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Feasibility of a deep learning-based diagnostic 
platform to evaluate lower urinary tract disorders 
in men using simple uroflowmetry
Seokhwan Bang1,*,† , Sokhib Tukhtaev2,* , Kwang Jin Ko1 , Deok Hyun Han1 , Minki Baek1 ,  
Hwang Gyun Jeon1 , Baek Hwan Cho2 , Kyu-Sung Lee1

1Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 2Medical AI Research Center, Samsung Medical Center, 
Sungkyunkwan University School of Medicine, Seoul, Korea

Purpose: To diagnose lower urinary tract symptoms (LUTS) in a noninvasive manner, we created a prediction model for bladder 
outlet obstruction (BOO) and detrusor underactivity (DUA) using simple uroflowmetry. In this study, we used deep learning to ana-
lyze simple uroflowmetry.
Materials and Methods: We performed a retrospective review of 4,835 male patients aged ≥40 years who underwent a urody-
namic study at a single center. We excluded patients with a disease or a history of surgery that could affect LUTS. A total of 1,792 
patients were included in the study. We extracted a simple uroflowmetry graph automatically using the ABBYY Flexicapture® im-
age capture program (ABBYY, Moscow, Russia). We applied a convolutional neural network (CNN), a deep learning method to pre-
dict DUA and BOO. A 5-fold cross-validation average value of the area under the receiver operating characteristic (AUROC) curve 
was chosen as an evaluation metric. When it comes to binary classification, this metric provides a richer measure of classification 
performance. Additionally, we provided the corresponding average precision-recall (PR) curves.
Results: Among the 1,792 patients, 482 (26.90%) had BOO, and 893 (49.83%) had DUA. The average AUROC scores of DUA 
and BOO, which were measured using 5-fold cross-validation, were 73.30% (mean average precision [mAP]=0.70) and 72.23% 
(mAP=0.45), respectively.
Conclusions: Our study suggests that it is possible to differentiate DUA from non-DUA and BOO from non-BOO using a simple uro-
flowmetry graph with a fine-tuned VGG16, which is a well-known CNN model.
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INTRODUCTION

Lower urinary tract symptoms (LUTS) is a common 
disease with multifactorial causes. The most common cause 
of LUTS in men is benign prostate hyperplasia (BPH). Up 
to 50% of men over 50 years of age and 80% of men over 
80 years of age experience LUTS caused by BPH [1]. Detru-
sor underactivity (DUA) is another very common cause 
of LUTS. One review found that between 9% and 28% of 
patients with LUTS under 50 years of age had DUA, while 
48% of those over 70 years of age had DUA [2]. LUTS is a 
concept that includes voiding dysfunction and storage dys-
function, each feature represented by DUA and bladder out-
let obstruction (BOO), respectively [3]. It is critical to distin-
guish between these two diseases because their treatments 
and clinical responses differ.

Urodynamic studies (UDSs) are the gold standard for 
the diagnosis and evaluation of LUTS. However, the use of 
UDS is limited by its invasiveness. Porru et al. [4] found that 
4% to 45% of patients experience UDS complications, mostly 
urinary tract infection and hematuria. In addition, several 
patients report feeling shame and discomfort during the test 
and post-test anxiety [5].

Simple uroflowmetry, one component of UDS, is a simple, 
noninvasive diagnostic screening procedure used to calculate 
the flow rate of urine over time. Uroflowmetry produces a 
uroflowmetry graph that contains information regarding 
the voiding volume and maximum urine flow rate (Qmax) [6]. 
Several previous trials have attempted to categorize simple 
uroflowmetry graphs into several groups; however, there has 
been insufficient evidence and objective standards, including 
lack of pressure data, to achieve this end. There is a lack of 
evidence that uroflowmetry can distinguish obstructed void-
ing and DUA. However, as we have mentioned, this distinc-
tion is crucial in determining the appropriate treatment for 
LUTS.

