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Nonsyndromic cryptorchidism is a common multifactorial, condition with long-term

risks of subfertility and testicular cancer. Revealing the causes of cryptorchidism will

likely improve prediction and prevention of adverse outcomes. Herein we provide our

current perspective of cryptorchidism complexity in a synthesis of cumulative clinical

and translational data generated by ourselves and others. From our recent comparison

of genome-wide association study (GWAS) data of cryptorchidism with or without

testicular germ cell tumor, we identified RBFOX family genes as candidate susceptibility

loci. Notably, RBFOX proteins regulate production of calcitonin gene-related peptide

(CGRP), a sensory neuropeptide linked to testicular descent in animal models. We

also re-analyzed existing fetal testis transcriptome data from a rat model of inherited

cryptorchidism (the LE/orl strain) for enrichment of Leydig cell progenitor genes. The

majority are coordinately downregulated, consistent with known reduced testicular

testosterone levels in the LE/orl fetus, and similarly suppressed in the gubernaculum.

Using qRT-PCR, we found dysregulation of dorsal root ganglia (DRG) sensory transcripts

ipsilateral to undescended testes. These data suggest that LE/orl cryptorchidism

is associated with altered signaling in possibly related cell types in the testis and

gubernaculum as well as DRG. Complementary rat and human studies thus lead us to

propose a multi-level, integrated neuro-hormonal model of testicular descent. Variants in

genes encoding RBFOX family proteins and/or their transcriptional targets combined with

environmental exposures may disrupt this complex pathway to enhance cryptorchidism

susceptibility. We believe that a systems approach is necessary to provide further insight

into the causes and consequences of cryptorchidism.
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The undescended testis has been the object of continued interest over many years. In April 2018,
a search for “cryptorchidism” in PubMed (https://www.ncbi.nlm.nih.gov/pubmed) yielded nearly
10,000 articles spanning almost 100 years. Cryptorchidism has been an area of interest because of its
inheritance patterns in domesticated mammals, its high prevalence in man (2–9% of all newborn
boys) and its co-morbidities, including subfertility and testicular cancer. Despite sustained and
focused attention, the pathogenesis of cryptorchidism and its associated conditions remain poorly
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understood. Indeed, the more we study the condition, the more
complex it seems to become. It stands to reason that better
knowledge of the global mechanisms of testicular descent would
provide important insight into the causes of cryptorchidism, and
would allow us better to predict and prevent this common birth
defect and its consequences.

Through our work over the years studying testicular descent
and cryptorchidism in animal models and in man, we now
propose a consolidated model of testicular descent comprising
multilevel integration of neuro-hormonal signaling, and that
cryptorchidism results when a combination of genetic and
environmental factors target this integrated pathway. Below, we
present relevant published and unpublished evidence supporting
this perspective.

LEYDIG CELL HORMONES WORK
SEPARATELY AND TOGETHER TO BRING
ABOUT TESTICULAR DESCENT

Enlargement and regression/migration of the gubernacular
ligament (gubernaculum) connecting the ventral pole of the
testis/epididymis to the body wall in the inguinal region are
indispensable for testicular descent (1, 2). Based on Hutson’s
hormonal regulation model (3), transabdominal (Phase 1) and
transinguinal (Phase 2) descent are distinct, and largely regulated
by a non-androgenic hormone, now known to be insulin-
like 3 (INSL3), and androgens, respectively. At the same time
in most mammals a second ligament, the cranial suspensory
ligament (CSL), linking the dorsal pole of the testis to the dorsal
surface of the body cavity close to the embryonic kidney, needs
to dissolve. Studies of androgen receptor knockout (ARKO)
and tfm (testicular feminization) male mice, androgen-exposed
female mice, and anti-androgen-exposed rats clearly show that
the CSL is regulated by androgens and that its persistence
leads to cryptorchidism (4–9). Yet CSL regression is thought
to facilitate transabdominal rather than transinguinal, descent.
Other inconsistencies exist, complicating efforts to show that
distinct hormones regulate distinct phases of descent across
species. Remodeling of the CSL may not truly occur, or may be
less relevant in human fetuses (10, 11). Some human subjects
with complete androgen insensitivity syndrome have testes
located close to ovarian position (12). Studies in rodents suggest
that INSL3 overexpression leads to partial ovarian descent and
transinguinal migration of the processus vaginalis, leading to
hernia (13), which could be interpreted as an evolutionary relic
of a primitive mode of testis excorporation. Similarly, RXFP2,
the INSL3 receptor, appears to augment the role of androgens in
transinguinal descent (14) and together with AMHmay influence
gubernacular cell proliferation in culture (15).

