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Maintenance of sinus rhythm in patients with non-paroxysmal AF is 

often challenging and complex. Catheter ablation is usually superior 

to anti-arrhythmic drug therapy alone. However, recurrence rates are 

high and have remained suboptimal. Although pulmonary vein isolation 

(PVI) is usually effective in treating paroxysmal AF, it is not sufficient for 

many patients with non-paroxysmal AF, particularly those with long-

standing persistent AF. A major limitation is that our understanding of 

mechanisms of AF is incomplete. Electroanatomical remodelling adds 

substantially to the complexity of AF. Recent advances in imaging and 

mapping technology may facilitate better understanding and mapping 

of AF and subsequently improve outcomes of therapy.

The purpose of this article is to review current techniques of imaging 

and mapping that can be applied in the management of patients 

with non-paroxysmal AF with a focus on their relevance to catheter 

ablation. Future applications and opportunities for new knowledge will 

also be discussed.

Mechanisms of AF
Descriptions of AF wavefront properties are influenced by the study 

tools (optical mapping versus electroanatomical contact or noncontact 

mapping) and can explain some of the discrepancies in experimental 

studies and clinical observations.1,2 Imaging studies have shown a 

close association with abnormal atrial architecture and clinical AF, 

but a unified model relating ultrastructural remodelling to arrhythmia 

maintenance is less than complete. Multidisciplinary approaches 

incorporating imaging, basic science, computer modelling, and clinical 

observations are vital for addressing these knowledge gaps.

Current models of non-paroxysmal AF often focus on both triggers 

and an atrial substrate able to perpetuate the arrhythmia. For patients 

with non-paroxysmal AF, ectopic triggers can include pulmonary vein 

and non-pulmonary vein triggers such as the superior vena cava, 

coronary sinus or crista terminalis.3 Electroanatomical remodelling 

facilitates trigger formation, shortening of atrial refractory periods and 

the promotion of fibrosis.4–6 Elimination of focal triggers in addition to 

PVI improves ablation outcomes.7 

Two competing theories on AF maintenance have been proposed 

and have formed the basis for various ablation techniques. The first is 

the multiple wavelet theory, which describes AF as self-perpetuating 

rhythm independent of focal discharges but rather supported by a 

critical mass of myocardium allowing constant formation and dispersal 

of wavelets.8,9 The second is a localised source model in which focal 

areas of re-entry or discharges sustain AF. These organised regions 

result in disorganised fibrillation due to wave-break as the impulses 

encounter tissue with anisotropy and conduction heterogeneity.10 These 

competing mechanisms may not be mutually exclusive, particularly in 

patients with non-paroxysmal AF.11

Contemporary ablation strategies for non-paroxysmal AF are based on 

elimination of prevalent triggers (including pulmonary vein and other 

thoracic arrhythmogenic sites), dynamic real-time mapping of drivers 

of AF such as rotors and focal discharges or modification of the atrial 

substrate using a combination of anatomical lesion sets. 

These approaches have been used alone or in combination with 

variable clinical outcomes. Hybrid techniques such as combined 

endocardial and epicardial ablation have been proposed to target 

the posterior wall and epicardial sources of AF.12 Modulation of 

autonomic inputs through ablation of ganglionated plexi have also 

been considered as an adjunctive ablation strategy.13 
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Cardiac and Thoracic Imaging
Multimodality imaging can improve management of patients with non-

paroxysmal AF and assist with ablation strategies (Figure 1). Traditional 

measurements of atrial size and morphology have been supplemented 

with functional and structural assessments through techniques such 

as strain imaging and late-gadolinium enhanced cardiac magnetic 

resonance imaging (LGE-CMR). Nuclear imaging such as PET can 

measure atrial inflammation and metabolism as it pertains to AF.14–16 

In a recent pilot study, left atrial uptake of 18F-fluorodeoxyglucose 

was assessed through PET-CT scans.16 Left atrial metabolism and 

scarring were found to be increased in patients with greater AF 

burdens. Further validation of these novel techniques is needed. 

