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Purpose: The present study aimed to preoperatively predict the status of 1p/19q based
on radiomics analysis in patients with World Health Organization (WHO) grade II gliomas.

Methods: This retrospective study enrolled 157 patients with WHO grade II gliomas
(76 patients with astrocytomas with mutant IDH, 16 patients with astrocytomas with wild-
type IDH, and 65 patients with oligodendrogliomas with mutant IDH and 1p/19q
codeletion). Radiomic features were extracted from magnetic resonance images,
including T1-weighted, T2-weighted, and contrast T1-weighted images. Elastic net and
support vector machines with radial basis function kernel were applied in nested 10-fold
cross-validation loops to predict the 1p/19q status. Receiver operating characteristic
analysis and precision-recall analysis were used to evaluate the model performance.
Student’s t-tests were then used to compare the posterior probabilities of 1p/19q co-
deletion prediction in the group with different 1p/19q status.

Results: Six valuable radiomic features, along with age, were selected with the nested 10-
fold cross-validation loops. Five features showed significant difference in patients with
different 1p/19q status. The area under curve and accuracy of the predictive model were
0.8079 (95% confidence interval, 0.733–0.8755) and 0.758 (0.6879–0.8217),
respectively, and the F1-score of the precision-recall curve achieved 0.6667 (0.5201–
0.7705). The posterior probabilities in the 1p/19q co-deletion group were significantly
different from the non-deletion group.

Conclusion: Combined radiomics analysis and machine learning showed potential clinical
utility in the preoperative prediction of 1p/19q status, which can aid in making customized
neurosurgery plans and glioma management strategies before postoperative pathology.
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INTRODUCTION

Molecular pathology is valuable for determining strategies for
treating gliomas and for predicting the prognostic outcome (1).
Patients without chromosome 1p/19q co-deletions showed poor
overall and progression-free survival (2, 3). Neurosurgeons
intended to protect the fundamental functions for patients
whose eloquent cortices or white matter were invaded by
gliomas, especially gliomas with 1p/19q co-deletions (4, 5).
Although the association between prognosis and extent of
tumor resection in gliomas with 1p/19q co-deletion remains
controversial, some studies have indicated that gross total
resection showed better prognosis than that in subtotal
resection (6, 7). Nevertheless, other studies have shown no
significant difference (8, 9). Undoubtedly, the prediction of the
1p/19q status before performing neurosurgery can aid in making
customized neurosurgery plans and glioma management.

Radiomics is a novel practice for detecting the intrinsic
imaging features of tumors (10–12). By using radiomics
analysis (1), which converts sparse magnetic resonance
imaging (MRI) data into big data, we can acquire a large
amount of imaging information that is otherwise invisible
to the naked eye in multiple dimensions (13–15). Moreover,
machine learning is a prevalent artificial intelligent measurement
to make classifications. The status of some well-known
biomarkers has been accurately predicted in glioma patients,
such as IDH mutations (16), ATRX mutations (17), p53 status
(18), and the expression index of Ki-67 (19). However, an
accurate and effective method for the preoperative prediction
of 1p/19q co-deletion is lacking.

Consequently, in the current study, we retrospectively
enrolled patients with low-grade glioma [grade II in
pathological criteria of the World Health Organization (WHO,
2016)] (1). By using radiomics analysis, we acquired relevant
neuroimaging features and then built a predictive model for 1p/
19q status through a machine learning method.
MATERIALS AND METHODS

Patients
In this retrospective study, we collected the clinical data and
biological information regarding the gliomas from the Chinese
Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/)
database (from June 2014 to June 2019; Figure 1). A total of
157 patients formed a consecutive series following the selection
criteria: (a) older than 18 years; (b) histopathological diagnosis of
primary World Health Organization (WHO) II gliomas; (c) no
preoperative treatment or biopsy; and (d) available preoperative
contrast-enhancement T1-weighted images (CE-T1WI), T1WI,
and T2-weighted images (T2WI). The tumor subtypes of WHO
grade II gliomas were identified according to the WHO 2016
classification (20). The information of IDH mutations was
acquired from the CGGA database, and the details of the
measurements can be found in the Supplementary Materials.
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Imaging Acquisition and
Tumor Segmentation
MRI scans were performed using a Trio 3.0-T scanner (Siemens,
Erlangen, Germany) to obtain the MR images and typically
included axial T1WI (TE, 15 ms; TR, 450 ms; slice thickness,
5 mm), T2WI (TE, 110 ms; TR 5800 ms; slice thickness, 5 mm),
and CE scans using 0.1 mM/kg gadopentetate dimeglumine (Ga-
DTPA injection, Beilu Pharma, Beijing, China) (TE, 15 ms; TR,
450 ms; slice thickness, 5 mm), with field of view 240 × 188 mm2.
The tumor masks were manually segmented on T2WI by two
experienced neurosurgeons (ZF and SF >5 years of experience in
diagnosis) using MRIcro software (http://www.mccauslandcenter.
sc.edu/mricro/), and a third senior neuroradiologist (SL, >20 years
of experience) reevaluated the tumor masks and made the final
decision when discrepancies were >5%.

Fluorescence In Situ Hybridization
of 1p/19q Co-Deletion
The 4-mm formalin-fixed paraffin-embedded tissue sections,
which were obtained from neurosurgical operations, were
deparaffinized, permeabilized, and hybridized. Dual-color
fluorescence was performed using Vysis (Illinois, USA) of
1p36/1q25 and 19q13/19p13 according to the standardized
procedure (21) and evaluated in at least 200 non-overlapping
nuclei with intact morphology. We defined >25% of nuclei
showing DNA loss as having chromosome loss. Co-deletion of
1p/19q was defined as loss of both 1p and 19q in tumor cells; 1p/
19q non-codeletion included tumors with maintenance in 1p
or 19q.