Medical image analysis, which uses deep learning algo-
rithms, has recently become more popular for developing 
technologies such as image recognition [7,8]. Many studies 
have used deep learning algorithms to classify and diagnose 
several diseases based on images [9]. For instance, convolu-
tional neural networks (CNNs) have recently focused on 
optimizing technology for analyzing, patterning, and predict-
ing trends. In 2012, the CNN proposed by Krizhevsky et al. 
[10] emphasized its high performance in image recognition 
at classification task. Since then, researchers in the medical 
domain have been exploiting deep learning algorithms for 
various tasks to fully or partially automate the disease diag-
nosis.

This study sought to develop a fully automated device 
to distinguish DUA and BOO using patterns of simple uro-
flowmetry with a deep learning method.

MATERIALS AND METHODS

1. Ethics statement
This study was performed at a single center and was 

conducted according to the tenets of the Declaration of Hel-
sinki. The Institutional Review Board of Samsung Medical 
Center approved this study (approval number: 2019-12-062). 
Informed consent was waived by the Institutional Review 
Board of Samsung Medical Center (Seoul, Korea) because of 
the study’s retrospective design. 

2. Patients
We retrospectively reviewed the clinical data of 4,835 

men who underwent a pressure-flow study at Samsung 
Medical Center between December 2006 and December 
2017. We analyzed all patients who were ≥40 years of age 
and who underwent a pressure-flow study and focused on 
the pattern of uroflowmetry regardless of storage function. 
Those with diseases that can affect lower urinary tract 
function, bladder cancer, and prostate cancer were excluded. 
Patients who underwent previous prostate, bladder, and/or 
urethral surgeries and those with indwelling catheters (or 
needing regular catheterization) were also excluded. Patients 
with a history of cerebrovascular accident, neurologic dis-
orders, and spinal or pelvic bone trauma that could affect 
LUTS were excluded. Patients who had voided volumes less 
than 150 mL during simple uroflowmetry were also ex-
cluded. Finally, we excluded 77 patients whose study graphs 
were insufficient for analysis. Therefore, 1,792 patients were 
ultimately included (Fig. 1).

Fig. 1. Study design. CVA, cerebrovascular accident.

Exclusion criteria
Catheterized: 1,187
CVA history: 274
Bladder, prostate cancer or
lower urinary tract surgery: 664
Voided volume <150 mL: 841

Insufficient test: 77

Screening
n=4,835

Analysis
n=1,792

Enrollment
n=1,869
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3. Urodynamic examination
The UDS were performed by experts according to the In-

ternational Continence Society Good Urodynamics Practices 
protocol using an Aquarius TT UDS system (Laborie Medi-
cal Technologies, Toronto, ON, Canada) and a DORADO-KT 
(Laborie Medical Technologies) [11]. The UDS are recorded 
in four versions (7 Rel Z, 8 Rel A, 11 Rel 6, 12 Rel 0), each of 
which has a different output format.

DUA was defined as a bladder contractility index 
(BCI=PdetQmax+5Qmax) <100 [12]. BOO was defined as a 
BOO index (BOOI=PdetQmax–2Qmax) >40 [12].

4. Data pre-processing
The patients’ personal information and identification 

numbers were deleted according to the regulations. The 
uroflowmetry graph was extracted separately. The original 
graph was composed of data, and numerical information (and 
data that were not necessary for deep learning procedure). 
We separated the graph data using ABBYY Flexicapture® 
(ABBYY, Moscow, Russia), a program that permits the au-
tomated extraction of necessary parts from an image, except 
text. Using the ABBYY program, we extracted a uroflowm-
etry graph from the simple uroflowmetry test sheet (Fig. 2).

Deep learning models typically require a fixed image 
specification for training. Szegedy et al. [13] gained more 
accuracy with a 299×299 pixels input size, keeping the com-
putational effort constant. Zoph et al. [14] used both 299×299 

and 331×331 pixels for training ImageNet models. Similarly, 
we resized the resolution of all images to 299×299 pixels. Ow-
ing to the limited number of uroflowmetry graphs datasets, 
we performed a data augmentation technique for better 
classification performance of the trained models. The aim of 
data augmentation is to expand the size of a training datas-
et by generating modified images in the dataset. The nature 
of uroflowmetry graphs is greatly different from natural 
images such as dogs, cars, and pedestrian images. Thus, it is 
impractical to apply popular data augmentation techniques 
such as flipping and rotation because the spatial correlation 
of the uroflowmetry graph should be maintained. Therefore, 
we applied the cropping approach only as data augmenta-
tion, where we cropped the left and right top/bottom areas 
along with the central area that maintained approximately 
90% of the original graph.

