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1  | BACKGROUND

Myelodysplastic syndromes (MDS) are a heterogeneous clonal hae-
matopoietic disease of haematopoietic stem cells (HSCs) and bone 
marrow (BM) microenvironment1 that mainly occurs in the elderly. 
MDS is clinical featured by ineffective and dysplastic haematopoiesis, 

peripheral blood cytopenia and potential of progression into acute 
myeloid leukaemia (AML) in a third of patients.2 MDS was defined 
by genetic features, morphologic and clinical alterations shared by 
related myeloid diseases. The pathogenesis of MDS involves gene 
mutations affecting proliferation, epigenetic modifications, exces-
sive apoptosis of maturing cells, chromosomal abnormalities and a 
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Abstract
Myelodysplastic syndrome (MDS) is clonal disease featured by ineffective haemat-
opoiesis and potential progression into acute myeloid leukaemia (AML). At present, 
the risk stratification and prognosis of MDS need to be further optimized. A prog-
nostic model was constructed by the least absolute shrinkage and selection opera-
tor (LASSO) regression analysis for MDS patients based on the identified metabolic 
gene panel in training cohort, followed by external validation in an independent co-
hort. The patients with lower risk had better prognosis than patients with higher 
risk. The constructed model was verified as an independent prognostic factor for 
MDS patients with hazard ratios of 3.721 (1.814-7.630) and 2.047 (1.013-4.138) in 
the training cohort and validation cohort, respectively. The AUC of 3-year overall 
survival was 0.846 and 0.743 in the training cohort and validation cohort, respec-
tively. The high-risk score was significantly related to other clinical prognostic char-
acteristics, including higher bone marrow blast cells and lower absolute neutrophil 
count. Moreover, gene set enrichment analyses (GSEA) showed several significantly 
enriched pathways, with potential indication of the pathogenesis. In this study, we 
identified a novel stable metabolic panel, which might not only reveal the dysregu-
lated metabolic microenvironment, but can be used to predict the prognosis of MDS.
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pro-inflammatory of bone marrow microenvironment and so on.3,4 
At present, the MDS Revised International Prognostic Scoring 
System (IPSS-R) is one of the gold standards for risk stratification 
and prognostic assessment in MDS patients, in which, patients are 
categorized into five well-defined risk groups according to platelet 
count, haemoglobin levels, absolute neutrophil count (ANC), marrow 
blast percentage and cytogenetics.5,6 Although patients in interme-
diate-risk group are reported to have an intermediary survival, it is 
possible that the disease course might vary, with variable outcome 
actually.7 In the meantime, MDS lacks a diversified prognostic clas-
sification system at present. Therefore, identification of more diver-
sified prognostic models would better guide therapeutic decisions, 
further assisting to design more perfect clinical trials.

Furthermore, MDS is a stem cell-derived disorder affecting mul-
tiple lineages.8 MDS stem cells with CD123+ have been reported to 
have higher levels of protein synthesis and change cellular energy 
metabolism,9 which are similar with AML.10,11 The anti-leukaemia 
mechanism of B cell lymphoma 2 (BCL-2) inhibitor (venetoclax) com-
bined with demethylated drugs (azacytidine) is the eradication of 
LSCs by disrupting the tricarboxylic acid (TCA) cycle for further and 
durable remissions for older AML patients.12 Moreover, isocitrate 
dehydrogenase 2 (IDH2) enzyme inhibitor has been approved by 
US Food and Drug Administration (FDA) in 2017 for refractory or 
relapsed AML patients by targeting tumour energy metabolism for. 
BM microenvironment is vitally involved in the pathogenesis of MDS 
according to the ‘seed soil’ theory, which consists of cellular compo-
nents (haematopoietic cells and stromal cells at various stages) and 
non-cellular components (metabolites, cytokines, hormones and an-
giogenic factors).13 Leukaemia cells use oxidative phosphorylation for 
survival, while HSCs depend on glycolysis for energy production.12 
Leukaemia cells are likely to uptake mitochondria from stromal cells 
by endocytosis.14 As a consequence, metabolism plays key roles for 
non-cellular components. Accumulative studies have revealed that 
the relationship between pathogenesis, treatment and metabolism of 
MDS recently. Therefore, we established a prognostic panel of met-
abolic gene by downloading data from Gene Expression Omnibus 
(GEO) datasets in the training cohort, which was further validated 
in an independent external cohort. In conclusion, we constructed a 
metabolic panel to predict the prognosis of MDS and revealed that 
metabolism played significant roles in the prognosis of MDS.