Intraprocedural imaging, including intracardiac echocardiography 

and 3D rotational angiography, can be integrated with fluoroscopy 

and electroanatomical mapping to provide real-time information 

of challenging anatomy.17 Current clinical applications of imaging 

include procedural planning, patient selection, prognostication of 

arrhythmia recurrence and evaluation of postoperative complications,  

such as pulmonary vein stenosis.

Atrial Size and Morphology
Atrial volume can be measured through a variety of non-invasive 

modalities including echocardiography, CT or CMR imaging with good 

agreement among the studies.18–21 3D echocardiography is more 

accurate and reproducible than 2D echocardiography and is preferred 

when available (Figure 1A).22 Increased atrial size is linked to poorer 

outcomes after ablation particularly in patients with non-paroxysmal 

AF.23 Abnormal atrial morphology (increased sphericity) is a marker of 

advanced remodelling and also a predictor of poor outcomes including 

stroke (Figure 1B).24,25 These phenotypic changes identify patients who 

may require more aggressive management to maintain sinus rhythm 

and prevent thromboembolic complications.

Anatomic variation in pulmonary vein anatomy is observed in 20–30% 

of patients undergoing catheter ablation and may impact long-term 

ablation outcomes.26–28 Pre-procedural imaging of the pulmonary veins 

can be helpful in selecting an ablation strategy although the impact 

on outcomes, procedural safety, fluoroscopic exposure and long-term 

costs are less established.29–31 Cross-sectional imaging can also identify 

the course of thoracic structures such as phrenic vein and coronary 

arteries. Understanding the proximity of these structures to the atrium 

can be critical when ablating near the left atrial appendage (LAA) or left 

lateral ridge,both of which are commonly targeted in patients with non-

paroxysmal AF.32 The left main coronary artery and left circumflex artery 

may course near the LAA ostia and cases of ablation-related coronary 

vasospasm have been reported.32 Integrating electroanatomical data, 

intracardiac ultrasound and cross-sectional imaging is often used to 

avoid these complications. The oesophagus and its relationship to the 

posterior atrial wall can be visualised on cross-sectional imaging and 

superimposed into electroanatomical mapping systems, which may 

avoid ablation related oesophageal injury. Due to lateral oesophageal 

motility that occurs during ablation procedures, real-time monitoring of 

the oesophageal location and luminal temperature is likely superior to 

a static pre-procedural assessment.33

Atrial Wall Thickness
The atrium is a thin-walled, pliable structure whose size and geometry 

are dependent upon volume status and loading conditions. There is 

regional and inter-patient variability in wall thickness; pathologic and in 

vivo studies generally agree that the average left atrial wall thickness 

is between 1–4 mm  and can range between 0.5–12 mm.22,34 There is 

an age-related increase in left atrial wall thickness and men generally 

have thicker atrial walls than women.35,36 While atrial volumes and 

structure are impacted by AF, a direct relationship between atrial wall 

thickness and AF burden is less clearly demonstrated.37–39 Given its 

high spatial resolution, CT can most accurately measure atrial wall 

thickness in vivo although this is not without limitations. CT-based 

measurements are generally reported to be lower than ex vivo tissue 

samples, which may relate to the importance of loading conditions, 

the effect of pathological sample preparation or an inherent limitation 

to CT scanning.11

Assessment of left atrial wall thickness may have implications for 

patients with non-paroxysmal AF undergoing ablation procedures. 

