.1002/jcp.27273
https://doi.org/10.1158/1078-0432.ccr-15-2443
https://doi.org/10.1038/s41598-021-88156-0
https://doi.org/10.3390/cancers12020255
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Parra, E. R., Villalobos, P., Behrens, C., Jiang, M., Pataer, A., Swisher, S. G., et al.
(2018). ’Effect of Neoadjuvant Chemotherapy on the Immune
Microenvironment in Non-small Cell Lung Carcinomas as Determined by
Multiplex Immunofluorescence and Image Analysis Approaches.
J. Immunother. Cancer 6, 48. doi:10.1186/s40425-018-0368-0

Parra, E. R., Zhai, J., Tamegnon, A., Zhou, N., Pandurengan, R. K., Barreto, C., et al.
(2021). ’Identification of Distinct Immune Landscapes Using an Automated
Nine-Color Multiplex Immunofluorescence Staining Panel and Image Analysis
in Paraffin Tumor Tissues. Sci. Rep. 11, 4530. doi:10.1038/s41598-021-83858-x

Robinson, M. H., Vasquez, J., Kaushal, A., MacDonald, T. J., Velazquez Vega, J. E.,
Schniederjan, M., et al. (2020). ’Subtype and Grade-dependent Spatial
Heterogeneity of T-Cell Infiltration in Pediatric Glioma. J. Immunother.
Cancer 8, e001066. doi:10.1136/jitc-2020-001066

Rohde, D. L. T. (2002). Methods for Binary Multidimensional Scaling. Neural
Comput. 14, 1195–1232. doi:10.1162/089976602753633457

Sanchez, K., Kim, I., Chun, B., Pucilowska, J., Redmond, W. L., Urba, W. J., et al.
(2021). Multiplex Immunofluorescence to Measure Dynamic Changes in
Tumor-Infiltrating Lymphocytes and PD-L1 in Early-Stage Breast Cancer.
Breast Cancer Res. 23, 2. doi:10.1186/s13058-020-01378-4

Schüffler, P. J., Schapiro, D., Giesen, C., Wang, H. A. O., Bodenmiller, B., and
Buhmann, J. M. (2015). Automatic Single Cell Segmentation on Highly
Multiplexed Tissue Images. Cytometry 87, 936–942. doi:10.1002/cyto.a.22702

Stein, A. V., Dislich, B., Blank, A., Guldener, L., Kröll, D., Seiler, C. A., et al. (2017).
High Intratumoural but Not Peritumoural Inflammatory Host Response Is
Associated with Better Prognosis in Primary Resected Oesophageal
Adenocarcinomas. Pathology 49, 30–37. doi:10.1016/j.pathol.2016.10.005

Sugie, T., Sato, E., Miyashita, M., Yamaguchi, R., Sakatani, T., Kozuka, Y., et al.
(2020). Multispectral Quantitative Immunohistochemical Analysis of Tumor-
Infiltrating Lymphocytes in Relation to Programmed Death-Ligand 1
Expression in Triple-Negative Breast Cancer. Breast Cancer 27, 519–526.
doi:10.1007/s12282-020-01110-2

Tsogo, L., Masson, M. H., and Bardot, A. (2000). Multidimensional Scaling
Methods for Many-Object Sets: A Review. Multivariate Behav. Res. 35,
307–319. doi:10.1207/s15327906mbr3503_02

Tsujikawa, T., Mitsuda, J., Ogi, H., Miyagawa-Hayashino, A., Konishi, E., Itoh, K.,
et al. (2020). Prognostic Significance of Spatial Immune Profiles in Human Solid
Cancers. Cancer Sci. 111, 3426–3434. doi:10.1111/cas.14591

Tuminello, S., Veluswamy, R., Lieberman-Cribbin, W., Gnjatic, S., Petralia, F.,
Wang, P., et al. (2019). Prognostic Value of Immune Cells in the Tumor
Microenvironment of Early-Stage Lung Cancer: a Meta-Analysis. Oncotarget
10, 7142–7155. doi:10.18632/oncotarget.27392

Van der Maaten, L., and Rey Hinton, G. (2008). ’Visualizing Data Using T-SNE.
J. Machine Learn. Res. 9, 2579–2605.