2  | MATERIAL S AND METHODS

2.1 | Data collection

The mRNA expression profiles and relevant clinical information 
were downloaded from GSE5883115 and GSE11 492216 datasets 
from the GEO database. The metabolic gene sets utilized as the 
candidate metabolic gene lists were retrieved from ‘c2.cp.kegg.
v7.0.symbols’ in gene set enrichment analysis (GSEA). In addition, 
perl scripts were used to retrieve metabolic genes for further 
analysis.

2.2 | Identification of differentially expressed (DE) 
mRNA in MDS

Transcripts per million normalization and log2 transformation were 
performed on the expression profiles. DE analysis was conducted 
on 861 annotated metabolic-related genes with protein coding func-
tions by the Limma.17 The expression pattern of metabolic genes 
was examined in training cohort. Genes were subjected to prognos-
tic analysis in the case of consistent expression pattern in training 
cohort and independent external cohort.

2.3 | Establishment of the prognostic metabolic 
gene panel

GSE53381 dataset was used as the training cohort to construct 
metabolic risk panel. The LASSO regression penalizes the data fit-
ting criteria in a way that eliminates less informative predictor var-
iables to yield simpler and more interpretable models. Therefore, 
the metabolic panel was constructed according to the penalized 
maximum likelihood estimator with 1000-fold cross-validation. 
The least criteria of the penalized maximum likelihood estimator 
were employed to determine the optimal values of penalty param-
eter λ. In addition, GSE11 4922 dataset served as an independent 
external validation cohort. The unified formula determined in the 
training cohort was used to generate the metabolic risk score in 
every patient, who were further categorized into high- and low-
risk groups according to the median metabolic risk score.

2.4 | Independence of the prognostic panel

Univariate and multivariate forwarding stepwise Cox regression 
analyses were conducted in both training and validation cohorts. A 
P < .05 indicated statistical significance.

2.5 | GSEA

GSEA v4.0.2 software (http://softw are.broad insti tute.org/gsea/
login.jsp) was utilized to recognize the potential biological pathways 
between high- and low-risk groups by using ‘c2.cp.kegg.v7.0.symbols’ 
gene sets. NOM P-value < .05 indicated statistical significance and 
was further exhibited.

2.6 | Statistical analysis

Time-dependent receiver operating characteristic (ROC) curve was 
performed to assess the predictive performance of metabolic signa-
ture in the raining and validating cohorts, followed by calculation of 
area under the curve (AUC) using survival ROC package. Overall sur-
vival (OS) was defined as the primary outcome, which was calculated 
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as the date of the study entry until death due to all causes. Kaplan-
Meier curve was plotted by ‘survival’ package, followed by com-
parison by log-rank test. Univariable and multivariable Cox analyses 
were used to evaluate the prognostic performance of clinical and 

genetic features. Categorical variables were compared by chi-square 
test or Fisher's exact test. SPSS® version 24.0 (IBM) and R software 
(version 3.6.0) were used for statistical analysis. A two sided P < .05 
indicated statistical significance.

TA B L E  1   The detailed patient characteristics of the two included cohorts and the correlation between clinicopathological features and 
metabolic risk level in training cohort and external validation cohort in MDS

Characteristics Training cohort P-value Validating cohort
P-
value

Risk High risk Low risk  High risk Low risk  

Patient 59 60  50 32  

Gender

Male 47 (79.66%) 31 (51.67%) <.01 30 (60%) 17 (53.13%) .54

Age

>65 y 34 (57.63%) 29 (48.33%) .31 28 (56%) 18 (56.25%) .98

WHO_category

AML-MDS 2 (3.39%) 2 (3.33%)     

CMML 2 (3.39%) 3 (5.00%)  3 (6%) 1 (3.13%)  

RA 1 (1.70%) 6 (10%)  9 (18%) 10 (31.25%)  

RAEB 8 (13.56%) 4 (6.67%)     

RAEB 1 8 (13.56%) 6 (10%)  12 (24%) 4 (12.5%)  

RAEB 2 17 (28.81%) /  9 (18%) 5 (15.63%)  

RARS-T / 4 (6.67%)     

RARS 4 (6.78%) 7 (11.67%)  17 (34%) 12 (37.50%)  

RCMD 9 (15.25%) 11 (18.33%)     

RCMD-RS 8 (13.56%) 11 (18.33%)     

