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Abstract
1.	 The description and analysis of animal behavior over long periods of time is one of 

the most important challenges in ecology. However, most of these studies are lim-
ited due to the time and cost required by human observers. The collection of data 
via video recordings allows observation periods to be extended. However, their 
evaluation by human observers is very time-consuming. Progress in automated 
evaluation, using suitable deep learning methods, seems to be a forward-looking 
approach to analyze even large amounts of video data in an adequate time frame.

2.	 In this study, we present a multistep convolutional neural network system for de-
tecting three typical stances of African ungulates in zoo enclosures which works 
with high accuracy. An important aspect of our approach is the introduction of 
model averaging and postprocessing rules to make the system robust to outliers.

3.	 Our trained system achieves an in-domain classification accuracy of >0.92, which 
is improved to >0.96 by a postprocessing step. In addition, the whole system per-
forms even well in an out-of-domain classification task with two unknown types, 
achieving an average accuracy of 0.93. We provide our system at https://github.
com/Klimr​oth/Video​-Actio​n-Class​ifier​-for-Afric​an-Ungul​ates-in-Zoos/tree/main/
mrcnn_based so that interested users can train their own models to classify im-
ages and conduct behavioral studies of wildlife.

4.	 The use of a multistep convolutional neural network for fast and accurate clas-
sification of wildlife behavior facilitates the evaluation of large amounts of image 
data in ecological studies and reduces the effort of manual analysis of images to 
a high degree. Our system also shows that postprocessing rules are a suitable 
way to make species-specific adjustments and substantially increase the accuracy 
of the description of single behavioral phases (number, duration). The results in 
the out-of-domain classification strongly suggest that our system is robust and 
achieves a high degree of accuracy even for new species, so that other settings 
(e.g., field studies) can be considered.
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1  | INTRODUC TION

1.1 | General

Describing and analyzing animal behavior is a central element in 
ecology, ethology, and neurosciences. In order to characterize ani-
mal behavior more closely and identify general behavioral patterns, 
it makes sense to include longer periods of time, different habitats, 
and many individuals (Burger et al., 2020). While this is often a highly 
demanding task in natural habitats, studies in zoos allow to develop, 
improve, and evaluate methods helping to understand behavior pat-
terns of various species (Kögler et al., 2020; Ryder & Feistner, 1995). 
Advances in digital infrastructure make it possible to collect and 
process observational data on a larger scale. However, the timely 
evaluation and extraction of meaningful information from the mass 
of recorded behavioral data represent a major challenge that can 
hardly be met by humans (Norouzzadeh et al., 2018). Consequently, 
to provide means of automatic evaluation of animal behavior, com-
puter vision and deep learning techniques emerged during the last 
years in behavioral biology and ecology (Chakravarty et  al., 2020; 
Dell et al., 2014; Eikelboomet al., 2019; Valletta et al., 2017).

Over the last decade, deep learning techniques in computer vi-
sion applications have become a crucial factor (Li et  al.,  2019; Ng 
et al., 2015; Zha et al., 2015). Many state-of-the-art models that hold 
current benchmarks in computer vision tasks like object detection or 
semantic segmentation use convolutional neural networks (CNNs) 
(Russakovsky et al., 2015). Two deep learning approaches are com-
mon for inference tasks on video data. For video action classifica-
tion, neural networks can be trained on sequences of consecutive 
frames to leverage temporal features like motion that can be strong 
cues to predict actions. These approaches work best with a medium 
to high frame rate and high resolution. Unfortunately, gathering such 
data over a longer period of time can be costly and may not be suit-
able for every research application. Another common practice is to 
use a neural network for inference on single frames and inject tem-
poral higher logic to combine these predictions. This is the approach 
we are taking in our research presented here.

1.2 | Our contribution

We present a deep learning approach to video action classification of 
four different behavioral states of various African ungulates: stand-
ing, lying—head up, lying—head down, being absent (cf. Section  1.5). 
The goal of our approach is to use a few manually annotated videos 
of individuals in a certain setting in order to subsequently automati-
cally evaluate a large video dataset of this individual. This will be 
tackled by a three-stage deep learning-based framework.

The first phase is an object recognition phase carried out by a 
Mask R-CNN neural network (He et al., 2017). It serves three pur-
poses. Firstly, it reduces background information by localizing the 
regions of interest that mostly consist of pixels filled by animals. It is 
thereby increasing the similarity of sample images taken from differ-
ent enclosures, which dramatically increases the power of transfer 
learning across enclosures (Yosinski et  al.,  2014). Secondly, object 
detection can be used to distinguish between individuals within the 
same enclosure as long as the individuals do not occlude each other 
too extreme. Lastly, it provides a clean way of detecting whether an 
animal is present or absent.

The second phase carries out a canonical classification task on 
the clean-cut images from phase 1. Our approach is governed by 
an ensemble of two EfficientNetB3 (Tan & Le, 2019) image classi-
fiers. One network predicts actions based on single-frame inputs, 
and we accumulate the predictions to one prediction per time in-
terval (7  s). The second classifier includes temporal dimension of 
the video by predicting the shown behavior of this time interval di-
rectly. Therefore, the consecutive frames of this interval are concat-
inated to a single input (so-called multiframe encoding, (Ji et al., 2013; 
Karpathy et al., 2014)). Subsequently, the final prediction per inter-
val is based on an average over the predictions by the ensemble of 
classifiers. Finally, to further smooth predictions, we apply carefully 
chosen rolling averages during this process.

In the third phase, an application-driven postprocessing step 
takes place. After calculating predictions for each time interval, we 
apply postprocessing rules that, for instance, filter out very short 
activity phases of behaviors which are very unlikely to appear within 
the evaluated behavioral states or use information about the posi-
tion of the animal in its enclosure.

1.3 | Related work

1.3.1 | Video action classification using CNNs

Among the first appearances of CNNs for video action classification, 
Ji et al. (2013) and Karpathy et al. (2014) discovered that encoding 
multiple frames performs marginally better than the frame-by-frame 
classification. The first milestone was reached by incorporating the 
temporal dimension of a video into the classification approach by 
different means of so-called optical flow calculations (Li et al., 2019; 
Ng et al., 2015; Simonyan & Zisserman, 2014; Zha et al., 2015). The 
current state of the art for video action classification is a two-stream 
approach (Feichtenhofer et al., 2016; Zhao et al., 2020) where each 
frame is fed into a CNN and gets predicted by a frame-by-frame clas-
sifier which gathers the spatial features of an image. In parallel, a 
sequence of consecutive frames is classified by a second CNN that 
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captures the temporal dependencies of the video. The final predic-
tion per frame is a fusion of the features given by these two streams.

