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ABSTRACT

Background. In recent years, ER+ and HER2- breast cancer of adjuvant therapy has
made great progress, including chemotherapy and endocrine therapy. We found that
the responsiveness of breast cancer treatment was related to the prognosis of patients.
However, reliable prognostic signatures based on ER+ and HER2- breast cancer and
drug resistance-related prognostic markers have not been well confirmed, This study
in amied to establish a drug resistance-related gene signature for risk stratification in
ER+ and HER2- breast cancer.

Methods. We used the data from The Cancer Genoma Atlas (TCGA) breast cancer
dataset and gene expression database (Gene Expression Omnibus, GEO), constructed
a risk profile based on four drug resistance-related genes, and developed a nomogram
to predict the survival of patients with I-IIT ER+ and HER2- breast cancer. At the same
time, we analyzed the relationship between immune infiltration and the expression of
these four genes or risk groups.

Results. Four drug resistance genes (AMIGO2, LGALS3BP, SCUBE2 and WLS) were
found to be promising tools for ER+ and HER2- breast cancer risk stratification.
Then, the nomogram, which combines genetic characteristics with known risk factors,
produced better performance and net benefits in calibration and decision curve analysis.
Similar results were validated in three separate GEO cohorts. All of these results showed
that the model can be used as a prognostic classifier for clinical decision-making,
individual prediction and treatment, as well as follow-up.

Subjects Bioinformatics, Oncology, Women’s Health
Keywords ER+ and HER2- breast cancer, Drug resistance-related gene, Risk signature

INTRODUCTION

Breast cancer is a common diagnosed malignant tumor that lead to cancer-related mortality
in women worldwide; it can mainly classified into invasive ductal carcinoma (IDC) and
invasive lobular carcinoma (ILC) by histopathological classification (Dianatinasab et al.,
2019; Li, Uribe & Daling, 2005; Viale, 2012). The basic status of the estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)
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play a crucial role in molecular subtypes of breast cancer. Previous molecular studies
demonstrated that breast cancer can be classified into Luminal A (ER+/PR+/HER2-
/low Ki-67); Luminal B (ER+/PR+/HER2-/+/high Ki-67), HER2-overexpression (ER-
/PR-/HER2+) and triple negative breast cancers (ER-/PR-/HER2-) (Al-Thoubaity, 2020;
Goldhirsch et al., 2011). Different molecular subtypes exhibit different responsiveness to
therapies. For instance, most patients of breast cancer are present as ER+ and HER2- and
can be benefit from endocrine therapy.

Although surgery-based comprehensive therapy can significantly improve the prognosis
of breast cancer, the endocrine resistance may occur in approximately 33% of patients with
endocrine therapy (Achinger-Kawecka et al., 2020). When endocrine-resistance appears,
chemotherapy is needed to control the disease progression (Zhu et al., 2018). Nevertheless,
a small subset of patients are resistant to both endocrine therapy and chemotherapy,
so that lead to poor prognosis. In clinical practice, tamoxifen is one of the first-line
endocrine therapies that competes with estrogen for ER and counteracts the estrogen signal
pathway, which retards breast cancer growth (Swaby, Sharma ¢ Jordan, 2007; Ye et al.,
2019). Similarly, Doxorubicin is the most widely used DNA-damaging chemotherapeutic
drug (Pfitzer et al., 2019). Many studies have been investigated to explore the mechanism
of drug resistance. Several pathways including the PI3K/Akt/mTOR pathway, fibroblast
growth factor receptor pathway, etc. are activated to reverse the growth suppression
induced by tamoxifen and doxorubicin (Guo et al., 2016; Li et al., 2020a; Li et al., 2019; Lu
et al., 2019; Shah et al., 2015; Turner et al., 2010). In addition, several studies showed that
tumor infiltrating lymphocytes (TILs) play a pivotal role in chemotherapy response and
associate with clinical outcome in all subtypes of breast cancer (Denkert et al., 2010; Guo et
al., 2016; Stanton ¢ Disis, 2016; Turner et al., 2010).

