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Simple Summary: The yak is a multipurpose domesticated animal that serves as a protein source for
local herders and a sacred carrier of culture and religion. Besides their economic significance, yaks
harbor special morphological, physiological, biochemical, and genetic adaptations for tolerance to
high-altitude stress. Morphologically, yaks have large hearts and lungs, compact bodies, thick outer
hair covering, and nonfunctional sweat glands, which help to withstand hypoxia and cold stress. A
reduced heat production, decreased respiration and sweating, reduced metabolism, and efficient
nitrogen utilization are the major physiological and biochemical mechanisms for yak survival at
high altitudes. Furthermore, the yak has undergone long-term natural selection and developed a
unique genetic architecture that favors survival in hostile environments. The yak expresses the HIF-
1α pathway-related genes (ADAM17, ARG2, and MMP3) putatively involved in hypoxia response
and nutrition pathways genes (CAMK2B, GENT3, HSD17B12, WHSC1, and GLUL) for nutritional
assimilation at high altitudes.

Abstract: Living at a high altitude involves many environmental challenges. The combined effects of
hypoxia and cold stress impose severe physiological challenges on endothermic animals. The yak is
integral to the livelihood of the people occupying the vast, inhospitable Qinghai–Tibetan plateau and
the surrounding mountainous region. Due to long-term selection, the yak exhibits stable and unique
genetic characteristics which enable physiological, biochemical, and morphological adaptations to a
high altitude. Thus, the yak is a representative model for mammalian plateau-adaptability studies.
Understanding coping mechanisms provides unique insights into adaptive evolution, thus informing
the breeding of domestic yaks. This review provides an overview of genetic adaptations in Bos
grunniens to high-altitude environmental stress. Combined genomics and theoretical advances have
informed the genetic basis of high-altitude adaptations.

Keywords: adaptation; high altitude; hypoxia; yak

1. Introduction

The Qinghai–Tibetan Plateau ecological environment is characterized by low atmo-
spheric oxygen pressure, cold, and limited feed supplies [1,2]. Endothermic animals
endure impaired oxygen supplies, which compromise cellular functions and physiologic
performance under high-altitude environments. These high-altitude mountains are more
sensitive and vulnerable to climate change, a huge threat to biodiversity and the ecosys-
tem [3]. Moreover, the cold temperature increases the environmental harshness with the
temperature dropping by ~6 ◦C per kilometer above sea level [4]. Other factors, including
late winter and early spring, feed shortage, and snow cover, inevitably lead to severe malnu-
trition and weight loss among animals [5,6]. Species have developed special characteristic
features through natural selection to adapt to extreme terrestrial environments [7,8].
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The yaks are the world’s most remarkable domestic animal living freely and reproduc-
ing under the harsh plateau environment [1]. The yak was domesticated >7300 years ago
from wild yak by the early nomadic people and is the only large animal that coexists with
its wild ancestors in a similar environment [9]. Over 17.6 million yaks exist globally, and
the majorities are found in the plateau regions of central Asia, which cover ~2.5 million
km2 centered around the Qinghai–Tibetan Plateau and adjacent highlands [10]. The yak
supplies (milk, meat, hair, hides, and manure) and services (draft, packing, and riding) the
pastoralists and agro-pastoralists occupying these areas. They are also means of financial
security and cultural functions (status, dowry, religious festivals) [6]. They also offer a
good framework for studying the effects of natural and artificial selection in livestock
domestication and adaptation to different environments.

The yak is the only bovine species native to the Qinghai–Tibetan Plateau and ad-
jacent highlands that exhibits a high adaptability to high altitudes, a low sensitivity to
cold, a low oxygen pressure, and prolonged periods (approximately half a year) of food
scarcity [3,6,11,12]. Natural and artificial selections from domesticated yaks resulted in
breeds with distinct morphological, physiological, and adaptability traits that enhanced
survival in harsh environments [13–15]. Understanding the aerobic metabolism of yaks
under hypoxic environments can provide important insights into adaptive evolution [16].
Together with advanced molecular techniques and genetic research, these insights provide
a basis for investigating the genetic mechanisms underlying adaptability to climate change,
the current research hotspot [17,18].