1.3.2 | Deep learning approaches for action 
classification in behavioral studies

In recent years, the use of computer vision and deep learning tech-
niques has emerged in behavioral biology tasks (Christin et al., 2019; 
Dell et al., 2014; Valletta et al., 2017). Papers of this kind should be 
clustered by the nature of the data used. One class of experiments 
was performed under laboratory conditions: high frame-rate vid-
eos with a high contrast. A prominent example is the JAABA (Kabra 
et  al.,  2012) toolbox for video classification of behaviors of mice 
and Drosophila flies. Another example is DeepBehaviour (Graving 
et al., 2019) which is used to detect and track the trajectories of mice 
in a laboratory. Moreover, Stern et al.  (2015) present a system for 
object detection and behavior classification: They predict with great 
accuracy whether a Drosophila-fly is on some substrate or not.

Other projects need to process data recorded in the wild where 
the recorded image or video material poses a much greater challenge 
as variations in background, brightness, weather, camera specifics, 
recording angle, etc., lead to highly complex datasets. For instance, 
Porto et al. (2013) present a computer vision-based classifier using 
the Viola–Jones detection algorithm to distinguish lying behavior of 
dairy cows in free-stall stables. Norouzzadeh et al. (2018) use cam-
era traps in the Serengeti to answer research questions on numbers, 
types, and behavior of recorded (larger) African mammals. Their be-
havior classification task is to distinguish between the five activities 
standing, resting, moving, eating, and interacting, for each detected 
individual. They apply a deep learning system harnessing 1.4 million 
images from the Snapshot Serengeti Dataset (Swanson et al., 2015) 
available to them. One main challenge of the high variation in back-
ground is the failure of standard transfer learning techniques as 
deep learning classifiers are sensitive to typical backgrounds (Beery 
et al., 2018; Quionero-Candela et al., 2009). One approach—which, 
as already mentioned, we take as well—to tackle this variety is to 
increase the similarity between images by image segmentation. An 
active learning system for identifying species and counting individ-
uals using image material produced by camera traps uses such seg-
mentation techniques and is extensively studied by Norouzzadeh 
et al. (2021).

1.4 | Our objectives

Understanding the behavior of animals is a key element of ecology. 
For example, behavioral studies can improve our understanding of 
the habitat requirements or migration patterns of species, which 
in turn have important implications for nature conservation issues 
(Melzheimer et al., 2020; Teitelbaum et al., 2015). However, animal 
behavior is complex, contextual, and species-specific, so approach 

and analysis must differ depending on the thematic focus, the envi-
ronmental variables, or even the species themselves. In this context, 
videography is an inexpensive, noninvasive method for documenting 
animal behavior. Although the manual methods of video evaluation 
allow for differentiated behavioral analysis, they are also very time-
consuming, so that longer quantitative analyses are limited. Under 
controlled laboratory conditions, valid solutions based on computer 
vision algorithms are available today, which allow to perform behav-
ioral analyses routinely (cf. Section  1.3.2). On the other hand, for 
data recorded in setups where the environment variables are much 
more complex or the available image material is of lower quality, au-
tomatizing the evaluation process posed a major challenge for re-
searchers so far.

A key objective of this work is to combine recent successes of 
deep learning with domain knowledge and expertise from behavioral 
biology. Our overall objective is to establish a pipeline that produces 
high-quality action classification with only little human labeling ef-
fort involved. In this study, the main objective is to build an accurate 
automatic pipeline to classify behaviors of animals recorded in zoo 
enclosures. We aim to achieve this using open-source software, low-
budget technical equipment, and make our code openly available 
on github, so that it may be easily reproducible by other research 
groups. We showcase a procedure that allows to significantly reduce 
manual labeling endeavors while maintaining high-quality labels in a 
controlled manner. The procedure goes as follows:

•	 Let a researcher manually label a small set of nights of an un-
known individual.1

•	 Split these into train, test, and validation set, that is, reserve at 
least one night as holdout test set.

•	 Fine-tune the object detection and the classification networks on 
the train data by, for instance, using backpropagation and evalu-
ate the performance on the test set.

•	 If the performance is not satisfactory, the accuracy can fur-
ther be improved by adding more labeled nights and tuning a 
postprocessor.

Given a pool of existing labeled data from 10 different species 
from the order of Cetartiodactyla, we aim to further predict un-
labeled nights from the same or other individuals of that species. 
We therefore split nights into single-activity time intervals (seven 
seconds long) and predict one out of four stances: standing, lying—
head up, lying—head down, or being absent, which are explained in 
Section 1.5. On the one hand, we are interested in the performance 
of neural networks on the task of inferring these states per interval. 
On the other hand, it is crucial that the entire system is also capa-
ble of predicting the behavioral phases of entire recording nights in 
such a way that typical biological parameters such as the number 
and duration of the phases are sufficiently accurate in order to use 
these predictions for behavioral research studies. Finally, we also 
investigate a slightly easier task: distinguishing standing from lying 
(independent from the head's position), which is of great interest for 
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the identification of rhythmic activity patterns in nocturnal behavior. 
We will refer to this as the task of binary classification.

1.5 | Background

In order to keep studies comparable, behavioral research works with 
standardized ethograms that allow comparisons within a species or 
a related systematic group (Stanton et al., 2015). Therefore, the defi-
nition of annotated behavioral states is explained below. Our study 

focuses on the three basic behavioral categories: standing, lying—
head up, and lying—head down, which are defined in the following 
ethogram.

•	 Standing: The animal stands in an upright position on all four 
hooves. It does not matter what the animal is doing in this po-
sition, so, for example, it could be feeding, resting, walking, or 
ruminating.

•	 Lying—head up (LHU): The animal's body lies on the ground, and 
the head is lifted. We do not distinguish between being awake or 

F I G U R E  1   For three different species (top to bottom): Common Eland (Taurotragus oryx), Common Wildebeest (Connochaetes taurinus), 
and Waterbuk (Kobus ellipsiprymnus), the three behavioral states (left to right) standing, LHU, and LHD are shown



     |  6019HAHN-KLIMROTH et al.

being in the non-REM sleep; furthermore, the animal could also be 
feeding, ruminating, or resting.

•	 Lying—head down (LHD): The animal is lying with its head rested. 
The resting head lies down on the ground and is placed beside the 
body or sometimes in front of it.

A visualization of each state can be found in Figure 1. Additionally, 
if the animal cannot be seen in a frame, the desired label is being 
absent.