Takahashi et al. performed high-resolution CT scans on 50 patients 

with AF and compared this to 25 control patients without AF. There 

was an increase in the thickness of the pulmonary vein–left atrial 

wall junction that was dependent on AF burden. Patients with thicker 

walls had higher incidences of ATP-provoked dormant conduction.38 

Suenari et al. demonstrated that regional atrial thickness at the left 

lateral ridge was an independent predictor or arrhythmia recurrence 

after PVI.40 In a retrospective study of patients with non-paroxysmal 

AF undergoing LAA isolation, ostial wall thickness measured on 

pre-procedural CT scan was found to correlate with electrical 

reconnection. A retrospective evaluation of patients undergoing PVI 

reported that the ratio of ablation lesion force-time-integral to the 

underlying atrial wall thickness could accurately predict conduction 

gaps and dormant conduction.41

Wall thickness information could facilitate a strategy of tailored 

ablation energy delivery. Ablation energy delivery is generally 

titrated both by electrogram parameters (impedance changes and 

electrogram attenuation) as well as empirically based on anatomic 

location, with lower power delivery along the posterior wall and 

higher power delivery along thicker structures such as the left 

atrial ridge. This paradigm does not account for the wide range of 

wall thickness seen through all regions of the atrium. In a study of 

60 patients with persistent AF undergoing catheter ablation, there 

was a similar range of wall thickness in areas normally found to be 

thinner such as the posterior wall (0.7–3.1 mm), as there were in 

thicker regions such as the left lateral ridge (0.5–3.5 mm) and mitral 

isthmus origin (0.9–2.8 mm). Whether a wall-thickness-guided ablation 

strategy would improve lesion durability is unclear. Opportunities for 

study also exist with other forms of titratable ablation energy such 

as the visually-guided laser balloon ablation system.42 Investigational 

ablation technologies using low-intensity collimated ultrasound can 

directly measure left atrial wall thickness which may in the future be 

incorporated into dosing strategies.43

Atrial Strain 
Pathological atrial remodelling can lead to chamber dilation, geometric 

distortion and fibrosis, which may lead to a substrate for arrhythmias 

including AF. These structural alterations also affect wall compliance 

and myocyte contractility with subsequent impairment of the normal 

atrial function as a conduit, reservoir and a contractile chamber. Real-

time imaging with echocardiography and CMR can quantify atrial 

function through atrial strain assessment, which has been correlated 

with adverse cardiovascular outcomes include atrial arrhythmias.44–46 

Abnormal atrial strain is associated with an increased incidence of 

AF as well as higher post-ablation recurrence rates in patients with 
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paroxysmal and non-paroxysmal AF.47–49 In a study of 65 patients with 

paroxysmal and persistent AF who underwent multi-modality imaging, 

abnormal atrial strain parameters correlated with the extent of LGE-

CMR derived atrial fibrosis independent of left atrial volumes.50 Atrial 

strain and the extent of fibrosis were more severe in patients with 

persistent rather than paroxysmal AF. These observations highlight the 

overlapping relationship between structural, mechanical, and electrical 

atrial remodelling.

Unlike traditional measures of left atrial compliance and function 

that rely on pulmonary vein and transmitral flow, atrial strain can be 

assessed while in sinus rhythm or AF.36 Wall strain may also be a useful 

surrogate for assessing wall fibrosis as measured on LGE-MRI51 and 

correlates with ablation outcomes.

Atrial Fibrosis
Advances in spatial and temporal resolution of CMR imaging allow 

for accurate imaging of the thin-walled atrial structures (Figure 

1C). Multiple parameters including atrial wall thickness, functional 

left atrial parameters and fibrosis can be obtained simultaneously 

through CMR.44,52,53 Assessment of atrial fibrosis through LGE-CMR has 

been performed for over a decade and has been shown to correlate 

spatially with both histopathological samples and endocardial voltage 

mapping.54–56 However, there can be significant technical challenges 

that limit its broad applicability. Patients can be imaged while in AF 

although both irregular and rapid heart rates can limit image quality 

or render fibrosis assessment impossible.57–59 Rhythm and rate control 

prior to imaging can be challenging in patients with non-paroxysmal AF. 