Knowledge of the mechanisms underlying adaptation to various agro-ecosystems is
essential for the effective management of farm animal genetic resources [7,19]. Intriguingly,
multiple studies have focused on yak adaptation, allowing researchers to understand
the morphological, physiological, biochemical, and genetic mechanisms of adaptation
to extremely high altitudes [13,15,20–22]. Although research on the adaptation mech-
anisms of the yak in high altitudes has increased exponentially, review studies on the
comprehensive, adaptive mechanisms remain scarce. Therefore, this review attempts to
collate and synthesize current knowledge on the mechanisms of yak adaptation to high
altitudes. Furthermore, it can also provide new avenues for in vitro and in vivo studies to
further test hypotheses arising from previous investigations and options for designing and
implementing interventions for improved yak productivity and resilience in high altitudes.

2. High Altitude Adaptation Mechanisms of Yak

High altitudes negatively impact the normal bodily functions of individuals, whether
they are accustomed or unaccustomed to such environments. Mishra and Ganju reviewed
high-altitude environmental factors, such as cold and hypobaric hypoxia, which affect
the immune system, making it more susceptible to cancer, infection, and autoimmune
disease [23]. Inadequate hypoxia treatment affects reproduction and fertility traits, includ-
ing reduced intrauterine growth in sheep [24] and impaired development and function
of corpus luteum [25]. There should be an increased focus on breeding and managing
animals for an improved resilience to applied stressors [26]. To adapt to high-altitude
environments, plateau-dwelling mammals have developed some distinct characteristics.
The yak, a unique breed that inhabits the alpine pastoral area of the Tibetan Plateau, is
one of the rare bovine breeds adapted to high altitudes and cold climates [12,27]. The
adaptive process is extremely complex, consisting of several components that exhibit sta-
ble and unique genetic characteristics for regulating the physiological, biochemical, and
morphological mechanisms of adaption to a high altitude (Figure 1).
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Figure 1. Schematic representation of the yak adaptation to high-altitude environmental stress in
comparison to a closely related species (Bos indicus or cattle).

2.1. Morphological Adaptations

Morphological adaptations are physical changes that occur over many generations
of animals to enhance fitness in a given environment. Over many generations, the native
high-altitude B. grunniens successfully adapted to the chronic hypoxia of high altitudes
despite belonging to the genus Bos, closely related to cattle [28]. The exceptional adapta-
tion of the yak to high altitudes is related to evolved special morphological mechanisms
(Table 1). Compared with close relatives such as cattle that live at lower altitudes, yaks
have relatively larger lungs and hearts [29]. Furthermore, the yak has longer, wider, and
rounder pulmonary-artery endothelial cells with little smooth muscles, which allows for
improved functioning in high-altitude environments compared to cattle [28,30].

Table 1. Key morphological adaptations of yaks to high-altitude environments.

Special Morphological Structures Function References

Compact body, thick outer hair covering, and
nonexistence of functional sweat glands Minimize dissipation of body heat during winter [6]

Thin-walled pulmonary arteries with little
smooth muscles

Facilitate superefficient O2 flow under
hypobaric hypoxia [16]

Larger lungs and hearts Aid oxygen uptake [17]

Shorter tongue and greater lingual prominence Improve forage digestibility through efficient
grinding of food [31]

Not only does the hypoxic environment impact life at high altitudes, freezing temper-
atures and scarce food supply also contribute to the harsh environment. The alpine habitat
of yaks is at altitudes of 3000–6000 m. As a result, there is no frost-free period throughout
the year. The yaks are well-adapted to the cold, high-altitude environment; their bodies are
compact with a relatively reduced skin surface area per unit of body weight (0.016 m2/kg).
They also have thick outer hair coats and no functional sweat glands [6]. The absence of
sweating in the yak enhances cold tolerance [32].

Furthermore, the thick fleece covering the entire yak body enhances heat conservation.
The thick fleece comprises an outer coat of long hair and an undercoat consisting of a dense
layer of fine down fibers that appear in the colder season to contain body heat and repel
moisture [6]. Undoubtedly, feeding mechanisms are an important factor in determining
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the success and survival of vertebrate species within their environment [33]. The alpine
habitats at high altitudes are marked by a severe climate and very short growing seasons
with limited grazing resources and often treacherous terrain. Together, these factors lead to
severe malnutrition and weight loss among animals [6,34]. Yaks have developed shorter
tongues with greater lingual prominence, larger and more numerous conical papillae, and
thicker keratinized epithelium than domestic cattle. These attributes enable the yak to
consume a wider variety of pasture plant species [31]. Furthermore, the yak rumen is
unusually large relative to omasum. This large rumen allows it to consume large quantities
of low-quality food at a time and to ferment it longer in order to extract more nutrients
during times of nutritional scarcity [6].