At this point, we shortly want to stress that LHD is a valid indi-
cator for recognizing REM sleep. Indeed, identifying REM sleep by 
a characteristic posture is a common practice in behavioral stud-
ies based on image and video material (Ternman et al., 2014). This 
is due to postural atonia being a characteristic of REM sleep (Lima 
et al., 2005; Zepelin et al., 2005); therefore, due to the lack of muscle 
tone, any body part (including the animal's head) needs to be laid 
down. Furthermore, at least for cows, it is well known that this kind 
of behavioral estimation for REM sleep is highly sensitive (Ternman 
et al., 2014).

2  | METHODS AND MATERIAL

2.1 | The deep learning approach

Deep learning has three key drivers: algorithms, data, and computa-
tional resources. For the first two stages of our prediction pipeline, 
we apply deep learning algorithms from the last few years, whereby 
an ensemble of three neural networks has been established. 
However, we strongly believe that the specifics of their design are 
of less relevance and they could easily be exchanged with other 
neural networks deemed state-of-the-art for the respective tasks 
(Bochkovskiy et al., 2020; Tan et al., 2020; Touvron et al., 2020). In 
contrast, the data used for training the neural networks and evaluat-
ing their performance play a crucial role for the experiments; hence, 
we dedicated Section 2.2 to discuss it in great detail. Lastly, we were 
able to perform all experiments with just a single, mediocre GPU 
(RTX 2070). For all three models, the total training time amounted 
to 840 hr, and the entire pipeline now predicts behaviors for 1 hr of 
video material in 15 min.

2.2 | Data

The data for this project span 209 nights (2,926 hr) of recordings of 
65 individuals out of 10 different species, see Table 1. The videos 
were taken over the last three years with either a Lupus LE139HD or 
Lupus LE338HD camera stemming from zoo enclosures of one Dutch 
and ten German zoos. They have a frame rate of 1 fps and a resolu-
tion of either 1,080 p or 720 p. The recording time mostly ranges 
from 5 p.m. to 7 a.m., that is, the time where the animal keepers are 
mostly absent, with night vision using the build-in infrared emitters 
of the cameras.

Compared to previous studies in behavioral biology (Graving 
et al., 2019; Kabra et al., 2012; Stern et al., 2015) recorded under 
laboratory conditions, our data are much more complex and noisy. 
Installing the cameras properly faces major issues as the enclosure 
structure and the husbandry is given by the zoos, that is, the ex-
isting, limited installation options must be used if available and the 
animals should not be disturbed by the cameras. This leads to huge 
differences from enclosure to enclosure regarding the position and 
the angle in which the cameras can be installed. Furthermore, the 
angle of the camera might change due to external influences, visibil-
ity might worsen because of dirt sticking on the lens and the animals 
should not be able to reach the camera leading to a high degree of 
occlusions (sometimes the installation needs to be outside of the 
enclosure box) or truncation effects (blind spots in the enclosures). 
Some edge cases are illustrated and further elaborated on in the 
Appendix A.

For the task of object detection, we have manually annotated 
bounding boxes for nearly 26k randomly sampled images—a detailed 
per species listing is provided in Table 2. A subset of 10% of these 
images is used as a test set, and the remaining 90% build the training 
set of the object detector. For the main task of classifying behavior, 
we have complete labels for all 209 nights. For one common wilde-
beest, one bongo, and three common elands, we keep a holdout set 
of some nights for testing (these are the same nights containing the 
test images for object detection). Out of all other nights, we ran-
domly select a training set of about 95k images such that the three 
classes standing, LHU, and LHD are almost balanced in number. For 
further evaluation of the single-frame and single-interval perfor-
mance of the neural network predictors, we proceed similarly with 
the test nights to obtain 6k images for the Common Elands and 4k 
images for each of the other two species, respectively (cf. Table 1). 
We refer to this subset of the test set as the validation set.

2.3 | Phase 1: Object detection

The objective of phase 1 is to localize individuals by drawing a mini-
mal rectangular bounding box around them, which can be cut-out 
and further classified into the action classes in phase 2. If no indi-
vidual is detected, we can already predict the class as being absent. 
For object detection on single image frames we fine-tune a Mask 
R-CNN with ResNet-101 backbone that was pretrained on the MS 
COCO database (Lin et  al.,  2014), which has animal object classes 
like zebras, elephants, and dogs and is hence a good base for trans-
fer learning to our dataset. More precisely, we use the Matterport 
implementation (Waleed,  2017) of Mask R-CNN and fine-tune on 
the training data described above for 50 epochs to detect animals 
out of the listed 9 species. Due to some tough truncation occurring 
in our data, we further run one round of offline hard example min-
ing (Felzenszwalb et al., 2010): For each animal, we run the trained 
model on 400 images from the nights used for training and inspected 
the obtained predictions. Then, the model failures, that is, the poorly 
predicted bounding boxes, were re-annotated by hand and finally 
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the network was re-trained for 15 epochs including these additional 
annotations.

After the per image prediction, we apply the following post-
processing steps that helped to make the overall predictions more 
robust to edge cases in the data and erroneous localization predic-
tions. We only keep bounding box predictions of which the net's 
confidence is at least 97%. We also allow a maximum of one box per 
image. At a first glance, this approach looks tailored to enclosures 
with one individual, but can, in fact, be easily extended to detect and 
distinguish multiple individuals within the same enclosure.

2.4 | Phase 2: Action classification

In phase 2, we predict the action displayed in short sequences of cut-
out frames. We follow a successful approach to video action classi-
fication (cf. Section 1.3.1) that is based on a two-stream system—the 
image frame is input in the first stream and motion cues from the 
temporal context are fed into the second stream. For this second 

input, optical flow is a common choice—which we tried as well, but 
found the performance to be inferior to the model we will describe 
below. A small ablation study and discussion on this can be found in 
Appendix B and multiframe encoding was chosen as an alternative 
way to input pixel motion information as a result thereof.