The clinicopathological risk factors, such as TNM stage and histological grade, are
usually used to assess the survival risk of breast cancer. However, as a result of molecular
differences, clinical prognoses are mainly different even in patients with histologically
similar tumors, which indicates that only using these risk factors as evaluation indicators
cannot accurately predict the prognoses of breast cancer patients (Tang et al., 2019).
Therefore, it is necessary to identify novel prognostic biomarkers to improve the prognosis
evaluation ability of breast cancer.

In this study, we used the data obtained from The Cancer Genome Atlas (TCGA)
breast cancer dataset and the Gene Expression Omnibus (GEO) database, then built a four
resistance-related genes based risk signature and developed a nomogram to predict the
survival of patients with ER+ and HER2- breast cancer in stage I-III. Finally, we analyzed
the association between immune infiltrates and the four genes’ expression or risk groups.

MATERIALS & METHODS

Data download

The raw counts of the RNA sequence data of the TCGA-BRCA dataset were downloaded
from the TCGA website (https:/portal.gdc.cancer.gov/). The clinical features and the
disease-free survival (DFS) status of these patients were downloaded from the cBioportal
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Table 1 Baseline data sheet for patients in TCGA (n =473).

NO. %
Age
>50 year 348 73.57%
<50 year 125 26.43%
T
T1 139 29.39%
T2 259 54.76%
T3 69 14.59%
T4 6 1.27%
N
NO 214 45.24%
N1 168 35.52%
N2 53 11.21%
N3 35 7.40%
NX 3 0.63%
Pathologic Stage
Stage ] 95 20.08%
Stage II 265 56.03%
Stage I1I 113 23.89%
PR Status
positive 411 86.89%
negative 60 12.68%
unknown 2 0.42%

database (http:/ivww.cbioportal.org). We selected 473 ER+ and HER2- breast cancer
patients in stage I-III or the subsequent analysis (Table 1). The R software (version 3. 6. 3)
was used to standardize and process data.

GSE21653 (100 samples of ER+ and HER2- early invasive breast cancer), GSE17705 (298
samples of ER+ breast cancer) and GSE11121 (200 patients) datasets were acquired from
GEO database (https:/www.ncbi.nlm.nih.gov/geo/) as the validation cohorts. GSE21653
has DFS as the endpoint, GSE17705 has relapse-free survival (RFS) as the endpoint and
GSE11121 has distant metastases-free survival (DMFS) as the endpoint.

Screening of differentially expressed genes

The resistance-related differentially expressed genes (DEGs) were detected with the
“limma” package in R software from GSE67916 (DEGs between MCF7 tamoxifen resistant
(MCF7/TamR) cell lines and MCF7 parental cell lines) and GSE24460 (DEGs between
MCF7 doxorubicin resistant (MCF/ADR) cell lines and MCF?7 parental cell lines). Defined
genes with adjusted p values <0. 05 and [log2foldchange| values >1. 5 as DEGs. The genes
both up-regulated (16 genes) and down-regulated (21 genes) in the two GEO datasets
were finally screened (Fig. S1B). Volcano plots and heatmaps were performed using the
R packages “ggpubr”, “ggthemes” and “pheatmap” to exhibit the differentially expressed
genes (Figs. S1A, Fig. 1C).
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Figure 1 The workflow of the identification of breast cancer resistance-related four gene signatures.
Full-size &l DOI: 10.7717/peer;j.12202/fig-1

Identification and validation of a risk signature associated with breast
cancer

The data downloaded from TCGA datasets were used as the training cohort to analyze
the correlation of genes’ expression with the DFS time based on univariate Cox regression
analysis. Patients without survival for less than 0 days were removed to identify prognostic
genes, only the genes with the p values < 0. 05 were selected as candidates (Fig. 2A).
Then, the candidate genes were selected for stepwise multivariate Cox regression analysis
(Fig. 2B). The Akaike information criterion (AIC) was used to avoid over-fitting, we
chosed the best-fit predictive model with the lowest AIC (AIC =359. 44). Finally, a
four-gene risk signature was established and calculated their risk coefficients use the
formula: The riskScore = (—0. 175%expression of AMIGO2) + (—0. 210* expression of
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LGALS3BP) + (—0. 106* expression of SCUBE2) + (—0. 293* expression of WLS). Using
the optimal riskScore cut-off value (—10.09) calculated by the R package “survminer”,
we divided patients in both the training cohort and the validation cohort into high-risk
and low-risk group. Then, Kaplan—-Meier curve and log-rank test were used to analyze
the different survival time between high-risk group and low-risk group. Subsequently, a
time-dependent receiver operating characteristic (ROC) curve was calculated to compare
the sensitivity and specificity of risk factors.