2.2. Physiological Adaptations

Physiology can be viewed as mechanisms and processes that allow organisms to deal
with internal challenges (for example, exercise, growth, and reproduction) and external
stress (e.g., variations in temperature, oxygen, water availability, salinity, pressure, radi-
ation, and heavy metals, etc.). The yak inhabits the entire Qinghai–Tibetan Plateau, and
physiological adaptations have contributed to their success in surviving hostile environ-
mental conditions [35]. Chronic hypoxia is the primary stressor of high-altitude conditions
and limits the efficient functioning of respiratory and cardiovascular systems in mammals
and birds [36]. Interestingly, the prolonged exposure of yaks to high altitudes increases
their physiological response to chronic hypoxia because yaks have a larger pulmonary
alveolar area per unit area, thinner alveolar septum, thinner blood–air barrier [37], larger
hearts and lungs, and higher concentrations of erythrocytes and hemoglobin than other
cattle species [29]. Thin-walled pulmonary arteries with little smooth muscle and absent
right ventricular hypertrophy are additional hypoxic adaptations observed in yaks [16].
Indeed, these characteristics and changes in the cardiovascular system compensate for the
hypobaric high-altitude environment [5].

Furthermore, this adaptation is probably due to natural selection, which enhances the
hypoxic pulmonary vasoconstrictor to respond with no hypoxemic stimulus for increased
red blood cell production and hemoglobin concentrations [16]. Previous research demon-
strates that chronic exposure to hypoxic conditions raises the blood/erythrocyte volume
for high-altitude native animals [38]. As a result, hyperventilation, hemoconcentration,
and stimulated erythropoiesis are physiological responses that warrant oxygen delivery to
tissues [39,40].

Adaptation often occurs at the expense of performance, and survivability is often
better in “low” performance animals because of their low input needs (especially feed) and
moderate internal heat production [41]. In their natural habitat, yaks must maintain normal
energy production under hypoxic conditions [5,11] and optimize nutritional assimilation
as a consequence of the cold stress [5] and limited feed [6]. Under cold stress, heat loss
is prevented by peripheral vasoconstriction and heat production through shivering and
uncoupled mitochondrial activity [42]. Furthermore, multiple cold-adapted species can
temporarily slow their metabolisms in response to harsh environmental conditions, leading
to torpor or, in extreme cases, hibernation [43]. The significant reduction in heat production
of yaks during winter might result from their adaptation to low oxygen concentrations
in the air, the cold environment, and the long-term under nutrition prevalent in the six-
months-long cold season of the Tibetan plateau [5].

2.3. Biochemical Adaptations

The cold, hypoxic conditions of high-altitude habitats impose severe metabolic de-
mands on endothermic vertebrates. Understanding how high-altitude endotherms cope
with the combined effects of hypoxia and cold can provide important insights into the
process of adaptive evolution. Biochemical adaptions provide fascinating insights into how
organisms “work” and how they evolve to sustain physiological function under a vast
array of environmental conditions. Their high blood hemoglobin concentrations enable
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yaks to adapt to tolerating low atmospheric partial pressures of oxygen characteristic of
the >2000 m Qinghai–Tibetan plateau [5,6]. The lower energy metabolism of yaks might
result from adaptation to a low O2 concentration in the air, a cold environment, and the
long-term undernutrition during the annual six-months-long cold season of the Qinghai–
Tibetan plateau. The yak rumen microorganisms ferment approximately 70–80% of the
feed intake and produce volatile fatty acids, providing 60–75% of the required metabolic
energy. This phenomenon may be a coevolutionary coping strategy for low feed resources
in cold environments [44]. Compared to indigenous cattle, yaks have a lower rate of
urinary nitrogen excretion (a possible adaptation to a poor feed supply) and more efficient
nitrogen utilization, which is at least in part due to a greater microbial protein production
in the rumen [45]. This adaptability is believed to assist in the rapid recovery of body
weight over the summer grazing period [46,47]. In addition, the low maintenance protein
requirements [48] and low surface area of the yak body [49] result in a low metabolic rate.
Altogether, these attributes are beneficial for the yak’s survival in the harsh environmental
conditions of the Tibet plateau.