Cardiac devices may be sources of significant artifact.60 Beyond image 

acquisition challenges, interpretation of LGE-CMR images is variable 

among centres and the optimal processing technique remains to be 

better described. Many protocols require expert operator input to 

select appropriate detection thresholds,limiting the external validation 

of these studies.61 Despite these current challenges, inter- and intra-

observer agreement in high-volume centres remains high.62

The efficacy of DE-MRI-guided ablation vs. Conventional catheter 

Ablation of Atrial Fibrillation (DECAAF) study was a large multicentre 

observational study of patients with AF undergoing catheter based 

ablation who had LGE-CMR performed prior to their procedures.63 

Of the 260 patients included in the final analysis, 75 (28.8%) had 

persistent AF and 17 (6.5%) permanent AF. The majority of patients 

had PVI only (68.1%). Arrhythmia recurrence post-ablation was related 

to the extent of global atrial fibrosis (unadjusted HR 1.06; 95% CI 

[1.03–10.8]; p<0.001) and was independent of covariates including age, 

sex, hypertension, congestive heart failure, left ventricular ejection 

fraction, left atrial volume or AF subtype among others. Similar 

relationships between the degree of left atrial fibrosis and outcomes 

after ablation have been shown in single centre studies.64,65 LGE-MRI 

has also been used to evaluate left atrial substrate post-catheter 

ablation. Applications such as assessment of lesion quality, identifying 

conduction gaps, or quantifying residual fibrosis post-ablation have 

also been reported.60,65–70 However, the clinical significance of these 

approaches remains to be determined.71

Given the correlation of atrial fibrosis and ablation outcomes in 

observational studies, LGE-CMR could be used in selection of ablation 

candidates. In the DECAAF study, the addition of fibrosis data to 

traditional clinical risk factors to recurrence prediction models resulted 

in a small but significant increase in prognostic accuracy for the 

recurrence of AF (risk difference 0.05; 95% CI [0.01–0.09]). The clinical 

utility of such strategies has not been prospectively investigated.

For patients with non-paroxysmal AF, LGE-CMR defined fibrosis may 

be used to guide the ablation strategy by providing a personalised 

ablation approach. A sub-study of the DECAAF trial examined 177 

patients with follow up LGE-CMR performed 90 days after their 

initial ablation procedure. The amount of residual fibrosis (pre-

ablation fibrosis that was not targeted through ablation lesions) 

was associated with arrhythmia occurrence.72 Targeting LGE-CMR 

defined fibrosis may improve ablation outcomes and is the focus of 

the on-going DECAAF-2 trial.73 Novel strategies incorporating LGE-

MRI defined substrate into in silico atrial models to predict optimal 

ablation sites are also under investigation.74

Given the challenges in technique and reproducibility and lack of 

prospective studies, the current role of LGE-CMR for management of 

patients with non-paroxysmal AF remains limited. LGE-CMR defined 

fibrosis may harbour critical drivers of persistent AF.75 Substrate-based 

A: The use of 3D ultrasound to evaluate left atrial volume and functional parameters. An 
automated 3D reconstruction is superimposed on a greyscale echocardiography dataset. 
B: Cardiac MRI reconstruction of left atrial volume and morphology. Reconstruction of the 
3D anatomic shell can be compared to a theoretical sphere shaped atrium to calculate the 
sphericity, which may hold prognostic significance. C: Late gadolinium enhanced cardiac 
MRI can be used to measure location of atrial fibrosis. The extent of fibrosis can be used 
to categorise patients into a novel scoring system, which has prognostic importance for 
arrhythmia recurrence after ablation procedures. Sources: Mor-Avi et al.;21 Siebermai et al.58 
Reproduced with permission from Elsevier. den Uijl et al.24 Reproduced with permission from 
John Wiley and Sons.
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ablation strategies (targeting fibrosis and channels based on atrial 

voltage mapping) have shown some efficacy but in a randomised 

clinical trial did not add benefit compared to traditional step-wise 

ablation strategies.76–78 In lieu of specific targets, quantifying fibrosis 

may guide ablation by further refining classification of AF beyond the 

current paradigm (paroxysmal, persistent, long-standing persistent).79 

The degree of remodelling and fibrosis does not necessarily correlate 

directly with AF subtype,63,76 which may explain in part why some patients 

with paroxysmal AF require more extensive ablation for clinical success, 

while others with non-paroxysmal AF have success with PVI alone.78,80,81 

Mapping Atrial Electrical Activity
AF can be triggered or sustained by focal drivers that cluster in 

specific regions of the left and right atrium.82 These regions are more 

prevalent in patients with non-paroxysmal than paroxysmal AF likely 

due to advanced remodelling associated with greater AF burden. 