The inputs to stream 1 are the cut-out boxes from phase 1, re-
sized to a resolution of 300 × 300 pixels. A single input for the sec-
ond stream consists of a four-frame encoding of a 7-s time interval.2 
The corresponding four cut-out boxes are resized to 150 × 150 pix-
els each and then combined to the same input size as stream 1. 
EfficientNet B3 (Tan & Le,  2019) was used for both classification 
tasks—a convolutional neural network which has proven itself 
to achieve state-of-the-art accuracy in vision classification tasks 
while being smaller and faster than comparable models. For both 
streams, we use a network pretrained on the ImageNet dataset (Xie 
et  al.,  2019; Yakubovskiy,  2019) with a customized classification 
head of three output units each. The networks were trained for 30 
epochs with a batch size of 8, categorical cross-entropy loss, and 
the Adam optimizer (Kingma & Ba,  2014) with initial learning rate 

TA B L E  1   The variety of data used for training and testing the deep learning classifier

Species # Zoos # Individuals # Labeled: 14-hr videos

Training data

Common Wildebeest (Connochaetes taurinus) 3 11 22

Blesbok (Damaliscus pygargus) 2 4 8

Roan Antelope (Hippotragus equinus) 2 4 8

Sable Antelope (Hippotragus niger) 1 2 4

Waterbuck (Kobus ellipsiprymnus) 3 10 20

Bongo (Tragelaphus eurycerus) 2 9 18

Greater Kudu (Tragelaphus strepsiceros) 3 8 17

Common Eland (Tragelaphus oryx) 4 12 80

Sitatunga (Tragelaphus spekii) 1 1 2

Okapi (Okapia johnstoni) 1 2 4

Testing data

Common Wildebeest (Connochaetes taurinus) 1 1 2

Bongo (Tragelaphus eurycerus) 1 1 2

Common Eland (Tragelaphus oryx) 2 3 22

TA B L E  2   The training set for the object detector

Species # Zoos # Individuals # Training images

Common Wildebeest (Connochaetes taurinus) 3 9 3,772

Blesbok (Damaliscus pygargus) 1 2 808

Roan Antelope (Hippotragus equinus) 2 4 1,726

Sable Antelope (Hippotragus niger) 1 2 1,058

Waterbuck (Kobus ellipsiprymnus) 4 11 4,751

Bongo (Tragelaphus eurycerus) 2 10 4,472

Greater Kudu (Tragelaphus strepsiceros) 3 4 1,756

Common Eland (Tragelaphus oryx) 4 14 6,913

Sitatunga (Tragelaphus spekii) 1 1 542
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10−3 and exponential decay of 0.9. We further applied the following 
input augmentation steps during training: random center cropping 
by 0–16 px, random horizontal flipping, random Gaussian blurring, 
brightness and contrast augmentation, and finally, random rotation 
by −25 to +25 degree.

2.5 | Phase 3: Postprocessing

Finally, we apply a series of postprocessing operations to make our 
prediction pipeline more robust and fitting to the task of predicting 
accurate time intervals of animal behavior and leverage our knowl-
edge on the temporal consistency of the data. To begin with, we av-
erage model predictions between the two streams of phase 2 and 
between consecutive intervals by applying a rolling average. An over-
view of the prediction pipeline up to this stage is illustrated in Figure 2 
and the details of the implementation can be found in Appendix C.

Next, we incorporate application-driven rules to smooth predic-
tions over time and include our domain knowledge of the animal's 

behaviors. As the steps before introduce only a weak temporal con-
text, we still observe flickering of the predictions due to small mis-
classifications or data edge cases. For example, in case an individual 
is heavily truncated or occluded, the predictions of consecutive in-
tervals might jump between absent and other actions. Furthermore, 
we reject certain types of transitions that would lead to unrealis-
tic short intervals of activity, such as a short sequence of standing 
between LHD events, and just keep the previous behavior in such 
cases. To sum up, we obtain the final predictions by following the 
transition rules listed in Table 3.

2.6 | Evaluation

Our objectives stated in Section 1.4 require to extend the usual test-
ing ground for classification tasks: We are highly interested in the 
overall performance of the system on complete videos of known 
and unknown individuals. Therefore, we designed our test sets with 
respect to three levels of knowledge: pure in-domain classification, 

F I G U R E  2   A visualization of the 
prediction pipeline applied to each time 
interval starting from the original video 
input of consecutive single frames. 
The circles represent predictions; thus, 
probability measures on either {standing, 
LHU, LHD} or on {standing, LHU, LHD, 
being absent}
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weak in-domain classification, and out-of-domain classification—
testing for different levels of generalization capabilities of our 
pipeline.

The easiest level—pure in-domain classification—describes the 
task of filling in missing behaviors for nights where some frames 
have already been labeled and used for training. This comes close 
to the usual test setup, only that the classes during training are bal-
anced, while for this test set they are not.

For the remaining two levels, we tackle a prediction task more 
challenging than usually performed in statistical learning. In the clas-
sical setup, the entire dataset is split randomly, that is, train and test 
sets consist of independent and identically distributed samples from 
one and the same data-generating distribution. Thus, in our case this 
translates to train and test images being taken from the same set 
of nights. If instead test images are from new unseen nights, they 
come from a shifted data distribution—in these nights, the arrange-
ment of the enclosure and the light conditions may be quite different 
from those nights of the training set. We define the weak in-domain 
classification task as classifying videos of an individual present in 
the training data but on nights which were not used for training. 
Lastly, we take this one step further in the out-of-domain classifica-
tion task, where the system is evaluated on videos from individuals 
that did not appear in the training set—a far more severe distribution 
shift. Deep learning systems are known to be brittle to distribution 
shifts (Quionero-Candela et al., 2009; Recht et al., 2019; Schneider 
et al., 2020); hence, the latter is a quite intricate challenge.

To evaluate our action classifiers on single frames and single in-
tervals, we use four commonly used measures for predictive per-
formance: accuracy, recall, precision, and f-score, which are defined 
below for completeness. To this regard, let

denote the indicator function that takes the value 1 if (and only if) the 
expression ℰ is true. For n test intervals denote by y =

(
y1,…, yn

)
 their 

ground-truth label classes and by ŷ =
(
ŷ1,…, ŷn

)
 the corresponding 

predictions by a model. The accuracy of the predictions ŷ is the pro-
portion of correctly predicted labels, thus

Despite this general performance measure, we introduce the fol-
lowing metrics to further illuminate performance per classification 
class c

The recall (or sensitivity) for a class c is the proportion of cor-
rect predictions of that class among all occurrences of the class label 
in the ground truth, that is, how many of this target intervals are 
predicted correctly. Naturally, recall can be increased by predicting 
this class more often, but in this case, the potential for false predic-
tions of this class rises. Hence, the precision (or positive predictive 
value) describes the proportion of the correct predictions among all 
predictions of this class. As these two values stress complementary 
performance properties, the f-score is defined as the harmonic mean 
of these two

and gives a good measure for the overall prediction performance per 
class.

Furthermore, we evaluate how application-specific key figures 
are predicted. More precisely, the two key figures amount of phases 
of a specific behavior and total duration of a specific behavior are ex-
amined. Clearly, a good accuracy implies that the latter will be es-
timated quite well. The amount of phases, however, might not be 
estimated reliably if there is a lot of flickering in the predictions.