Despite variations among species, most studies attribute metabolic adaptation under
high altitudes to a decreased muscle oxidative capacity. In this regard, lactate dehydro-
genase (LDH) is the crucial enzyme in anaerobic glycolysis, catalyzing the conversion
between pyruvate and lactate, a critical role in energy metabolism [50]. Interestingly, unlike
cattle, the yak exhibits higher LDH activities in the longissimus muscle, facilitating carbo-
hydrate utilization under limited oxygen supplies. Thus, this provides a unique adaptive
feature of yaks in high altitudes [51].

2.4. Genetic Background of High-Altitude Adaptations

Genetic adaptations to novel environments and climatic changes are a fundamental
process for species’ survival. The genetic mechanism for adaption to high altitudes appears
to be more complicated than any other phenotype understood thus far [52]. Species
have developed special characteristic features through long-term selection to cope with the
specific stressors of extreme terrestrial environments [7,8]. Genetic variation in a population
provides flexibility to adapt to changing environments and is crucial for the survival and
speciation of that population over time [53]. In the past, it was customary to focus on
structural sequence variation and consider each gene as a separate unit of evolution in
population genetic theory and empirical practice. However, adaptive phenotypes are more
likely a function of polygenic mutations. The detection of adaptive genetic signals with
conventional selection methods is more complicated than detecting other phenotypes [54].
It is widely accepted that adaptive evolutionary mechanisms can evolve via changes at
one or a few loci (selective sweep) with major effects or via simultaneous allele frequency
shifts at many loci with small effects [55]. The major developments in sequencing and
genotyping technology over the past decade have facilitated the identification and selection
of population-specific genome signatures for livestock adaptation. In the yak populations,
several genes putatively associated with adaptation to life at high altitudes were identified.
These genes are primarily related to physiological pathways in response to hypoxia and
temperature acclimatization and modifications of the cardiovascular system and energy
metabolism [13,20,56]. Endothelial PAS domain-containing protein 1 (EPAS1) is the top
candidate gene encoding the hypoxia-inducible transcription factor (HIF-2α). This gene
(EPAS1) is believed to regulate erythropoietin production, which changes with the available
oxygen in the cellular environment under high-altitude conditions [13,21,57]. There are also
distinct selection signatures within yaks, which suggest unique adaptation mechanisms
(Table 2).

For example, the vascular endothelial growth factor-A (VEGF-A) gene is a key regu-
lator of angiogenesis and an endothelial cell mitogen that regulates blood vessel size as
an adaptation to high-altitude functioning [35]. Furthermore, yaks must not only main-
tain a normal energy production under hypoxic conditions [5,11] but must also optimize
nutritional assimilation as a consequence of the limited forage resources available in their
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high-altitude environments [6]. Qiu et al. [13] reported five key genes showing positive
selection in the yak nutritional and metabolic pathways. Among the five described genes,
Camk2b gene regulates the secretion of gastric acid in the rumen, contributing to the assimi-
lation of volatile fatty acids produced by ruminal fermentation [58,59]. In addition, Gcnt3,
Hsd17b12, Whsc1, and Glul are functional in the polysaccharide, fatty acid, and amino-acid
metabolism, respectively [60,61]. The positively selected changes in Glul may be important
for the enhanced nitrogen utilization in yaks [11]. Other genes putatively involved in the
yak adaptation to high-altitude environments are summarized in Table 2.

Table 2. Genes/candidate genes underlying selection signatures of yak adaptation to high altitudes.