Early strategies aimed at ablating these critical regions were based 

on analysis of local bipolar electrograms assessed on a point-by-point 

basis during AF. The various electrogram morphologies were thought 

to represent evidence of electrophysiological phenomenon associated 

with AF drivers such as high-frequency discharges, shortened refractory 

periods, micro-re-entry, or local conduction block.10,83 Such approaches 

include complex fractionated electrograms (CFAE),dominant frequency 

analysis, high Shannon entropy, or sites with activity spanning large 

portions of the AF cycle length.84–86 These approaches have been the 

subject of multiple clinical trials with equivocal results regarding their net 

clinical benefit, partially due to the subjective nature of identifying such 

sites and the low-specificity of these sites in locating critical drivers.87

CFAE ablation has been one of the more commonly performed 

mapping approaches, with various mapping systems incorporating 

automated detection algorithms.83 Specific criteria for CFAEs have 

been proposed but most often operators will assess points manually, 

reducing the reproducibility of these techniques. 

CFAE-based ablation strategies in addition to PVI in patients with 

persistent AF were the subject of the multicentre Substrate and Trigger 

Ablation for Reduction of Atrial Fibrillation II (STAR AF II) trial.88 In this 

multicentre, randomised controlled trial, 589 patients were assigned 

to undergo PVI alone, or PVI with the addition of linear lesions, or the 

addition of left atrial CFAE ablation. The addition of CFAE ablation was 

associated with longer procedural and fluoroscopic times without 

improved long-term freedom from AF (18 month freedom from AF 

59% versus 49%; p=0.15 for between-group differences). However, 

in another study CFAE ablation as a component of a stepwise 

ablation strategy aimed at restoration of sinus rhythm via ablation 

improved outcomes in patients with persistent and long-standing  

persistent AF.89

Non-invasive Mapping of AF
As opposed to point-by-point electrogram analysis, newer techniques 

can provide real-time mapping of electrical activity simultaneously 

across the atrium (Figure 2). These wide-field mapping techniques 

allows for direct visualisation of driver activity and assessment of their 

temporal stability. These techniques have provided key insights into 

the mechanism of AF and have corroborated with some observations 

made using optical and in silico mapping techniques.90–92

Invasive and non-invasive mapping techniques integrate multiple local and far-field electrocardiogram signals to represent wavefront propagation during AF. Analysis of these visualisations 
can help localise focal drivers of AF or the substrate necessary to sustain the arrhythmia. Panels A and B demonstrate simultaneous, bi-atrial activation maps created with a novel mapping 
system (Abbott). A: Left atrial rotor with counterclockwise activation (red to blue) with passive activation of the right atrium. B: Two focal sources present simultaneously, a counterclockwise 
right atrial rotor as well as a focal left atrial source showing centrifugal activation. C: Dispersion mapping using a PENTARAY™ (Biosense Webster) with both spatial and temporal 
dispersion indicating sites of interest. D: Epicardial phase mapping during AF generated by a noninvasive body mapping system (ECVUE, CardioInsight Technologies). Rotational activation is 
demonstrated in the posterior right upper atrium. Sources: Narayan et al.;102 Seitz et al.105 Reproduced with permission from Elsevier. Haissaguerre et al.94 Reproduced with permission from 
Wolters Kluwer Health.
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Body surface potentials generated from atrial electrical activity can 

be used to create real-time epicardial activation maps (Figure 2D). 