5. Deep neural network model implementation
We adopted ResNet-18 [15], Inception-V3 [16], and VGG16 

[17] for the classification of the uroflowmetry images. After 
initializing with ImageNet-pretrained models, we extensively 
tuned hyper-parameters such as the learning rate, batch size, 
and activation functions in the training process. We trained 
DUA classification models and BOO classification models 
separately with the corresponding datasets.

To evaluate our models, 5-fold cross-validation was per-
formed. Pre-processed images were randomly divided into 

Fig. 2. An outline of uroflowmetry graph extraction and data augmentation pipeline The ABBYY program provides the extraction area from the 
original test sheet (A), then image augmentations (C) are made using the original crop (B).

A B C
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five non-overlapping subsets: four subsets were used for 
training and one was left for validation. This process was re-
peated for all five subsets so that each subset was evaluated 
as a test set once. The results were averaged and recorded. 
The average value of  area under the receiver operating 
characteristic (AUROC) curve derived from 5-fold cross-val-
idation and accordant mean average precision (mAP) values 
for both DUA and BOO datasets were chosen as evaluation 
metrics [18].

Keras, a high-level Python API, was used as our deep 
learning platform, enabling fast experimentation. The net-
works were implemented in the Ubuntu 16.04 LTS environ-
ment, equipped with a 1080Ti GeForce GPU series.

ResNet-18 has been heavily involved in the deep learn-
ing community for the last half decade, allowing researchers 
to train deeper networks with the help of simply adding 
identity mappings to every few stacked layers. We chose 
ResNet-18 because it is light and suitable for our dataset at 
hand. Similarly, Inception-V3 is a CNN model that gained 
popularity in the deep learning community for its ap-
proach toward keeping the compute cost constant. Moreover, 
Inception-V3 is known to improve the training ability of 
a network through variations in properties. We employed 
Inception-V3 to determine whether it could capture low-
level features of our uroflowmetry graphs. The last network 
we experimented with was VGG16, developed by the Visual 
Geometry Group of the University of Oxford. It presented 
a thoroughly evaluated network of increased depth, stick-
ing to 3×3 convolutional filters. The model is relatively more 
straightforward than the ResNet and Inception counter-
parts and has achieved promising results in various tasks. 

Therefore, we adopted VGG16 for the DUA and BOO datas-
ets as well. Since VGG16 outperformed the former networks, 
we present detailed explanations of hyperparameter tunings 
of the VGG network alone. The model was optimized for 
DUA classification using a stochastic gradient descent with 
a learning rate of 0.003. Likewise, the hyperparameters of 
BOO classification were tuned as same as for DUA except 
for a learning rate of 0.01. The input size of 299×299 pixels 
showed better results compared to smaller analogs for both 
datasets.

6. Statistical analysis
Data analysis was performed using the Statistical Pack-

age for the Social Sciences (SPSS® Statistics version 25.0; 
SPSS Inc., IBM Corp., Chicago, IL, USA), and a Student’s t-
test was used to compare patient characteristics. Statistical 
significance was set at a p-value of <0.05.

RESULTS

As shown in Table 1, among the 1,792 patients, 482 
(26.90%) had BOO, and 893 (49.83%) had DUA. There were 
significant differences between BOO and non-BOO patients 
in UDS parameters except time to voiding time. In DUA and 
non-DUA patients, there were significant differences in all 
the pressure-flow study parameters, except age and voiding 
volume.