Candidate Genes Functions References

Camk2b, Gcnt3, Hsd17b12, Whsc1, and Glul High level of nutrition utilization in high altitudes [13]

HIF1A, MMP3, ADAM17, ARG2 High-altitude adaptation [13]

DEXI, DCC, and MRP4 Adaptation to high-altitude environments [14]

PDE4D, RPS6KA6, ITPR1, and GNAO1 Environmental information processing and
environmental adaptability [20]

EPAS1 Key transcription factor that activates the expression
of oxygen-regulated genes [21]

ABCG8, COL4A1, LOC102287650,
PDCD1, and NUP210 Adaptation to high-altitude environments [22]

VEGF-A Regulation of blood vessel size [35]

MMP3 Regulator of the cellular response to hypoxia [58]

HIF-1α Transcription of genes involved in oxygen homeostasis [59]

AQP4 Resistance to cerebral edema [62]
ATP8 and ATP6 Mitochondrial ATPase assembly [63]

DCC, GSTCD, MRPS28, and MOGAT2 Adaptation to high-altitude environments [64]

MT-ND1 and MT-ND2 Electron transport chain of oxidative phosphorylation [65]

GRIK4, IFNLR1, LOC102275985,
GRHL3, and LOC102275713 Physiological regulation under a hypoxic environment [66]

3. Transcriptomic Changes in Yaks Living in High-altitude Environments

Gene expression profiles indicate the activation of specific molecular pathways/networks
of genes that regulate external stimuli and provide insight into the role of regulatory vari-
ation in adaptive evolution [67–69]. Recent studies have identified different genes and
pathways that widely participate in various biological processes, including adaptations
to hypoxia. During periods of reduced O2 availability, changes in gene expression are
mediated by a specific family of transcription factors called the “master regulator” of O2
homeostasis. These genes are collectively known as hypoxia-inducible factors (HIF) [70,71].
Hypoxia-inducible factors are oxygen-dependent transcriptional activators, crucial in tu-
mor angiogenesis and mammalian development through the transcriptional regulation of
oxygen homeostasis genes in response to hypoxia [72]. In mammalian cells, HIFα isoforms
(HIF-1α and HIF-2α) are the most extensively studied and understood central mediators
of cellular adaptation to hypoxia. HIF1α functions as a key regulator of O2 homeostasis
that coordinates oxygen sensing and intracellular responses to hypoxia by regulating the
expression of hundreds of genes. Some of the HIF1α-regulated genes belong to biological
pathways for energy metabolism, angiogenesis, erythropoiesis, iron homeostasis, and
apoptosis [73–75].

Because of their adaptation to high-altitude environments coupled with exceptional
physical endurance, yaks ought to be a model animal for understanding the molecular
basis of high-altitude adaptation. As a result, the cDNA of HIF-1α, a subunit of HIF-1β
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in the yak, was sequenced by Dolt et al. [57]. The authors observed the variant-specific
expression of HIF-1α in the blood and liver. In contrast, expression was absent in the lung,
heart, and kidney of yaks. This tissue-specific expression might be the consequence of the
alternative splicing of HIF-1α, as observed in plateau pika, another high-altitude-adapted
animal [76].

Furthermore, a comparison of tissue-specific expression between yaks and cattle
revealed that HIF-1α was ubiquitously expressed, whereas HIF-2α expression in the yak
was limited to endothelial cells in tissues (kidney, heart, lung, spleen, and liver) and
blood [72]. The expression of both HIF-1α and HIF-2α was higher in the yak tissues than
in cattle. Other comparative transcriptome studies between cattle and yaks revealed that,
among several organs, the gene expression patterns of the heart showed the greatest
differentiation between the two species [77] and that differentially expressed genes in lung
and gluteus tissue were involved in red blood cell development and inhibition of blood
coagulation [78].

4. Conclusions

High-altitude habitats are characterized by extremely harsh climates consisting of
low temperature and low oxygen pressure. The native high-altitude yak has evolved
multiple unique adaptations, including morphological, physiological, biochemical, and
genetic changes due to long-term selection. To gain a more holistic understanding of
high-altitude adaptations, these types of studies need expansion, and efforts should be
made to integrate work on DNA sequence polymorphism with analyses of transcriptional
variation. Indeed, cold and hypoxia act synergistically on an organism’s performance at
high altitudes, yet the vast majority of studies have focused solely on adaptation to hypoxia.
Hence, joint investigations of these co-occurring environmental stressors should be the
priority for future research. Furthermore, the current climate change scenario characterized
by rising temperature undoubtedly alters the natural habitats of yaks by creating new
environmental conditions to which these animals were never before exposed. Therefore,
further investigations to determine how these shifts in climate contribute to changes in the
yak production and the livelihoods of highlanders are indispensable.
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