This approach was first used to non-invasively map AF by Guillem 

and colleagues using phase maps generated by 56 electrodes placed 

on the chest and back.92 Additional techniques using 256-electrode 

vests integrated with CT imaging have been developed to provide 

high resolution (6 mm) 3D electroanatomical mapping.93 Similar 

electrocardiographic imaging (ECGI) systems are available commercially 

and have been integrating into AF ablation strategies. Haissaguerre et 

al. used an ECGI system in 103 patients with persistent AF undergoing 

a driver-based ablation strategy and compared this with a historical 

control group who had undergone a step-wise ablation approach.94 

Patients underwent ablation starting in regions with the highest 

density of drivers with additional linear lesions made if AF failed to 

terminate. There was a median of four driver regions per patient, and 

the number of drivers increased with AF burden. As compared with 

the control group, patients undergoing the targeted ablation approach 

had similar clinical results (1 year freedom from AF 85% versus 87% 

in control group; p=non-significant) with less radiofrequency energy 

delivery (35±21 versus 65±33 minutes; p<0.0001). Similar results from 

multicentre studies using non-contact mapping of persistent AF have 

been reported95 with favourable long-term outcomes (77% 1-year 

freedom from AF).

There are several limitations to non-invasive mapping that may limit 

its clinical applicability. Electrical activity generated by the atrium is 

generally low amplitude when measured on body surface electrodes, 

which may degrade signal quality. These systems reconstruct signals 

from epicardial structures only while there may be differential 

endocardial-epicardial activation during AF.96 Sites identified as focal 

drivers could simply represent a wavefront breakthrough site from a 

passive endocardial structure not critical to AF propagation. Importantly, 

far-field signal contamination remains as a major challenge. Finally, the 

inter-atrial septum and LAA, which may harbour sites critical for AF, are 

poorly visualised with this technique.93,97,98

Invasive Mapping of AF
In a prior study, a multielectrode array catheter (EnSite™, Abbott) was 

used to reconstruct virtual unipolar electrograms from 64 non-contact 

electrodes to display voltage and activation maps on a 3D anatomical 

map during AF.99 Noncontact mapping (NCM) has been used to map AF 

activation patterns,99,100 although some studies did not find that rotors 

or focal sources were prevalent or necessary for AF propagation. 

NCM has been used successfully to identify conduction gaps in linear 

lesions sets, localise premature atrial contractures and target atrial 

tachycardias.101 However, the use of NCM to ablate AF sources has not 

been described.

Focal impulse and rotor modulation (FIRM) mapping uses bi-atrial 

contact basket catheters along with a novel mapping system (Topera, 

Abbott; Figures 2A and 2B). This approach was the focus of the 

CONventional ablation for atrial fibrillation with or without Focal 

Impulse and Rotor Modulation (CONFIRM) trial, a single centre 

prospective randomised controlled trial of 92 patients undergoing 

ablation of AF (72% with persistent AF).102 All patients underwent FIRM 

mapping and were randomised in 1:2 fashion to undergo FIRM directed 

ablation followed by conventional ablation versus a conventional 

ablation approach alone. In this series, rotors and focal impulses were 

seen in 97% of patients, demonstrated temporal stability of at least 10 

minutes and were more numerous in patients with persistent versus 

paroxysmal AF. The FIRM-guided strategy resulted in higher rates of AF 

termination or slowing ablation and improved rates of single-procedure 

freedom from AF (82.4% versus 44.9% after median follow up of 273 

days; p<0.001). Similar findings on the spatial and temporal stability 

of rotors and focal sources have been demonstrated in multicentre 

registries using the FIRM mapping approach.82

Regional atrial mapping with the use of multipole catheters (as opposed 

to point-by-point mapping or panoramic approaches) has been 

applied successfully to AF mapping and ablation (Figure 2C). Contact 

mapping avoids reliance on far-field signal interpretation inherent 

to non-invasive mapping while the use of multiple simultaneous 

points provides better analysis of the spatiotemporal components 

of electrogram surrogates of AF drivers, which may improve the 

specificity of ablation targets.103,104 Seitz et al. performed a prospective 

study of 105 patients with AF, including 80 with non-paroxysmal AF, who 

underwent AF ablation guided by spatiotemporal dispersion observed 

with the use of a 20-electrode multispline catheter (PentaRay®, 

Biosense Webster).105 These patients were compared with a historical 

cohort who underwent a conventional ablation approach (PVI followed 

by stepwise approach for patient with persistent AF). Patients who 

underwent the dispersion-guided ablation approach had lower rates of 

AF/AT recurrence after single or multiple procedures (45% versus 64%; 

log-rank p=0.026 and 15% versus 41%; log-rank p<0.001, respectively). 