Finally, in order to evaluate the performance of the object detec-
tor, we apply the commonly used average precision (AP) metric with 
different Intersection over Union (IoU) thresholds. IoU is defined as 
the ratio of the area of intersection and area of union of the bound-
ing box between the predicted and the ground-truth bounding box. 
As the object detection phase momentarily only distinguishes be-
tween the two classes individual and background, the AP@t value 
equals the percentage of predicted bounding boxes that exhibit an 
IoU of at least t% with the ground-truth bounding box.

3  | RESULTS

3.1 | Evaluating the deep learning components

Before analyzing and discussing the core target evaluation measures 
introduced in Section 2.6, let us first state the results for the single 

1 {ℰ} =

⎧
⎪⎨⎪⎩

1, if ℰ is true

0, otherwise

accuracy
�
ŷ
�
=

∑
n
i= 1

1
�
ŷi = yi

�
n

recallc
�
ŷ
�
=

∑
n
i= 1

1
�
ŷi = c, yi = c

�
∑

n
i= 1

1
�
yi = c

� and precisionc
�
ŷ
�
=

∑
n
i= 1

1
�
ŷi = c, yi = c

�
∑

n
i= 1

1
�
ŷi = c

�

f - score (x) = 2
recall (x) × precision (x)

recall (x) + precision (x)

TA B L E  3   Postprocessing rules applied to the data of the elands 
and the bongo as well as the wildebeest

Previous behavior
Current 
behavior Next behavior

Min. 
# time 
intervals

Standing/LHU LHD Standing/LHU 3

LHD LHU LHD/standing 6

Standing LHU LHD 6

Standing LHU standing 25

LHD/LHU Standing LHD/LHU 25

LHD/LHU/standing Being 
absent

LHD/LHU/
standing

50

Note: If the system detects a sequence of (previous behavior, current 
behavior, next behavior) where the current behavior is shorter than 
described, it will replace it by the previous behavior.
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deep learning components. The results of the object detection com-
ponent can be found in Figure 3. It achieves an AP@75 of more than 
0.95 on the whole testing set and on the class of elands in the testing 
set.

For the action classification task, we first report performance 
on the balanced validation set, so that this leads to a testing envi-
ronment compatible with common practices in deep learning. We 
achieve a testing accuracy of 0.881 for stream 1 and 0.954 for stream 
2. Due to the specifics of the classification task and the data, these 
numbers can hardly be set into comparison with typical benchmark 
classification tasks like the ImageNet Large Scale Visual Recognition 
Challenge. Consequently, to better assess the performance of our 
models, we conducted a human study where experts (E, n = 11) and 
novices (N, n  =  11) received 100 randomly chosen single frames 
from the validation set. Both groups were given the same images, 
but once cut-out and later as the original entire frame. The result of 
the participants versus stream 1 and stream 2 are listed in Table 4.

The standalone performance of stream 1 can be easily com-
pared with the cut-out performance of the human predictors. We 
see that it clearly outperforms the novices and slightly outperforms 
the expert, except for the LHD class, where some experts perform 
better. Comparing with the human predictors on enclosure level, 
stream 1 still outperforms the novices, while it performs on par with 

the experts. As the humans lose around 5%–10% in performance 
through the cut-out process, stream 1 has to compensate for this 
imprecision of the object detection phase and still achieves human 
expert performance. Moreover, we add stream 2 in this table as 
well, knowing that its input spans 7-s time intervals which gives it a 
clear advantage over both humans and stream 1. Nevertheless, it is 
remarkably that this is enough to clearly outperform stream 1 and 
even the experts' predictions on the entire frame in all but the stand-
ing class. This underlines the benefits of including temporal informa-
tion into the model. Still, stream 1 yields a useful addition as it has 
different strong points than stream 2, such as classifying standing, 
and hence, we see below that model averaging improves the overall 
prediction quality of the pipeline significantly. To conclude, the val-
idation accuracy of both streams can be considered quite high and 
verify that the model generalizes quite well, even more so, consid-
ering the data quality and possible label ambiguities cf. Appendix A.

3.2 | Performance of the overall pipeline

In the following, we present test results for time-interval predic-
tions of stream 1, stream 2, the fusion step, and after postprocess-
ing for three levels of generalization performance as outlined in 
Section 2.6. The results are presented in Table 5 subdivided into the 
performance for individual animals. We furthermore report average 
recall, precision, and f-score for the overall predictions and the ac-
curacy for the binary classification task.

The final results show an accuracy of at least 0.96 in all in-domain 
classification tasks for each of the three Elands tested. As for Eland 
1, we have tested on the most data, these results should be consid-
ered the ones with highest statistical significance, where we achieve 
consistently above 0.97. In total, all components perform well above 
0.90 with the single exception of stream 2 for Eland 3 in in-domain 
classification. However, this and other weak performing instances 
are well accounted for by the postprocessor. The low performances 
could be due to longer phases of difficult data, for example, the an-
imal spending much time in parts of the enclosure which are not 
fully visible (cf. Appendix A), or from a different distribution of ac-
tions, favoring actions like LHD where the model's performance is 

F I G U R E  3   Average precision of the object detector (phase 1 
of the deep learning pipeline). We report the mean AP values over 
all classes, the AP on all images of elands as well as the AP on the 
images presented during the human study

TA B L E  4   Showing the results of the study comparing the accuracy and the f-score on all 100 images (mean ± SEM), once presented as an 
image of the whole enclosure and once cut-out by the object detector

Predictor Accuracy

f-score

Standing LHU LHD

Enclosure (E) 0.83 ± 0.03 0.93 ± 0.01 0.83 ± 0.03 0.75 ± 0.05

Enclosure (N) 0.74 ± 0.03 0.87 ± 0.02 0.75 ± 0.03 0.57 ± 0.09

Cut-out (E) 0.77 ± 0.03 0.87 ± 0.02 0.76 ± 0.02 0.70 ± 0.08

Cut-out (N) 0.63 ± 0.04 0.77 ± 0.03 0.63 ± 0.04 0.56 ± 0.08

Steam 1 0.84 0.95 0.81 0.68

Stream 2 0.93 0.90 0.93 0.92

Note: Those values are reported for the group of experts (E, n = 11) as well as the group of novices (N, n = 11) and for the two streams of the deep 
learning system.



6024  |     HAHN-KLIMROTH et al.

slightly worse as we see in Figure 4, Column A. When comparing 
the f-scores for the three action classes, we see for all three elands 
that performance is weakest for LHD. In contrast, the f-scores for 
the binary task are much higher (Figure 4, Column B); hence, most 
mistakes made by the model stem from confusing the classes LHU 
and LHD.