5q- / 6 (10%)     

Karyotype

Normal 15 (25.42%) 19 (31.67%) .45 32 (64%) 18 (56.25%) .48

Non-normal 44 (74.58%) 41 (68.33%)  18 (36%) 14 (43.75%)  

IPSS

High 5 (8.47%) 1 (1.67%) <.01 1 (2%) 2 (6.25%) .33

int-1 21 (35.60%) 29 (48.33%)  21 (42%) 15 (46.89%)  

int-2 16 (27.12%) 4 (6.67%)  11 (22%) 2 (6.25%)  

Low 12 (20.34%) 22 (36.67%)  14 (28%) 12 (37.50%)  

Transfusion dependent

Dependent 30 (50.85%) 18 (30.00%) .06 18 (36%) 7 (21.88%) .25

Independent 28 (47.46%) 35 (58.33%)  31 (62%) 22 (68.75%)  

Haemoglobin (mg/dL)

≤80 9 (15.25%) 10 (16.67%) .77 10 (20%) 2 (6.25%) .1

>80 49 (83.05%) 47 (78.33)  39 (78%) 28 (87.5%)  

Blasts cells in BM (%)

≤10 35 (59.32%) 45 (75.00%) .03 40 (80%) 25 (78.13%) .71

<10<20 17 (28.81%) 8 (13.33%)  10 (20%) 5 (15.63%)  

Platelet count (×109/L)

≤40 8 (13.56%) 3 (5.00%) .12 5 (10%) 1 (3.13%) .27

>40 50 (84.75%) 54 (90%)  45 (90%) 29 (90.63%)  

Absoulte neutrophile count (×109/L)

≤1.8 33 (55.93%) 22 (36.67%) .05 25 (50.00%) 8 (25.00%) .03

 23 (38.98%) 33 (55.00%)  23 (46.00%) 22 (68.75%)  
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3  | RESULT

3.1 | Patient characteristics

Two MDS cohorts involving of 258 patients with gene expression 
data and clinical data were utilized in the analysis. In brief, GSE58831 

dataset was used as the training cohort to establish the prognostic met-
abolic panel, and patients in GSE11 4922 cohort served as the external 
validation cohort for metabolic panel. The median age of patients from 
GSE58831 and GSE11 4922 cohorts was 65.23 [range: 19-87] years 
and 65.5 [range: 26-87] years, respectively. The detailed patient char-
acteristics of the two included cohorts were shown in Table 1.

F I G U R E  1   Identification of metabolic gene panel (A) Heat map of differential expressed genes (DEGs) between MDS patients and 
healthy individuals (Padj < 0.05). B, Volcano plot of DEGs. C, Univariate Cox regression identified 22 survival-related genes
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3.2 | Establishment and validation of the prognostic 
metabolic gene panel

Among the 861 metabolic genes subjected to DE analysis by the 
Limma, 140 genes were differently expressed between healthy 
sample and MDS sample (Figure 1A,B). Further, the prognostic 
values of these 140 genes were analysed via Univariate Cox re-
gression analysis. Ultimately, 22 genes that were differentially 

expressed as well as survival-related (P < .05) were identified. 
(Figure 1C). Afterwards, the Lasso-penalized Cox analysis regres-
sion was used to select the most useful predictive genes from the 
22 genes. A penalized maximum likelihood estimator was per-
formed with 1000 bootstrap replicates. The regularization param-
eter lambda was used to identify the optimal weighting coefficients 
via the least criteria (Figure 2A,B). Afterwards, 15 metabolic genes 
were selected and the coefficient was estimated to construct the 

F I G U R E  2   Construction of the prognostic model for MDS (A) LASSO coefficients of metabolism-related genes. Each curve represents a 
metabolic gene. (B) 1000-fold cross-validation to select variants in the LASSO regression via min criteria

TA B L E  2   A 15-gene panel signature identified by Lasso Cox regression analysis

Gene Coef Metabolic-related KEGG pathways

ACP2 (Acid Phosphatase 2, Lysosomal) −0.00046 Riboflavin metabolism

ACP6 (Acid Phosphatase 6, Lysophosphatidic) 0.211033 Phospholipid metabolism

ALDH3B1 (Aldehyde Dehydrogenase 3 Family Member B1) 0.447464 Beta-Alanine metabolism; Histidine metabolism

ASS1 (Argininosuccinate Synthase 1) 0.200934 Alanine, aspartate and glutamate metabolism