Knockout experiments in mice clearly show independent
requirements for INSL3/RXFP2 and androgens in testicular
descent (16, 17); nevertheless causative mutations in
INSL3, RXFP2, AR (androgen receptor) or the Leydig cell
regulator NR5A1 (steroidogenic factor-1), are rare in cases
of cryptorchidism (18, 19). WNT signaling appears to be a
downstream target of both INSL3 and androgen in the fetal rat

gubernaculum (20, 21), and cryptorchidism and/or gubernacular
maldevelopment occur in mice with transgenic deletion of
WNT pathway genes, such as Sfrp1/Sfrp2, Wnt5a, Ctnnb, or
Vangl2 (16, 22–25). Yet none of these genes has been implicated
in human cryptorchidism. If INSL3 and androgen are each
indispensable for testicular descent, fetal Leydig cell function
must play a central role in cryptorchidism susceptibility. This is
strongly echoed by studies on the effects of maternal exposure
to phthalates in rats where the fetal Leydig cells are seen as
primary targets for this endocrine disruptor, leading to a
reduction in both INSL3 and testosterone production as well as
cryptorchidism (26). Yet the effects of phthalates appear to be
species-specific, with humans and mice seemingly more resistant
to these inhibitory effects on testicular hormone production
(27, 28). While detailed studies of Leydig cell function during
the prolonged process of testicular descent in human fetuses
are unavailable, it is reasonable to assume that genetic and/or
environmental factors that alter this function may contribute to
cryptorchidism.

THE SENSORY NEUROPEPTIDE
CALCITONIN GENE-RELATED PEPTIDE
(CGRP) PLAYS A ROLE IN TESTICULAR
DESCENT

A role for CGRP in testicular descent and cryptorchidism is
supported by in vitro and in vivo rat studies [reviewed in (29)].
Experiments in newborn rodents showed that transection of the
genitofemoral nerve (GFN; which innervates the gubernaculum)
causes cryptorchidism, and that CGRP release by the sensory
limb of the GFN regulates proliferation and motility of the
gubernaculum. Hutson and colleagues found evidence for
interaction between CGRP and androgens in rodent models
(30, 31), and in the absence of clear AR expression in the fetal
gubernaculum (32, 33) they theorized that androgens indirectly
modulate CGRP via effects on surrounding AR+ mammary
tissue. However, other data suggest that the fetal gubernaculum
does express its own functional AR (17, 21, 34–36). Clinical data
have not shown an association of genetic variants in the CGRP
pathway with cryptorchidism (37). However, we recently found
a potential role for RBFOX proteins, which regulate production
of CGRP, in genetic association analyses of cryptorchidism (see
below), which may provide evidence supporting a role for CGRP
in humans.

HERITABLE CRYPTORCHIDISM IN THE
LE/ORL RAT IS ASSOCIATED WITH
MULTI-LEVEL DYSREGULATION OF
TESTICULAR DESCENT, AND
MULTILOCUS INHERITANCE OF
CRYPTORCHIDISM

The Long Evans-derived LE/orl rat exhibits incompletely
penetrant cryptorchidism that is associated with variants in
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at least 2 genes, Syne2 and Ncoa4, which encode AR-
interacting proteins (ARIPs) (38, 39). As frequently observed
in cryptorchid rats exposed prenatally to anti-androgens (40–
42) and cryptorchid boys, affected LE/orl testes are located in
the superficial inguinal pouch, suggesting that this strain is a
good model for a common form of clinical cryptorchidism.
Testosterone levels and DHT-responsive transcript expression
are reduced in LE/orl males, suggesting altered AR signaling
(43). Testosterone deficiency alone is likely not sufficient to cause
cryptorchidism in this strain, since other work suggests that a
more marked reduction in Leydig cell hormone production is
required to elicit this effect (44). Interestingly, in a recent re-
analysis of transcriptome data (45) based on new information
(46), we found that 110 of 315 (35%) differentially expressed
LE/orl fetal testis transcripts map to genes whose expression is
enriched in Leydig cell progenitors (n = 62; p = 2 × 10−24)
or fetal Leydig cells (n = 48; p = 4 × 10−11; Fisher’s exact test
using Ingenuity Pathway Analysis/IPA R©). The majority (59 of 62,
95%) of Leydig cell progenitor-enriched genes are downregulated
at E17 in LE/orl as compared to the parent outbred strain