As a result of deep learning evaluations, the mean 5-fold 
cross-validation AUROC metrics for DUA classification 
trained with ResNet-18 and Inception-V3 networks were 
0.699 and 0.648, respectively. As mentioned, the best score of 

Table 1. Baseline patient characteristics

Characteristic
BOO

p-value
DUA

p-value
No (n=1,310) Yes (n=482) No (n=899) Yes (n=893)

Age, y 66.41 64.01 <0.001 64.39 64.93 0.229
BOOI 18.06 61.08 <0.001 33.01 26.22 <0.001
BCI 98.86 114.68 <0.001 127.66 78.38 <0.001
Voiding efficacy 86.35 77.78 <0.001 86.16 81.92 <0.001
Qmax, mL/s 13.95 9.99 0.001 14.67 11.09 0.001
Average flow, mL/s 6.38 4.58 <0.001 6.86 4.95 <0.001
Voding time, s 66.13 72.83 0.022 54.38 81.58 <0.001
Flow time, s 50.00 57.28 <0.001 44.86 58.66 0.001
Time to peakflow, s 20.92 24.50 0.001 16.65 27.16 <0.001
Voided volume, mL 272.91 233.89 <0.001 262.04 262.79 0.881
Residual volume, mL 48.67 77.30 <0.001 45.82 66.99 <0.001

Values are presented as mean value only.
BOO, bladder outlet obstruction; DUA, detrusor underactivity; BOOI, bladder outelet obstruction index; BCI, bladder contractility index; Qmax, 
maximum urine flow rate. 
Student t-test.
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0.733 was obtained with a fine-tuned VGG16 network. The 
BOO classification trained with ResNet-18 and Inception-V3 
networks were 0.661 and 0.560, respectively. The VGG16 net-
work trained with the BOO dataset also achieved a higher 

discrimination rate of 0.722 than ResNet-18 and Inception-
V3. Figs. 3 and 4 show the ROC curves and PR curves of 
the VGG16 network for the DUA and BOO datasets, re-
spectively. We also calculated the sensitivity and specificity 

Fig. 3. The mean ROC curve (A) and the mean PR curve (B) of VGG16 network for DUA vs. non-DUA classification. ROC, receiver operating charac-
teristic; DUA, detrusor underactivity; AUC, area under the curve; PR, precision-recall.
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Fig. 4. The mean ROC curve (A) and the mean PR curve (B) of VGG16 network for BOO vs. non-BOO classification. ROC, receiver operating charac-
teristic; BOO, bladder outlet obstruction; AUC, area under the curve; PR, precision-recall.
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Fig. 5. Model explainability with GRAD-
CAM++. The first row presents samples 
from the VGG16 model trained with 
the DUA dataset while the second row 
depicts samples from the VGG16 model 
trained with the BOO dataset. BOO, 
bladder outlet obstruction.
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values of the DUA and BOO models. The sensitivity and the 
specificity of VGG16 network for DUA dataset accounted 
for 65.9% and 68.9% at the maximum Youden’s index [19]. 
The sensitivity and the specificity of VGG16 network for 
BOO dataset accounted for 65.1% and 68.9% at the maximum 
Youden’s index. Furthermore, because a fine-tuned VGG16 
was the winner among the three experimental models, we 
only depicted the visualizations of  a GRAD-CAM++ [20]. 
Visual explanation techniques such as GRAD-CAM++ are 
used to produce rough localization mappings by highlight-
ing important regions in the image. GRAD-CAM++ provides 
feature maps with respect to a specific class score to gener-
ate visual explanations. Fig. 5 illustrates some samples from 
uroflowmetry images and their respective mappings next to 
them. Evidently, GRAD-CAM++ activated the signal graphs 
compared to background regions. This implies that models 
learned to identify clinically proper regions in the images.

DISCUSSION

Since the introduction of simple uroflowmetry in 1948 [6], 
several attempts have been made to establish a pattern of 
analysis for this technique. Van de Beek et al. [21] attempted 
to classify and predict uroflowmetry. In this study, the group 
attempted to formalize uroflowmetry and identify diagnostic 
patterns among specialists. However, the predictive rate was 
only 36%. Gacci et al. [22] published a common flow pattern 
in 2007. They formulated uroflowmetric parameters and 
searched for the items of diagnostic suspicion of uroflowm-
etry curves. However, their agreement was not satisfactory, 
as it had a kappa value of 0.05. Moreover, the analysis was 
based on the lack of reproducibility and the characteristics 
of simple uroflowmetry, which vary greatly depending on 
the environment.