Wang, B., Wu, S., Zeng, H., Liu, Z., Dong, W., He, W., et al. (2015). CD103 +
Tumor Infiltrating Lymphocytes Predict a Favorable Prognosis in Urothelial
Cell Carcinoma of the Bladder. J. Urol. 194, 556–562. doi:10.1016/j.juro.2015.
02.2941

Wang, M., Huang, Y. K., Kong, J. C., Sun, Y., Tantalo, D. G., Yeang, H. X. A., et al.
(2020). High-dimensional Analyses Reveal a Distinct Role of T-cell Subsets in
the Immune Microenvironment of Gastric Cancer. Clin. Transl Immunol. 9,
e1127. doi:10.1002/cti2.1127

Wu, D., Sheng, J. Y. P., Su-En, G. T., Chevrier, M., Hua, J., Chen, J., et al. (2019).
Comparison between UMAP and T-SNE for Multiplex-Immunofluorescence
Derived Single-Cell Data from Tissue Sections. BioRxiv. doi:10.7554/elife.
49599.023

Yu, C. C., Wortman, J. C., He, T. F., Solomon, S., Zhang, R. Z., Rosario, A., et al.
(2020). Physics Approaches to the Spatial Distribution of Immune Cells in
Tumors. Rep. Prog. Phys. 84, 022601. doi:10.1088/1361-6633/abcd7b

Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M.,
Regnani, G., et al. (2003). Intratumoral T Cells, Recurrence, and Survival in
Epithelial Ovarian Cancer. N. Engl. J. Med. 348, 203–213. doi:10.1056/
nejmoa020177

Zheng, X., Weigert, A., Reu, S., Guenther, S., Mansouri, S., Bassaly, B., et al. (2020).
Spatial Density and Distribution of Tumor-Associated Macrophages Predict
Survival in Non-small Cell Lung Carcinoma. Cancer Res. 80, 4414–4425. doi:10.
1158/0008-5472.can-20-0069

Zhou, C., Li, J., Wu, Y., Diao, P., Yang, J., and Cheng, J. (2019). High Density
of Intratumor CD45RO+ Memory Tumor-Infiltrating Lymphocytes
Predicts Favorable Prognosis in Patients with Oral Squamous Cell
Carcinoma. J. Oral Maxillofac Surg. 77, 536–545. doi:10.1016/j.joms.
2018.09.039

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Parra. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 66834018

Parra Cellular Spatial Distribution Analysis

https://doi.org/10.1186/s40425-018-0368-0
https://doi.org/10.1038/s41598-021-83858-x
https://doi.org/10.1136/jitc-2020-001066
https://doi.org/10.1162/089976602753633457
https://doi.org/10.1186/s13058-020-01378-4
https://doi.org/10.1002/cyto.a.22702
https://doi.org/10.1016/j.pathol.2016.10.005
https://doi.org/10.1007/s12282-020-01110-2
https://doi.org/10.1207/s15327906mbr3503_02
https://doi.org/10.1111/cas.14591
https://doi.org/10.18632/oncotarget.27392
https://doi.org/10.1016/j.juro.2015.02.2941
https://doi.org/10.1016/j.juro.2015.02.2941
https://doi.org/10.1002/cti2.1127
https://doi.org/10.7554/elife.49599.023
https://doi.org/10.7554/elife.49599.023
https://doi.org/10.1088/1361-6633/abcd7b
https://doi.org/10.1056/nejmoa020177
https://doi.org/10.1056/nejmoa020177
https://doi.org/10.1158/0008-5472.can-20-0069
https://doi.org/10.1158/0008-5472.can-20-0069
https://doi.org/10.1016/j.joms.2018.09.039
https://doi.org/10.1016/j.joms.2018.09.039
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Methods to Determine and Analyze the Cellular Spatial Distribution Extracted From Multiplex Immunofluorescence Data to Unde ...
	Introduction
	Spatial Cellular Distribution
	Geographic Cell Distribution in Tumors
	Spatial Distribution at the Single-Cell Level

	Functional Spatial Distribution Metrics
	Spatial Descriptive Functions
	Distance Matrix
	Nearest Neighbor
	Correlation Functions
	Complementary Functions
	Statistical Analysis Modeling
	Cluster Analysis Methods
	Dimensional Reduction Methods for Data Visualization

	Author Contributions
	Funding
	Acknowledgments
	References