Development of the prognostic nomogram

To identify independent predictors of DFS, we tested clinical risk factors and the gene-based
riskScore. Then we used the R package “rms” to establish the prognostic nomogram. The
discrimination and calibration abilities of the nomogram were assessed with a concordance
index (C-index) and calibration plot. For further evaluation of the predictive performance,
we also used the time-dependent ROC curves.

Function and pathway enrichment analyses

The R package “clusterProfiler” was used to classify the 37 DEGs” GO terms or KEGG
pathways. Functional enrichment analyses were carried out for GO terms and KEGG
pathways through the significance threshold of p value < 0. 05.

Immune infiltration analyses

The 22 kinds of immune cell infiltration levels of TCGA-BRCA dataset were quantified by
CIBERSORT algorithm with 1,000 permutations (http:/cibersort.stanford.edu/) (Chen et
al., 2018a). CIBERSORT calculates a p value to confirm the accuracy of the results, only the
samples with the p value < 0.05 were selected for analyzing the immune infiltration levels
between the high- and low- risk groups. Moreover, to explore the correlation between
the four genes’ expression and the abundance of immune cell infiltrates (B cells, CD4+ T
cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells), the Tumor Immune
Estimation Resource (TIMER, https:/cistrome.shinyapps.iofimer/) was utilized.

Statistical analyses

All the statistical analyses were performed with R software (version 3. 6. 3). All the statistical
analyses included univariate and multivariate Cox regression analysis, ROC curve analysis,
Kaplan—Meier survival analysis and correlation analysis. The correlation analysis was
based on the R package “corrplot”. Statistical differences were compared by Wilcoxon test
between two groups and Kruskal-Wallis H test for multigroup comparison. P < 0.05 was
considered statistically significant.

RESULTS

Screening DFS-related resistance-related DEGs

The flow chart was shown in Fig. 1. To screen the DFS-related resistance-related DEGs,
two datasets was downloaded from GEO database. After “limma” filtering between MCF7
doxorubicin or tamoxifen resistant cell lines and MCF parental cell lines (Fig. S1A), the
intersection of up-regulated and down-regulated genes was taken respectively (Fig. S1B).
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Figure 2 Determination and analysis of the eight genes signature in the training cohort. (A, B) Uni-
variate Cox (A) and multivariate Cox (B) regression analysis results. (C) The four-gene signature riskScore
distribution plot. (D) The vital status plot of patients. (E) The heatmap of the expression profiles of the
four genes. (F) The correlation of four genes in TCGA.
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A total of 37 resistance-related DEGs were obtained. The expression profile of the 37 DEGs
in GSE24460 and GSE67916 were shown in Fig. S1C.

Next, we investigated whether genes could be used as prognostic candidates in ER
positive (ER+) and HER2 negative (HER2-) breast cancer patients in stage [-III. The
univariate Cox regression analysis found that eight genes were associated with DFS
time in ER+ and HER2- breast cancer, all of these genes were protective factors (Fig.
2A). The eight candidates were further analyzed by multivariate Cox regression analysis
and examined four genes (AMIGO2, LGALS3BP, SCUBE2 and WLS) as the prognostic
candidates (Table 2, Fig. 2B). In addition, we verified the prognosis of these four genes
in the Kaplan—Meier Plotter website (https:/kmplot.com/nalysis/). Consistent with our
results, WLS and SCUBE2 were protective factors, high expression of the two genes had
longer RES time (Fig. S2C). The results of other two genes were not statistically significant.
A risk score formula (the formula shown in methods) derived from the expression levels of
the four prognostic candidates was constructed by the multivariate Cox regression analysis.

Identification and validation of a four-gene based risk signature

All enrolled patients were divided into high- and low-risk groups with its optimal cut-off
value among the training cohort by using the riskScore. The survival status plot and
heatmap for the expression of the four genes were showed in Figs. 2C-2D. The prognostic
capacity of the four-gene based riskScore was estimated by calculating the AUC of a
time-dependent ROC curve (Fig. 3A). The AUCs of the four-gene risk signature were 0.686
and 0.714 for 3- and 5-year DFS respectively, suggesting that the risk signature had certain
sensitivity and specificity. Kaplan—Meier curve showed that patients in the high-risk group
had a lower DFS time than those in the low-risk group (Fig. 3A).