In separate experiments the authors used optical mapping and 

numerical simulations to recreate their clinical findings of increased 

dispersion near the vicinity of active drivers. However, a limitation of 

this approach is that in the absence of a panoramic map of both atria 

it can be difficult to identify the primary drivers and true activation 

patterns. These combined experimental and clinical reports suggest 

that regional contact mapping may be useful tool for mapping and 

ablating non-paroxysmal AF. However, prospective studies are needed 

for further validation.

Invasive mapping of AF triggers can be performed with the use 

of traditional multipolar catheters strategically placed to maximise 

diagnostic yield.106 Catheters can be simultaneously placed in regions 

commonly harbouring arrhythmogenic triggers such as the superior 

vena cava, cristae terminals, LAA and coronary sinus. AF can then be 

induced with high-dose isoproterenol infusion and sites of triggers 

can be targeted for ablation. These triggers may be more prevalent 

in patients with long-standing persistent AF compared to those with 

persistent AF and paroxysmal AF.107 Trigger mapping has been shown in 

retrospective series to be a useful strategy in patients with prior failed 

ablations and long-standing persistent AF.108,109

Challenges and Future Direction
Real-time mapping to study AF mechanisms and/or guide ablation 

of non-paroxysmal AF has been implemented in various forms with 

promising, albeit mixed, results. Such discrepancies are likely because 

of the heterogeneous nature of non-paroxysmal AF as well as the 

relative merits and limitations of the mapping and ablation approaches. 

Acute termination of AF during targeted ablation is often demonstrated 

supporting the mechanistic validity of these approaches. However, 

it is unclear if AF termination is a clinically meaningful procedural 

endpoint.10 Focal drivers may cluster in regions (such as the antrum of 

the pulmonary veins or posterior wall) often targeted in conventional 

ablation approaches, which may further limit the incremental benefit 

of additional ablation. Overall, superiority to anatomic or stepwise 

ablation approaches has not been convincingly demonstrated. For 

(A and B) Source: Narayan et al.102 
Reproduced with permission from Elsevier; 
(C) Source: Seitz et al.105 Reproduced 
with permission from Elsevier; (C) Source: 
Haissaguerre et al.94 Reproduced with 
permission from Wolters Kluwer Health.
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example, in the multicentre experience reported by Knecht et al. on 

the use of non-contact guided mapping of AF, radiofrequency ablation 

time and long-term clinical success were similar to traditional ablation 

approaches for persistent AF.95 Multicentre reports and meta-analyses 

on the use of FIRM guided ablation have not consistently shown 

therapeutic benefit compared to traditional ablation strategies.110–113

Conclusion
Imaging and mapping technology continue to evolve providing a 

better understanding of anatomy, arrhythmic substrate and patterns 

of AF activation. These tools have been successfully implemented into 

ablation planning and execution at some centres. Future advances in 

imaging/mapping fidelity and automation could improve ease of use 

and facilitate real-world implementation. 

The outcomes and clinical utility of ablation of predetermined targets 

based on anatomical landmarks with/without additional ablation of 

triggers, or tailored ablation of specific targets based on real-time 

dynamic mapping of AF mechanisms incorporating advanced imaging/

mapping systems remain to be determined and will largely depend on 

further advances in these technologies.114,115 

Clinical Perspective
• Advanced mapping and imaging tools are critical components 

of investigation and clinical management of patients with non-

paroxysmal AF.

• Used together, these tools may help facilitate tailored ablation 

approaches although the prospective use of these techniques 

compared with existing strategies must be further investigated.

• Improvements in mapping and imaging fidelity, automation and 

reproducibility would help increase the widespread adoption of 

these techniques.
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