CAD (Carbamoyl-Phosphate Synthetase 2, Aspartate 
Transcarbamylase And Dihydroorotase)

−0.06062 Alanine, aspartate and glutamate metabolism; Pyrimidine 
metabolism

CYB5R1 (Cytochrome B5 Reductase 1) −0.14185 Amino sugar and nucleotide sugar metabolism

DGAT2 (Diacylglycerol O-Acyltransferase 2) 0.21335 Glycerolipid metabolism

DNMT3B (DNA Methyltransferase 3 Beta) −0.54252 Cysteine and methionine metabolism

GPD1L (Glycerol-3-Phosphate Dehydrogenase 1 Like) −0.09914 Glycerophospholipid metabolism

HMGCS1 (3-Hydroxy-3-Methylglutaryl-CoA Synthase 1) 0.260982 Butanoate metabolism

MPST (Mercaptopyruvate Sulfurtransferase) −0.12544 Cysteine and methionine metabolism; Metabolic pathways

OCRL (OCRL Inositol Polyphosphate-5-Phosphatase) 0.140246 Inositol phosphate metabolism

PFKFB2 (6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 2) 0.767954 Fructose and mannose metabolism

PLCB2 (Phospholipase C Beta 2) 0.561048 Inositol phosphate metabolism

SYNJ2 (Synaptojanin 2) 0.419988 Inositol phosphate metabolism
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metabolic prognostic model. The 15 metabolic genes included in 
the prognostic model were exhibited Table 2. The MDS patients 
were categorized into high- and low-risk group according to the 
median of risk score. The prognosis was significantly different 
between high- and low-risk groups, and the survival was poorer 
in patients from the high-risk group than those from the low-risk 
group (P < .01; Figure 3A-D). The 5-year OS rates of high-risk and 
low-risk groups were 23.7% [95%CI (0.12, 0.48)] and 67.6% [95%CI 
(0.54, 0.85)], respectively. The 3- and 5-year AUC of OS was 0.846 
and 0.828 in GSE58831, respectively (Figure 4A,B). The metabolic 

prognostic panel showed better prognostic predictive ability com-
pared to the known IPSS scoring system.

The metabolic prognostic model was subsequently validated in 
the external cohort of GSE11 4922. Similarly, patients were divided 
into low- and high-risk groups based on the median risk score from 
the training cohort. Consistent with the training set, patients from 
the low-risk group had favourable outcome. The 5-years OS rates 
of patients from high-risk and low-risk groups were 43.5% [95%CI 
(0.27, 0.69)] and 72.7% [95%CI (0.55, 0.96)], respectively. The AUC 
of 3- and 5-year OS was 0.743 and 0.705 in the validation cohort, 

F I G U R E  3   Kaplan–Meier (KM) analysis, risk score analysis for the 15-gene panel in MDS (A) KM curve of the fifteen-gene panel in the 
training cohort. B, KM curve of the 15-gene panel in the validation cohort. C, Risk score analysis of the 15-gene panel in the training cohort. 
D, Risk score analysis of the 15-gene panel in the validation cohort

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58831
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114922
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respectively (Figure 4C,D). Consistently, the metabolic prognostic 
panel showed comparative prognostic predictive ability in the val-
idation external cohort in comparison with the known IPSS scoring 
system. Nevertheless, it is better to validate in a large sample size.

3.3 | Independent prognostic role of the metabolic 
gene panel

The univariate Cox analysis for risk score and other clinical clinico-
pathological showed there was significant association of OS of MDS 
patients with gender, IPSS, the risk score, age, platelet in the train-
ing cohort. Further multivariate analysis showed that the risk score 
was still an independent predictive factor (HR: 3.721, 95%CI: 1.814-
7.630) after adjusting clinical covariates (Figure 5A,B). Furthermore, 
the risk score remained as an independent predictor (HR: 2.047, 
95%CI: 1.013-4.138) after adjusting clinical covariates in the exter-
nal validating cohort (Figure 5C,D).

3.4 | Association between the metabolic risk 
level and clinicopathological features

In total, 201 patients with complete clinical data including age, gender, 
WHO category, karyotype, IPSS, transfusion dependent, haemoglobin, 
bone marrow blasts cells, platelet count and absolute neutrophil count 
were included in the training and validation cohort. High-risk patients 
were associated with male, higher numbers of bone marrow blast 

cells, higher IPSS score and lower absolute neutrophil count (Table 1). 
However, there are no significant statistical difference of clinical char-
acter except for the absolute neutrophile count in different metabolic 
risk level of validating cohort. The small sample size is a possible rea-
son. The distribution of clinical characteristics and gene expression in 
different metabolic risk group was visualized in Figure 6A,B.