We also analyzed the correlation of the four genes in ER+ and HER2- breast cancer
patients in TCGA-BRCA dataset. The correlation heatmap showed that the maximum R
values was 0.14, indicating that these four genes were independent of each other (Fig. 2F).

To validate the prognostic prediction performance of riskScore, the same as training
cohort, patients in the validation cohorts were classified into high- and low-risk groups
using the same formula obtained from the training cohort. In all validation cohorts, patients
with a high riskScore had a shorter survival time and a high riskScore was associated with
worse prognosis (Figs. 3B—3D). Additionally, the time-dependent ROC analyses for the
survival prediction of the risk signature showed AUCs of 0. 624 at 3 years, 0. 613 at 5
years in GSE21653 and 0. 618 at 3 years, 0. 616 at 5 years in GSE17705, demonstrating
that this risk signature was capable of predicting survival in ER+ and HER2- or ER+ and
HER?2 equivocal patients (Figs. 3B-3C). Moreover, we also used the time-dependent ROC
analysis to explore the prognostic prediction performance if the subtype of breast cancer
was unknown. The AUCs were 0.730 at 3 years and 0.669 at 5 years in GSE11121 (Fig.
3D), suggesting that our risk signature also has good predictive ability when breast cancer
subtype is unknown.

Stratified analyses with clinical factors
As shown in Fig. 4, the four-gene based risk signature could serve as a promising candidate
for predicting the survival of breast cancer in different subtypes stratified by the clinical
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Table 2 Four resistance-related genes associated with DFS.

Gene Coef HR Group
AMIGO2 —0.17541 0.839117 Down-regulated
LGALS3BP —0.20954 0.810961 Up-regulated
SCUBE2 —0.10588 0.899535 Down-regulated
WLS —0.29345 0.745685 Up-regulated

factors, including NO-1 type (p =0.0014), N2-3 (p =0.026), T1-2 (p = 0.0006) T3-4
(p=0.04), stage I-II (p = 0.0022), stage III (p =0.0078), PR positive (PR+, p < 0.0001)
patients, respectively. But the PR negative (PR-) subtype was not statistically significant.
As shown in Fig. 5, the riskScore value was higher expression in PR- subtype than in PR+
subtype, SCUBE2 and WLS were higher expression in PR+ subtype than in PR-subtype,
the expression of SCUBE2 was negatively correlated with T and Stage, these results were
consistent with the clinical prognostic significance.

Functional enrichment analyses
To explain the function of the resistance-related DEGs, we performed enrichment analyses
of the GO terms and KEGG pathways (Figs. S2A-S2B).

GO analyses showed that these resistance-related DEGs were enriched in several
biological processes (BP), including antigen processing and presentation of peptide antigen
via MHC class I, antigen processing and presentation of exogenous peptide antigen via
MHC class I and epithelial structure maintenance (Fig. S2A).

KEGG analysis showed that the resistance-related DEGs were related to endocytosis,
cellular senescence, antigen processing and presentation and adherens junction (Fig. S2B).

Revealing the correlation between the risk signature and
tumor-infiltrating immune cells

Because TILs play a key role in chemotherapy response and our enrichment analyses
results showed that the DEGs associated with antigen presentation, first, we evaluated the
abundance of the 22 kinds of immune cells in each TCGA-BRCA patient (Fig. 6A). Next,
we utilized the Wilcoxon test to compare the difference immune cell infiltration levels
between the high- and low groups and found that B cells memory (p =0.042) and T cells
follicular helper (p =0.016) were high infiltrated in the high-risk group, and B cells naive
(p=0.047) and mast cells resting (p = 0.042) were low infiltrated in the high-risk group
(Fig. 6B). Unfortunately, due to the limitation of sample size, the relationship between
the immune cell infiltration levels and survival is unknown. Whereafter, we assessed the
correlation between the four resistance-related DEGs and six infiltrating immune cells by
using the TIMER database. The results revealed that the genes had good correlation with
immune cells (Fig. S3).