Overall, the system performs well in the weak in-domain and the 
pure in-domain classification task, which shows that the deep learn-
ing models learn predictive features from characteristic postures of 
the behavioral states instead of memorizing the training data. This is 
a good indication of robustness and generalization capabilities of our 
model. This indistinguishability is found with respect to the accuracy 
score and with respect to recall, precision, and f-score. In addition, 

the out-of-domain result for the classification of the behavior of 
bongos and wildebeests with 0.94 and 0.91, respectively, also shows 
good testing accuracy. As expected, performance is slightly worse 
here, but given the system has not seen any data of these individuals, 
the values are quite high.

In the task of binary classification, our model succeeds with an 
accuracy of above 0.99 for pure in-domain classification, above 0.98 
for weak in-domain classification and above 0.99 even for out-of-
domain classification. This showcases the model's strong ability to 
reliably distinguish the features of standing and lying.

Finally, while the accuracy between the fused streams and the 
postprocessed prediction does not vary that much, a suitable choice 
of postprocessing rules effects the precision of the prediction of the 

TA B L E  5   The accuracy reached by the different streams of the deep learning system

# 
Nights

Classifying standing, LHU, and LHD
Binary 
classification

Avg. accuracy 
stream 1

Avg. accuracy 
stream 2

Avg. accuracy 
fused streams

Avg. accuracy 
postprocessed

Avg. accuracy 
postprocessed

Pure in-domain classification

Eland 1 6 0.986 ± 0.004 0.969 ± 0.009 0.974 ± 0.007 0.978 ± 0.006 0.992 ± 0.003

Eland 2 2 0.989 ± 0.001 0.985 ± 0.000 0.989 ± 0.001 0.994 ± 0.001 0.998 ± 0.000

Eland 3 2 0.921 ± 0.046 0.887 ± 0.062 0.921 ± 0.040 0.963 ± 0.018 0.9973 ± 0.018

Weak in-domain classification

Eland 1 8 0.936 ± 0.027 0.914 ± 0.030 0.924 ± 0.028 0.976 ± 0.007 0.982 ± 0.007

Eland 2 2 0.971 ± 0.012 0.960 ± 0.011 0.967 ± 0.013 0.977 ± 0.012 0.980 ± 0.013

Eland 3 2 0.960 ± 0.007 0.956 ± 0.006 0.970 ± 0.005 0.986 ± 0.001 0.997 ± 0.001

Out-of-domain classification

Bongo 2 0.930 ± 0.023 0.945 ± 0.015 0.945 ± 0.015 0.944 ± 0.010 0.990 ± 0.002

Wildebeest 2 0.888 ± 0.020 0.867 ± 0.018 0.896 ± 0.011 0.913 ± 0.011 0.995 ± 0.002

Note: We report the accuracy and the SEM for both classification tasks.

F I G U R E  4   Overview on recall, 
precision, and f-score for each behavioral 
class and each individual (EL—Eland, 
B—Bongo, W—Wildebeest) produced by 
the classification system on the testing 
dataset
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average number of phases per video. Corresponding results will be 
stated in the next section.

3.3 | On behavioral biological key figures

Finally, we turn to our last objective, namely predicting the number 
of activity phases per night and their total duration. Table 6 reports 
the average key figures over all predicted nights in comparison to the 
real quantities, again for three levels of generalization.

The results of the in-domain classification show that all predicted 
values generally agree well with the real values. This success had 
not been expected in advance, as deep learning pipelines like ours 
are generally prune to produce flickering. We were, however, able 
to smooth these out sufficiently by broadening the input data distri-
bution through extensive augmentations and by the postprocessing 
rules. For the average number of phases, the errors made by our 
model are mostly below 10% and for average duration the overlap 
with the ground truth is even higher. We stress at this point that the 
decent performance of our deep learning pipeline is influenced by 
the postprocessor heavily. For instance, even if the accuracy and the 
f-score between the fused streams and the postprocessed predic-
tion do not vary much, the amount of phases per night is drastically 
overshot for all individuals and over all classification tasks without 
postprocessing.

Again, we point out the very reliant prediction of our pipeline 
for Eland 1. The quantities for out-of-domain application are mostly 
predicted with only small errors as well, even though they are of 
very different scale. The larger errors like LHU and LHD average 
duration for the Wildebeest are likely to be reduced through trans-
fer learning on a small amount of data containing videos from this 
individual. Furthermore, the postprocessing rules might need to be 
adapted to the species. Other than this, the system only systemat-
ically overshoots the amount of LHU and LHD phases of Eland 3. 
Investigating this error, we found the reason being short periods 
of LHU being misclassified as LHD. Remarkably, in almost all these 
falsely classified phases, the eland shows a grooming behavior (at 
his hind leg) which cannot be distinguished from the LHD on a sin-
gle image—nevertheless, identification of grooming phases given a 
video sequence is possible due to the head's slight movement. Such 
kind of errors vanish, of course, in the binary classification task what 
can, for completeness, be seen in Table D1 of Appendix D.

4  | DISCUSSION

The first part of our model pipeline succeeds strikingly in detecting 
individuals in their enclosures. As object detection is one showcase 
task for deep learning, this was to be expected, but still our results 
are notably high for such a task. State-of-the-art performance on the 
COCO dataset (Lin et al., 2014) by very recent models like YOLOv4 
(Bochkovskiy et al., 2020) or EfficientDet (Tan et al., 2020) achieve 
an AP@75 of less than 60; however, this across many object classes 

and in very diverse scenes. Moreover, phase 2 of our deep learning 
pipeline may still predict actions correctly even if phase 1 performs 
slightly erroneous localization, that is, failures with respect to the 
AP metric may still produce cut-out images with which actions can 
be predicted reliable, for example, if the bounding box is slightly to 
big or part of the animal is truncated, which also occurs naturally 
due to truncation at the image borders. We conclude that our model 
performs the detection phase with great accuracy and robustness.

To put our action classification results into context, it is crucial to 
compare data variety and complexity. The data for our deep learning 
system consist of low frame-rate videos recorded under challeng-
ing conditions: various enclosures, zoos, species, and individuals are 
to be dealt with. Furthermore, the installation of the cameras was 
subject to restrictive conditions—the videos were recorded at night 
with the use of infrared emitters, from different camera angles and 
sometimes with parts of the enclosure missing or obscured. To sum 
up, our data distribution is much more intricate than the laboratory 
conditions of most previous approaches (Graving et al., 2019; Kabra 
et al., 2012; Stern et al., 2015; Weygandt & Mathis, 2020) and is in 
its complexity on par with Porto et al. (2013).