3.5 | GSEA

GSEA identified 36 significantly enriched KEGG pathways in the 
training or validation cohort. The majority of the metabolism-associ-
ated pathways were enriched in the low-risk group, and the metabolic 
pathways ranked by NES were cysteine and methionine metabolism, 
glycine serine and threonine metabolism, fatty acid metabolism and 
pyrimidine metabolism. On the contrary, the majority of the non-me-
tabolism-associated pathways were enriched in the high-risk group. 
Additionally, most enriched pathways were correlated with cancer 
(such as the cell cycle and phosphatidylinositol signalling system) or 
metabolism (such as the glycine serine and threonine metabolism, 
cysteine and methionine metabolism) (Figure 7A,B).

3.6 | External validation using online database

The mutation variants of the metabolic gene panel were explored 
in CCLE database by the cBioportal for Cancer Genomics.18,19 
As was expected, the gene amplification, which can change 

F I G U R E  4   Time-dependent ROC 
analysis for the 15-gene panel in MDS 
Time-dependent ROC analysis for (A) 
3-year OS and (B) 5-year OS of the 15 
gene panel in the training cohort. Time-
dependent ROC analysis for (C) 3-year OS 
and (D) 5-year OS of the 15 gene panel in 
the validating cohort

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training: 3 years

False postive rate 

risk score = 0.846
IPSS = 0.707

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training: 5 years

False postive rate 

Tr
ue

 p
os

tiv
e 

ra
te

risk score = 0.828
IPSS = 0.623

Tr
ue

 p
os

tiv
e 

ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Validating: 3 years

False postive rate 

Tr
ue

 p
os

tiv
e 

ra
te

risk score = 0.743
IPSS = 0.753

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Validating: 5 years

False postive rate 

Tr
ue

 p
os

tiv
e 

ra
te

risk score = 0.705
IPSS = 0.761

A B

C D



6380  |     HU et al.

gene expression, was the most common alteration form of this 
metabolic genes. Meanwhile, ACP6, ALDH3B1, CYB5R1, DGAT2, 
DNMT3B, HMGCS1 and PFKFB2 possessed the most frequently 
genetic alterations in the metabolic gene panel (Figure 7C). But 
no OCRL mutations have been reported. Meanwhile, gene am-
plification of GPD1L, MPST, PLCB2, SYNJ2 accounted for a small 
proportion of total mutations. Taking together, further validation 
of the aberrant expression of the metabolic gene panel was per-
formed in cell lines, which revealed that the abnormal expression 
of these genes might be due to genetic alteration to some extent. 
The cBioPortal for Cancer Genomics further was used to analyse 
the relationship of expression and mutation of the metabolic gene 
in Cancer Cell Line Encyclopedia (CCLE) samples (Figure S1), which 
further verified the potential mechanism of the expressed variety 
of 15 metabolic gene.

4  | DISCUSSION

Previous studies have revealed the reprogramming of glucose me-
tabolism in multiple types of malignant tumour. To provide biosyn-
thetic precursors or energy, glycolysis is accelerated in malignant 
cells. Meanwhile, the active truncated TCA cycle also generates in-
termediates for cancer cells.20 Patients with low-risk MDS exhibit 
an ido/tph1 enzyme activity imbalance which regulates tryptophan 
by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxyge-
nase (TDO).21 A previous study has revealed that excessive weight 
gain would increase MDS risk by fetuin-A, adiponectin and free 
leptin.22 Therefore, the metabolic-related pathway and genes not 
only play significant roles in pathogenesis of MDS, but also impact 
prognosis in patients. However, there is a lack of metabolism-related 
MDS model for prognostic prediction. To this end, we constructed 

F I G U R E  5   Forrest plot of the univariate and multivariate Cox regression analysis in MDS. Forrest plot of the (A) univariate and (B) 
multivariate Cox regression analysis in the training cohort. Forrest plot of the (C) univariate and (D) multivariate Cox regression analysis in 
the validating cohort
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a metabolic gene panel based on the identified metabolic to predict 
prognosis in MDS patients.