(LE/wt). In addition, 40 of these transcripts are also differentially
expressed in fetal gubernaculum, of which 37 (92%) are similarly
downregulated. This evident coordinate gene regulation is lost by
E19 (Figure 1A). These data are consistent with work published
by the Agoulnik lab, which has shown that a retinoic acid receptor
β type 2 Cre transgene is expressed in both Leydig cell progenitors
and gubernaculum, and that conditional deletion of Ar in these
cells impairs both testicular descent and fetal Leydig cell survival
(17, 47). Others have confirmed that Leydig cell progenitors
express AR (48), raising the possibility that the mesenchymal
progenitors in the testicular interstitium and the gubernaculum
may have a common origin, making AR important for both
testicular hormone production and response.

LE/orl rats also carry a homozygous insertion within the
Prrxl1 (Drg11, Drgx) gene that is inherited together with the
Ncoa4 variant. Prrxl1 regulates development of sensory neural
circuitry (49) and transgenic deletion in mice leads to loss
of CGRP-expressing neurons through apoptosis (50). Using
qRT-PCR as described previously (51), we found that Prrxl1
and other sensory transcript levels are altered in the L1-L2

FIGURE 1 | (A) Of 315 differentially expressed genes in LE/orl testis (45), 62 (20%) are Leydig cell progenitor-specific (46) and expression was reduced in 59 (95%) of

these at E17. Forty of 62 (shown here) are also differentially expressed in LE/orl gubernaculum, and 37 of these (92%) are also downregulated. By E19, coordinate

expression of these genes in these tissues is lost. (B) Expression levels of the sensory transcripts Prrxl1 (paired related homeobox protein-like 1, also known as Drg11

or Drgx), Pnoc (prepronociceptin) and its receptor, Oprl1 (opioid receptor-like 1), and Odz2 (odd oz/ten-m homolog 2, also known as Tenm2) measured by qRT-PCR

(logarithmic mean ± SEM) in LE/wt and LE/orl L1-L2 dorsal root ganglia (DRG) ipsilateral to descended (DT) or undescended (UDT) testes. ***p < 0.001, **p < 0.01,

*p < 0.05 vs. LE/wt; ||p < 0.01 vs. LE/wt; ##p < 0.01 vs. LE/orl-UDT by ANOVA; n = 5–10 per group, postnatal day 3 DRGs.
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dorsal root ganglia (DRG) of postnatal LE/orl rats, particularly
ipsilateral to cryptorchid testes (Figure 1B). These data suggest
that altered development of an integrated system comprising
Leydig cells, sensory nerves and the gubernaculum together
augment the risk of cryptorchidism in LE/orl rat fetuses. Yet
even with apparent defects at multiple levels, at least half
of all LE/orl testes descend normally. Moreover, we must be
cautious when dealing with the potential complexities of gene-
environment interaction, and the anatomical and contextual
differences between humans and other mammals. The levels
of endocrine disrupting chemicals (EDC) required to cause
cryptorchidism in experimental animals are much higher than
the typical range of human exposures; yet genetic heterogeneity
and the combined effects of multiple environmental influences
may put some boys at increased risk. The complexity of
the spontaneous LE/orl rat model of cryptorchidism may
provide insight into the complexity of cryptorchidism in
humans.

THE ETIOLOGY OF HUMAN
CRYPTORCHIDISM IS COMPLEX, AND
LIKELY ASSOCIATED WITH GENETIC AND
ENVIRONMENTAL FACTORS

Subtle Leydig cell dysfunction, characterized by increased
variance in INSL3 levels (52, 53) and hence increased
risk for susceptibility to other factors, and reduced
testosterone/luteinizing hormone (T/LH) ratio (54–56),
may occur in boys with cryptorchidism. It is unclear if these
defects are primary or secondary, genetic or environmental.
Our genome-wide association study (GWAS) of cryptorchidism
identified many suggestive signals, but none surpassed the
genome-wide significance threshold (57–59), typical of a
polygenic disorder. Pathway analysis of suggestive intragenic
signals showed enrichment of genes encoding proteins involved
in cytoskeletal functions, including known or predicted
ARIPs. Thus, complementary human and rat data suggest that
cryptorchidism susceptibility is heterogeneous, multilocus and
potentially multifactorial.