Porto et al. (2013) create a system that works for a specific en-
closure (in-domain classification), and they achieve a classification 
accuracy of 0.92 on a binary classification task distinguishing be-
tween standing and lying behaviors. Porto et  al.  (2013) were able 
to capture enclosures from a bird's-eye view without occlusions or 
truncation, arguably leading to a better starting point for classifica-
tion than our data. Despite this, our models perform notably better 
by achieving an average weak in-domain accuracy of 0.979 for clas-
sifying three action classes and performance even improves to 0.986 
accuracy when reducing to only standing and lying behavior classes.

Our data are less complex than the data used by Norouzzadeh 
et al. (2018) who have single images taken as snapshots in the wild 
under various light and weather conditions. They achieve an in-
domain accuracy of 0.762 with respect to classifying six (nonexclu-
sive) behavior classes of over 26 species. This situation could rather 
be compared to the out-of-domain performance of stream 1 (so 
without leveraging temporal context), where we achieved an accu-
racy of 0.93 for the Bongo and 0.888 for the Wildebeest.

Finally, for the biological key figures our model recognizes most 
sequences correctly. More precisely, the few errors occurring during 
prediction seem to average out very well over multiple videos, also in 
the weak in-domain classification task. On this basis, our model can 
be used to automatically label raw data recordings from Elands 1–3 
without further human supervision. With the application presented 
here, the bottleneck of many behavioral biological studies could be 
overcome—manually evaluating a huge stock of recorded raw data. 
We are confident that our methods transfer well to different studies, 
our high out-of-domain accuracy is a good indication for this. Hence, 
our approach may be used in black box fashion by only adapting the 
postprocessing rules to the specialties of the animal's behavior. Even 
more though, when having already established a well-performing 
system, as usual in transfer learning, the amount of labeled data 
needed for fine-tuning is likely to decrease significantly.
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Machine learning applications have the potential to greatly ex-
pand the scope of ecological behavioral studies in this area (Christin 
et al., 2019), as large amounts of data can be analyzed in a reasonable 
time frame and the effort for manual analysis is drastically reduced 
(Tab ak et al., 2018). For the investigation of complex behavior and 
movement patterns in the wild, for example, sensors are used that 
record acceleration data in addition to GPS data. For instance, Rast 
et al. (2020) present a framework for recording the behavior of wild 
red foxes based on an artificial neural network (ANN) trained on 
captive red foxes. The latter aspect shows that captive animals can 
play an important role in methodological developments. However, 
this method is limited in its breadth by the number of individuals 
equipped with transmitters and, although within a moderate range, 
is an invasive research method. A noninvasive approach to behav-
ioral research in the wild is the analysis of image or video material 
using convolutional neural networks (Ferreira et  al.,  2020; Tab  ak 
et al., 2018; Weinstein, 2018). This approach is still at the beginning 
of its development. Current studies discuss factors that influence 
the accuracy of the analyses. Apart from purely methodological as-
pects, such as the size of image classes needed for model training, 
the variability of the image material (e.g., diversity of backgrounds, 
lighting conditions) or the object detection methods make the anal-
yses difficult. Therefore, the targeted adaptation of a system is par-
ticularly necessary for the evaluation of behavior. Our study shows 
that the developed system achieves a very high accuracy with a 
manageable amount of training data, both in the pure in-domain and 
the weak in-domain classification. Furthermore, the results of the 
out-of-domain classification show that the network can be reliably 
applied to other species, which are similar in their behavior to the 
species from the training.

Of course, we do not provide any reliable data on how accurate 
a similar system would predict wild animal's behavior. Due to the 
high out-of-domain accuracy, it is reasonable to believe that the 
deep learning system trained on zoo animal's images is a good base-
line for a transfer learning task on similar images. As we are already 
confronted with difficult data (low fps, infrared emitted images, high 
amount of background noise, etc.), a similar image quality might 
be guaranteed recording wild animals. On the other hand, the do-
main shift of images from one zoo enclosure to another is clearly 
much less severe than if wildlife recordings are considered. Indeed, 
while we observe the same individual on all images of one enclosure 
things are different in wildlife installations in which different individ-
uals from different species might be recorded. The latter makes the 
task of transfer learning much harder (Beery et al., 2018; Schneider 
et al., 2020); thus, we conjecture that a similar system might perform 
well in free-range observations but requires additional training data.

We thereby conclude that with this line of research we have 
opened the door to scale up studies of behavioral biology by reduc-
ing human resources needed for manual and repetitive labeling tasks, 
and this way, researchers have the opportunity to focus instead on 
the core tasks of setting up interesting experiments and interpreting 
distilled information. To further extend the scope of applications, a 
next step would be to include enclosures with multiple individuals. 

This sets a stronger focus on the object detection phase, where a 
distinction of the individuals needs to be performed. This can be a 
challenging task if resemblance between individuals is strong, and 
possibly requires a tracker postprocessing single detections. On 
the other hand, our system could be applied to other ungulates like 
Perissodactyla, who have a different REM sleep posture (Pedersen 
et  al.,  2004) which requires to adjust the definition of LHD with 
modified postprocessing rules or fine-tuned networks.
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APPENDIX A

DATA QUALIT Y
This section contains examples of image frames that are challeng-
ing to the deep learning pipeline. That is, Figure A1 shows a blind 
spot in the enclosure of Eland 1 which is compensated by the 

postprocessor—if the Eland is staying below the red line for at least 
70 s, the behavioral state is assumed to be lying.

Different hard examples are given in Figure A2. Even if the object 
detector predicted the bounding box accurately, the high amount of 
truncation resulting from a poor installment of the camera (due to a lack 
of better installment options) makes the images challenging to classify.

F I G U R E  A 1   Example of an event 
of high truncation. The image is likely 
to be misclassified as standing without 
postprocessing. The l.h.s. shows the 
recorded image and on the r.h.s. the result 
of the object detection phase is shown

F I G U R E  A 2   Example of hard to classify images due to the camera's position

APPENDIX B

ON THE USE OF OP TIC AL FLOW A S SECOND S TRE AM 
INPUT
The current state-of-the-art approach toward video action clas-
sification would use optical flow calculations in Stream 2 of the 
system to explicitly input motion cues to the classifier. In the fol-
lowing, we report our results when applying this approach to the 
setting at hand. For calculating the optical flow, we used OpenCV's 
implementation of the Farneback algorithm for dense optical flow 
(Bradski, 2000; Farnebäck, 2003) with different types of parameter 
settings, that is, using various window sizes (blurring vs. robust-
ness) and Gaussian filters. The classification task was governed by 
a ResNet-101 CNN trained on the same training set as the system 
at hand. The validation accuracy only reached 0.57 and even the 
training accuracy did not pass 0.84.