In the present study, a novel 15-gene metabolic panel model was 
constructed based on data from the training cohort, which was fur-
ther validated in the validation cohort of GSE11 4922 dataset. The 
model could divide patients into high-risk (with poor prognosis) and 
low-risk (with favourable prognosis) groups. Furthermore, patients 
in the high-risk group were related with poor clincopathological fac-
tors. In addition, the reliability and stability of the prognostic model 
were further confirmed in both cohorts. The metabolic panel model 
showed comparable or even better prognostic performance com-
pared with IPSS prognostic stratification.

Fifteen metabolic genes were identified to construct the meta-
bolic model, most of which have been reported to be involved in ma-
lignancy. PFKFB2, a vital regulator of glucose metabolism, has been 
defined as a candidate gene for GC-triggered apoptosis according to 
comparative expression profiling in childhood acute lymphoblastic 
leukaemia (ALL).23 Interestingly, PFKFB2 was suppressed by miR-
613 in gastric cancer, which could further inhibit cell proliferation 
and invasion.24 The expression pattern is reported for the first time 
as a potential marker in MDS PLCB2, involved in inositol phosphate 
metabolism, has been narrowly linked to the poor prognosis in pa-
tients with hepatocellular carcinoma, lung cancer and mammary 
carcinoma.25 In our study, PLCB2 was negatively correlated with 

F I G U R E  6   Heat map of the expression of 15 metabolic gene panel and clinicopathological characteristics in different metabolic risk 
group for the (A) training cohort and (B) validation cohort

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114922
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the prognosis of MDS Dnmt3b has been previously reported to 
suppress Myc-induced lymphomagenesis in a mouse model, while 
loss of Dnmt3b accelerates MLL-AF9 leukaemia progression via en-
hancing stemness and promoting cell cycle progression,26-28 which 
are consistent with our conclusion. ALDH3B1, involved in phenyl-
alanine metabolism, is dynamically modulated during myelopoiesis, 
with up-regulated expression in mature granulocytes in mice and in 
promyelocytes in humans, and down-regulated expression during 
myeloid maturation.29 ASS1, an argininosuccinate synthetase, is het-
erogeneously expressed in AML populations.30 At present, arginine 
deprivation has been shown to kill tumour cells but not normal cells, 
with numerous undergoing clinical trials of arginine deprivation.31,32 
ASS1 levels might suggest the more sensitive candidate to be devel-
oped as a biomarker for identification of AML samples which might 
be sensitive to arginine deprivation.33 Currently, the roles of the 
metabolic genes in pathogenesis of MDS should be further explored.

The results of GSEA revealed that there were multiple signifi-
cantly enriched pathways. Interestingly, patients in the low-risk 
group were related to the metabolic pathways, while patients in 
the high-risk group were associated with phosphatidylinositol and 
RIG I like receptor signalling pathway. And the phosphatidylinositol 
signal system was involved in cell growth regulation. As a conse-
quence, the dysregulated metabolic-related signalling pathways 
might shed novel light on the treatment of MDS. As is reported 
that the gene expression can be altered by genomic copy number 
gains, losses and other mutations.34≥12% of alterations in gene ex-
pression is attributable to the variations of gene copy number,35 
which may be a potential mechanism of the expressed variation of 
15 metabolic genes.

On the one hand, we have established a robust prognostic model 
based on metabolic gene that complements the existing risk strat-
ification for MDS. On the other hand, several limitations of this 

F I G U R E  7   The significantly enriched KEGG pathways by GSEA; Genetic alterations of the 15 genes in Broad Institute Cancer Cell 
Line Encyclopedia CCLE. Representative Top 3 enriched KEGG pathways in the (A) training cohort and (B) validation cohort. C, Genetic 
alterations of the 15-gene panel in CCLE, obtained from the cBioportal for Cancer Genomics (http://www.cbiop ortal.org/)

http://www.cbioportal.org/
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study should also be acknowledged. Firstly, we are unavailable to 
more clinical information due to the data driving from GEO database. 
Secondly, the significance of the metabolic panel should be further 
confirmed in real-world research, and further basic experiments are 
simultaneously necessary to explore the underlying pathogenesis.

In summary, we constructed a novel prognostic prediction model 
based on metabolic genes from GEO database for MDS, and further 
validated in the validation cohort. The prognostic model was not 
only an independent prognostic predictor for MDS but also reflected 
the disordered metabolism of MDS. Moreover, this panel could be 
utilized as an effective approach for prognostic prediction in MDS 
patients in clinical practice.
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