Building a prognostic nomogram combining riskScore with clinical
risk factors

Nomograms are widely used in predicting cancer patients’ prognoses, principally because
they have the ability to decrease the statistical prediction models into a single numerical
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Figure 3 Kaplan—Meier survival curves of DFS between high-risk and low-risk patients and ROC
curves in (A) TCGA-BRCA, (B) GSE21653, (C) GSE17705 and (D) GSE11121.
Full-size Gal DOI: 10.7717/peerj.12202/fig-3

assessment, which is tailored to the profile of an individual patient (Iasonos et al., 2008;
Long et al., 2018).

In this article, we combined the four-gene based riskScore with clinical risk factors to
construct a nomogram to assess the probability of 3- and 5- year DFS for patients with ER+
and HER2- early stage invasive breast cancer in TCGA-BRCA dataset. After univariate and
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multivariate Cox regression analyses filtering, the riskScore, T and Stage remained in the
final Cox model for DFS (Figs. 7A—7B). A nomogram was established based on the final
Cox model for DFS to evaluate of the 3- or 5-year DFS (Fig. 7C). The clinical stage and
riskScore of the patient can be matched with this Nomogram to obtain the total points
and estimate the survival rate of the patient. The nomogram achieved a C-index of 0. 740
(95% CI, 0. 653—0. 826), and the calibration plots demonstrated that the nomogram has
good predictive power (Fig. 7D). Time-dependent ROC analyses also indicated that the
nomogram was accurate in prediction of DFS compared to use riskScore or clinical risk
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factors alone (Fig. 7E). In conclusion, all the results suggest the clinical practical use of the
nomogram for prediction of DFS.

DISCUSSION

Breast cancer is highly heterogeneous in molecular and cellular, the morbidity of it increases
every year. In recent years, molecular biomarkers of breast cancer become more and more
important. Understanding the biological functions of breast cancer may offer new methods
that can be used to predict and treat the disease. However, there are still few specific
biomarkers with significant prognostic to predict survival of breast cancer. Therefore, in
order to improve the prognosis of breast cancer, molecular screening of biomarkers is
urgently needed.

In this study, we developed and validated a novel risk signature based on four resistance-
related genes to predict patients with stage I-III ER+ and HER2- breast cancer. This article
showed that our risk signature could effectively distinguish the breast cancer patients
between low and high risk of survival groups. In addition, the four-gene based model
was demonstrate to be independent from other clinicopathological features. Then, a
comprehensive nomogram was constructed to predict the individualized DFS, which
performed better than clinical factors and riskScore to classify the patients’ survival risk.
Finally, we explored the correlation between the four resistance-related DEGs and immune
infiltrates.
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Previous investigation proved that protein-based signature could predict tamoxifen
treatment outcome in recurrent breast cancer and Long Noncoding RNA based signature
could predict recurrence among ER+ breast cancer patients treated with tamoxifen
(De Marchi et al., 2016; Wang et al., 2018). In reality, the expression profile-based
prognostic biomarkers signature has been already investigated in several types of cancer,
including glioblastoma multiforme, colon cancer, hepatocellular carcinoma, gastric cancer
and non-small cell lung cancer (Long ef al., 2018; Qiu et al., 2020; Wang et al., 2020; Zuo et
al., 2019). But there is no research on the application of predictive models of resistance-
related genes in ER+ and HER2- breast cancer.

There are four genes involved in building the risk signature in this study, they are
AMIGO2, LGALS3BP, SCUBE2 and WLS. All of these genes are protective markers in our
study, there are no previous studies demonstrated their role in drug resistance. These genes
paly different roles in different diseases.
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Adhesion molecule with IgG-like domain 2 (AMIGO2) is a multifunctional amphoterin-
induced genes (Kuja-Panula et al., 2003). AMIGO?2 controls cell survival and angiogenesis
in endothelial cells via Akt activation, knockout of AMIGO2 can reduce cell survival
and induce apoptosis (Park et al., 2015). AMIGO2 also can promote liver metastasis by
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regulating the tumor cell adhesion to liver endothelial cells and it function as a pro-
proliferation factor in human melanoma in vitro and in vivo (Fontanals-Cirera et al., 2017;
Kanda et al., 2017).