At first glance, it is surprising that the optical flow stream was out-
performed significantly by the multiframe-encoded setting as the 

different postures we try to classify clearly deviate in the amount 
of motion the individual is showing. However, we found that in the 
large temporal difference of one second between two consecutive 
frames, background motion, such as floating dust, hay or straw, 
crossing insects, and brightness changes due to infrared emitters, 
leads to plenty of spurious motion cues. See, for example, Figure B1 
which shows the optical flow of five consecutive frames. As a result, 
the training signal stemming from the optical flow tended to be very 
brittle, which we think is the reason for the bad performance, espe-
cially the bad validation performance. One might be able to improve 
on this by outlier rejection and other preprocessing steps, but such a 
tuning likely leads to a strong bias toward specifics of environmental 
variables like the enclosure and the camera, hence might generalize 
poorly to nights of new individuals. Therefore, we choose to con-
tinue with the multiframe encoding as second stream instead which 
proved to be more flexible and robust.
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APPENDIX C

MODEL AVER AG ING
This section gives the implementation details of the model averaging 
described in Figure 2.

Single-frame classification
After the object detection phase, we are left with up to four images 
per 7-s time interval. Each of those images p is predicted by the first 
EfficientNet B3 yielding a distribution xp =

(
xp,0, xp,1, xp,2

)
, where xp,0 

is the probability that the animal is standing in the image, xp,1 that it 
shows LHU and xp,2 that it shows LHD. Let x�p =

(
xp,0, xp,2, xp,3, 0

)
 be 

the adjusted distribution such that the probability of being absent is 
set to zero. If in frame i , the animal is detected in phase 1, we gener-
ate x′i as described; otherwise, we set x�i = (0, 0, 0, 1).

Next, a rolling average of order 16 is applied to x ′ which cov-
ers local temporal dependencies. Formally, the rolling aver-
age of order k generates a sequence of distributions x̃ such that 
x̃i =

(
%x̃i,0,%x̃i,1,%x̃i,2,%x̃i,3

)
 is given by

where ∝ stands for being proportional up to normalizing x̃i back to a 
probability distribution. Finally, the prediction for time interval j is 
given as the average over the predictions on its contained images. 
Thus, if interval j consists of frames i, i + 2, i + 4, i + 6, we set

Now, stream 1 outputs a sequence y1,…, ym such that yj describes 
predicted probabilities for each behavior in time interval j.

Four-frame classification
For the second stream a second EfficientNet B3 produces a 
distribution

per time interval j by predicting behaviors on four-frame-encoded 
input images, and ��j = (0, 0, 0, 1) if and only if the animal is not de-
tected during phase 1 on any of the four images. As above, we then 
apply a rolling average, but now of order 4 such that in total it accounts 
for a similar time period as the rolling average in stream 1, processing 
� � = ��1,…��m to the stream's outcome y � = y�1,…, y�m.

Postprocessing details
Besides the postprocessing rules listed in Table 3, enclosure-specific 
settings were incorporated into the postprocessor of Eland 1 (cf. 
Section  3.1). As the installed camera left a blind spot, the animal 
can be highly truncated (see Figure A1). As one would expect, the 
corresponding images were prune to misclassification. As the object 
detection phase gives access to the coordinates of the drawn bound-
ing box, it is possible to mark any frame in which the bounding box 
starts below a certain line (sketched as a red line in Figure A1), as 
truncated. Now, if a sequence of truncation is shorter than 10 time 
intervals, the sequence was labeled as the previously shown behav-
ior. Otherwise, the assigned label was set to be LHU, as it is very 
unlikely due to the enclosure's design that the animal was standing 
in the blind spot for a longer period of time.

x̃i,j ∝

i−1∑
� =max{0,i− k}

x̃
�,j + xi,j

yj =
x̃i + x̃i+2 + x̃i+4 + x̃i+6

4
.

��j =
(
�j,0,�j,1,�j,2, 0

)

F I G U R E  B 1   Optical flow of a lying eland of five consecutive frames. While the spatial dimension does not change notably, the optical 
flow is very sensitive to the high amount of background noise
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APPENDIX D

FURTHER E VALUATION RE SULTS

Finally, we report the statistical key quantities of interest in the 
binary classification task in Table D1.

TA B L E  D 1   Overview on the accuracy of the deep learning system predicting the amount of phases as well as the average duration of 
each behavioral state in the binary classification task

Standing Lying

Real Prediction Real Prediction

Pure in-domain classification

Eland 1

Avg. # phases 8.2 ± 0.3 8.3 ± 0.4 8.2 ± 0.3 8.3 ± 0.4

Avg. duration [min] 195.2 ± 9.6 197.8 ± 8.8 640.9 ± 8.9 641.1 ± 8.6

Eland 2

Avg. # phases 6.0 ± 0.0 6.0 ± 0.0 7.0 ± 0.0 6.5 ± 0.4

Avg. duration [min] 249.2 ± 0.5 251.1 ± 0.1 590.9 ± 0.5 588.9 ± 0.1

Eland 3

Avg. # phases 7.0 ± 0.0 7.5 ± 0.4 7.5 ± 0.4 8.5 ± 0.4

Avg. duration [min] 222.5 ± 2.2 238.6 ± 8.6 617.6 ± 2.2 595.6 ± 12.7

Weak in-domain classification

Eland 1

Avg. # phases 7.0 ± 0.3 7.5 ± 0.3 6.9 ± 0.3 7.5 ± 0.3

Avg. duration [min] 211.9 ± 10.1 220.8 ± 12.0 622.1 ± 11.6 614.3 ± 13.0

Eland 2

Avg. # phases 6.5 ± 0.4 8.5 ± 1.8 7.0 ± 0.0 9.0 ± 1.4

Avg. duration [min] 216.4 ± 10.8 233.0 ± 0.4 623.2 ± 11.2 607.0 ± 0.4

Eland 3

Avg. # phases 7.0 ± 0.7 6.5 ± 0.4 8.0 ± 0.7 7.5 ± 0.4

Avg. duration [min] 234.3 ± 6.9 233.8 ± 8.1 605.2 ± 7.3 606.2 ± 8.1

Out-of-domain classification

Bongo

Avg. # phases 10.5 ± 1.1 7.0 ± 0.0 11.5 ± 1.1 8.0 ± 0.0

Avg. duration [min] 105.0 ± 42.7 99.3 ± 44.5 735.1 ± 42.7 740.7 ± 44.5

Wildebeest

Avg. # phases 8.5 ± 0.4 9.0 ± 0.7 9.0 ± 0.0 9.5 ± 0.4

Avg. duration [min] 114.2 ± 14.7 118.2 ± 16.4 725.9 ± 14.7 721.8 ± 16.4