RBFOX PROTEINS MAY FUNCTION AS
MAJOR REGULATORS OF
NEURO-HORMONAL SIGNALING IN
TESTICULAR DESCENT AND
CONTRIBUTE TO CRYPTORCHIDISM
SUSCEPTIBILITY

Recently, we compared GWAS data from non-syndromic
cryptorchidism cases vs. controls (57) and from men with
TGCT with or without a history of cryptorchidism vs. controls,
and discovered suggestive signals in 19 genes, including
RBFOX1 and RBFOX3, paralogs that encode RNA-binding
proteins (RBPs) (60). We found that predicted RBFOX targets
are strongly enriched among developmental or differentially
expressed Leydig cell- and gubernaculum-specific transcripts.

FIGURE 2 | We propose that a neuro-hormonal signaling network regulates

testicular descent via direct and indirect interactions among multiple target

tissues (green circles). Development of the gubernaculum requires androgen

(T, DHT) and insulin-like 3 (INSL3) binding, respectively, to RXFP2 and AR

(together with AR-interacting proteins, ARIPs), and regulation by calcitonin

gene-related peptide (CGRP). LH regulates Leydig cells during later phases of

gestation. Rbfox/RBFOX transcripts/proteins are expressed (overlapping black

circle) at all levels of the system with evidence for autoregulation (curved

dashed arrow) and for regulation (solid straight arrow) by androgens [data from

(46, 60), Barthold et al., unpublished]. RBFOXs regulate alternative splicing of

Calca (dashed straight arrow) in dorsal root ganglia (DRG) to generate CGRP,

which is released by sensory nerves innervating the gubernaculum (solid black

line/diamond). Ar, Rxfp2 and other developmental transcripts are predicted

experimental and/or computational RBFOX targets (as denoted by red arrows;

http://lulab.life.tsinghua.edu.cn/postar/). Androgens and INSL3 (20, 21) and

possibly CGRP regulate other developmental transcripts in the fetal

gubernaculum (not shown). Transcripts (blue italic) and proteins (purple, capital

letters) are linked by dotted lines.

The RBFOX proteins have relevant functions that include
sex determination (61) and alternative splicing of Calca to
produce CGRP (62). Rbfox1 and Rbfox2 are expressed in
the rat fetal gubernaculum and L1-L2 DRGs, which produce
the CGRP needed for gubernacular development, and Rbfox2
expression is increased by DHT (data not shown). Based on these
observations, we hypothesize that a neuro-hormonal RBFOX-
AR-INSL3-CGRP signaling network regulating testicular descent
may exist (Figure 2). We base this model on the neuro-hormonal
data from rodent models, and these novel human genetic
data suggesting a role for RBFOX genes in cryptorchidism
susceptibility. Together, the human and rat data suggest that
RBFOX family genes expressed in gubernaculum, testis and
DRG (Figure 2) may regulate themselves and each other,
playing complex roles in post-transcriptional regulation of
CGRP, hormone receptor and/or other developmental molecules.
The RBFOX family may therefore connect the hormonal
and neural components of this complex network. Genetic
variation impacting this network may interact (locally and/or
systemically) with adverse effects of environmental endocrine
disrupting chemicals (EDCs), augmenting susceptibility to
cryptorchidism.
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CONCLUDING SYNTHESIS

A feature of cryptorchidismwhich we need to take into account is
that its etiology is primarily occurring in the fetus at a time shortly
after sex determination when hormonal regulation is largely via

local diffusion-based processes, and not by systemic circulation-
borne events (52). This probably accounts for the preponderance
of unilateral, as opposed to bilateral cryptorchidism and

the prevalence of ipsilateral rather than general associations
between factors. Localized regulatory networks such as we

describe here, which may become differentially susceptible
through increased variance (statistical “noise”) to a range of
environmental or possibly epigenetic effects, are unlikely to

reveal causality in single elements (genes or hormones) especially
when using insensitive and systemic methodological approaches.
Moreover, such localized and complex networks are linked to
a highly dynamic and irreversible pathway of events, making
them increasingly prone to stochastic/serendipitous localized
influences, or dosage effects.

The complexity of such pathways (Figure 2) could explain
the general failure to identify specific genes or EDCs associated
with clinical cryptorchidism. Such data inform our perspective

and underscore the need for a broader approach, utilizing

systems biology and predictive modeling, to increase the

likelihood of identifying both the causes and consequences of
cryptorchidism.
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