The lectin galactoside-binding soluble 3 binding protein (LGALS3BP), a large oligomeric
glycoprotein, is overexpressed in many cancers and always associated with cancer growth
and migration (Woo et al., 2017). LGALS3BP can induce vascular endothelial growth factor
in human MDA-MB-231 cells and promotes angiogenesis, it also act as a E-selectin ligand
that associated with metastasis and poor prognosis in ER- breast cancer (Piccolo et al.,
2013; Traini et al., 2014). But in colon cancer, different from previous studies, LGALS3BP
suppresses tumor proliferation in colon cancer cells, high expression of LGALS3BP have
a good prognosis (Piccolo et al., 2015). There are no researches to explore the function of
LGALS3BP in ER+ and HER2- invasive breast cancer.

The findings of Signal Peptide-CUB-EGF Domain-Containing Protein 2(SCUBE?2) are
controversial. Chen et al. (2018b) proved that upregulated SCUBE2 expression in breast
cancer stem cells can promote triple negative breast cancer aggression. But Lin et al. (2014)
demonstrated that SCUBE2 inhibited MDA-MB-231 cell proliferation. In MCF-7 breast
cancer cell line, overexpression of SCUBE2 protein suppresses proliferation, this result is
consistent with our study (Cheng et al., 2009). SCUBE2 also performed as protective factor
in glioma, non-small cell lung cancer and colorectal cancer and inhibited the proliferation
and migration (Guo, Liu & Liu, 2017; Song et al., 2015; Yang, Miao & Li, 2018).

The Wnt secretion protein Wntless (WLS) has been proved to be involved in the
development of several human cancers. WLS mostly plays the role of oncogene in most
tumors. In triple negative breast cancer, glioma and colon cancer, WLS promotes the cell
proliferation (Augustin et al., 2012; Voloshanenko et al., 2013). In lung adenocarcinoma
cell lines, WLS is upregulated by small nucleolar RNA host gene 17 (SNHG17), the
up-regulation of WLS could reverse the inhibition of proliferation and promote apoptosis
effects of SNHG17 down-regulation (Li ef al., 2020b). But in melanoma cell, WLS inhibits
proliferation through the B-catenin signaling pathway and reduces spontaneous metastasis
(Yang et al., 2012).

Tumor-infiltrating immune cells in the TME play a crucial role in antitumor and
chemotherapeutic effects (Denkert et al., 2010; Stanton ¢ Disis, 2016). Therefore, we used
the CIBERSORT algorithm and the TIMER database to detect the relationship between risk
signature and immune cells. The results proved that B cells memory and T cells follicular
helper (Tth) were positive correlated infiltrated in the high-risk group, but B cells naive
and mast cells resting were negative correlated infiltrated in the high-risk group. Tth cells
are crucial for maintenance of humoral memory that assist B cells in producing germinal
centers (Crotty, 2019). Mast cells may play protumoral or antitumoral roles in different
tumor types, for instance, it could inhibit prostate adenocarcinoma development but
promote the tumorigenesis of highly malignant neuroendocrine cancers (Pittoni et al.,
2011) discovered.

This study also has some limitations. This is a retrospective research study and is
susceptible to inherent biases. First, the study has potential selection bias and limited
sample size. Then, the riskScore and nomogram cannot guide treatment strategies of breast
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cancer, so that further verification and prospective trials are needed. Moreover, all of the
data were obtained from the database, the population ethnicities in the TCGA database
are mainly composed of White patients and Black patients; therefore; the findings of
other ethnicities still require proof, and some other clinicopathological features including
histological grade, are not contained in the nomogram. Because of the lack of clinical data
in database, the nomogram has not been verified, so further researchs are needed to verify
the nomogram. Finally, the precise mechanism of resistance-related genes involved in the
risk signature need further in vitro and in vivo validation experiment.

CONCLUSIONS

In this study, we used the data from TCGA-BRCA dataset and GEO database, constructed
a risk signature based on four drug resistance-related genes and developed a nomogram to
predict the survival of patients with stage I-III in ER+ and HER2- breast cancer. The results
were validated in three GEO cohorts. All the results indicated that this risk signature might
serve as novel molecular biomarkers for predicting breast cancer survival and provide
guidance for therapeutic strategies.
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