There have also been other attempts to predict or diag-
nose BOO. Bladder wall thickness (BWT) was predicted to be 
increased by BOO as one of the indicators that can be mea-
sured by ultrasound [23]. Manieri et al. [24] first discussed 
this possibility. Using 5 mm as the reference point and a 
significant difference (r>0.6), this group found that 63% of 
the normal group had values <5 mm, while 88% of patients 
with BOO had values >5 mm. In contrast, Hakenberg et al. 
[25] found that the BWT increased slightly with age, but not 
significantly.

The penile cuff test was also applied to measure BOO. 
This test measures the detrusor contractility by detecting 
the iso-volumetric bladder pressure [26]. An inflatable cuff 
is placed around the penis shaft and expands automatically 
until the urine flow is interrupted. The next cuff then de-

flates rapidly to restart the flow. This cycle can be repeated 
until the urination ends. The pressure required to interrupt 
urinary flow during the cycle is considered to represent 
bladder pressure (Pcuff.int) [27]. However, this method has 
several limitations, including its high cost and the need for 
patients to be seated when they take the test. The seated na-
ture of the test may introduce bias, as most men void while 
standing [28]. We attempted to mitigate these limitations us-
ing deep learning.

The prediction of BPH through AI has also been sug-
gested by other researchers. Torshizi et al. [29] predicted 
severity of BPH based on fuzzy-ontology, and the accuracy 
was about 90%. However, the results of this study presented 
the severity based on the results obtained through question-
naire and clinical examination, and our study showed a big 
difference in that it looked at the possibility of diagnosis 
only by graph analysis. In addition, a non-invasive prediction 
of LUTS using ANN (artificial neural network) was also 
presented [30], but its accuracy did not satisfied expectations. 
In this study, we tried to overcome such limitations using 
CNN, and the prediction of DUA is the first attemption.

In this study, we proposed the use of a deep learning tool 
as a diagnostic alternative to invasive UDSs. To our knowl-
edge, this is a novel approach. We believe that it can be used 
as the basis for the development of a tool to compensate for 
the defect of the UDS. This study sought to determine if one 
could use graph patterns to predict disease. We compared 
patients with and without DUA and those with and without 
BOO. We did not account for patients who may have both 
DUA and BOO. Given the large number of other patients 
with LUTS, the study attempted to identify these complex 
diseases. We used CNN to confirm the accuracy of predic-
tions for patients with BOO and DUA using only a simple 
uroflowmetry graph. The raw signal data of the urodynamic 
test results graph was not provided from the urodynamic 
test device. Hence, an image capture software program, AB-
BYY Flexicapture®, was used to extract 1,792 data samples 
and there was no error case. Thus, we believe that the im-
age capture process was robust. This research is meaningful 
in that it used a deep learning method to approach areas 
that have not been investigated using prototype trials. We 
consider that this is a meaningful work that will serve as 
a cornerstone for further research. We experimented with 
known algorithms offered for classification tasks such as 
ResNet-18, Resnet-50, Inception-V3, Efficientnet-B0, however, 
final predictions were not as good as VGG16’s (data not 
shown). Besides, with our dataset, VGG19 attained the same 
result as its VGG16 variants, therefore we decided to select 
the lighter one. As this is a feasibility study of deep learn-
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ing models on urodynamic test data, a further study with a 
larger dataset will be needed. Also, we will consider experi-
menting with recent models in our future study.

This study has several limitations. First, the prediction 
rate of this study is only slightly over 70%, which indicates 
that a higher prediction rate is required. Additionally, the 
mean AUC scores of fine-tuned VGG16 can be ameliorated 
by increasing the number of training images. Second, the ca-
pacity to set the basis for model predictions is confined due 
to the absence of external data. Although visual interpreta-
tions of GRAD-CAM++ in Fig. 5 provided some evidence 
that the model discriminated between the signal graph and 
gridlines in the background, the full interpretability needs 
to be addressed in future work. And third, this study is ex-
cluded patients who had both BOO and DUA. We included 
patients who had only BOO or only DUA. In further studies, 
it is needed to be include this complexed situation to devel-
oped useful device to diagnose BOO and DUA.

CONCLUSIONS

Our study suggests possibility of automated and non-in-
vasive device to differentiate DUA from non-DUA and BOO 
from non-BOO using a simple uroflowmetry graph with a 
fine-tuned VGG16, which is a well-known CNN model.
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