Extraction of Radiomic Signatures
All the sequences of the MRIs and ROIs for each patient were
resliced to high-resolution (1.0-mm isotropic) images using
MATLAB, and the T1WI and CE-T1WI were then registered
to the T2WI using the SPM8 software (http://www.fil.ion.ucl.ac.
uk/spm/software/spm8). The z-score transformations were used
to normalize the brain MRI signal intensity values into
standardized intensity ranges. These procedures helped avoid
bias from heterogeneity and sequences. Thereafter, the radiomic
features were extracted from the tumor masks based on different
types of MRI sequences using an automated approach in
MATLAB (details shown in Supplementary Material) (22). A
total of 431 radiomic features were included for each sequence.
The feature groups included 14 first-order statistics (pertaining
to the distribution of signal intensity of images, Group 1), eight
shape- and size-based features (Group 2), 33 textural features
(pertaining to intratumoral heterogeneity, Group 3), and 376
wavelet features that were derived from group 1 and group 3
features via wavelet decomposition (using directional low-pass
and high-pass filtering; the original features were decomposed
into eight decompositions, group 4).

Feature Selection Method: Elastic Net
Elastic net (E-net), which linearly combined the penalty terms of
the least absolute shrinkage and selection operator and ridge
methods, was used to select features. This method minimized the
July 2021 | Volume 11 | Article 616740

http://www.cgga.org.cn/
http://www.mccauslandcenter.sc.edu/mricro/
http://www.mccauslandcenter.sc.edu/mricro/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8
http://www.fil.ion.ucl.ac.uk/spm/software/spm8
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fan et al. Preoperative Radiomics Analysis of 1p/19q-Status
residual sum of squares of the estimated errors plus the penalty
term to select a model with the best trade-off between fit and
complexity (23, 24). E-net was trained in the training set with
tuning parameter a (0–1, step 0.1) and l using 10-fold cross-
validation, which followed the criterion of minimum standard
deviation. Features with non-zero coefficients were finally
selected from the model with optimal values of a and l.

Model Development: Kernel Support
Vector Machine
A support vector machine (SVM) was used to develop the
predictive 1p/19q co-deletion model. SVM is one of the most
widely used machine learning algorithms. This classifier is based
on Gaussian or Radial Basis Function kernel, which deals with
non-linearity and higher dimensions and is aimed to find the
best hyperplane that separates two groups of data points having a
clear gap as wide as possible (25–29). The optimization attempts
Frontiers in Oncology | www.frontiersin.org 3
to minimize the loss of 10-fold cross-validation by varying the
parameters, including box constraint and kernel scale parameter.
The algorithms of E-net and kernel SVM were adopted from
the MATLAB toolbox provided by the Statistics and Machine
Learning Toolbox.

Cross-Validation Strategy
The 1p/19q co-deletion status for WHO grade II gliomas was
predicted using radiomic features while also considering age
and gender as predictors. Nested cross-validation (CV) was
considered as the gold standard method when an independent
validation set was lacking. The nested CV makes full use of
information without leaking and double dipping (30). To
thoroughly assess the classifiers’ performance, a 10 × 10-fold
nested CV scheme (Figure 1) was used in this study. Data were
split into 10 sets; nine sets were used for training, whereas one
non-overlapped set was used for testing, in each outer loop.
A C

B

D

FIGURE 1 | Workflow. (A) Patient recruitment strategy. (B) 431 features were extracted from region of interest (ROI) on each magnetic resonance imaging (MRI)
sequence. (C) To compute a 10 × 10-fold nested cross-validation scheme, data were split into 9 training sets and a test set in the outer loop. The inner loop
included hyperparameter tuning and features selection in the training datasets. After feature selection, the model with optimal parameters was used for prediction in
the test set. This procedure developed 10 different models with specific sets of features and hyperparameters. (D) receiver operating characteristic (ROC) analysis
and precision and recall (P-R) analysis were used for model performance evaluation. CGGA, Chinese Glioma Genome Atlas database; CE-T1WI, contrast-enhanced
T1-weighted imaging; T2WI, T2-weighted imaging; AUC, area under the curve.
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Feature selection and model optimization of hyperparameter
tuning were trained in each outer loop with an additional 10-fold
CV, which was called the inner loop. After the feature selection
and model optimization, we evaluated the model performance in
the test set with the optimal model in each outer loop. This
procedure was repeated 10 times and formed the outer loops of
the nested CV. Finally, we built 10 different optimal models.

Statistical Analysis
We used MATLAB 2019b (MathWorks, Natick, MA, USA) for
data processing. The paired classification models, based on
radiomic signatures, which underwent z-score transformation,
were evaluated by receiver operating characteristic (ROC)
analysis and precision-recall (P-R) analysis. We computed the
area under the curve (AUC), accuracy, sensitivity [also known as
true-positive rate (TPR) or recall)], specificity [also known as 1 −
false-positive rate (1 − FPR)] from the ROC analysis, and
precision, recall, and F1-score from the P-R analysis. The 95%
confidence interval (CI) of performance was evaluated by the
bootstrap method (1000 times sampling). We used point-
biserial-correlation to compute the r and p values between the
posterior probabilities of the 1p/19q co-deletion predicted by the
SVM model and the true labels (31). To compare the posterior
probability (transformed from the decision value of each model)
of the kernel SVM model between the 1p/19q co-deletion
and non-codeletion groups, a t-test was used, and a 1p/19q
co-deletion was considered as 1 and non-codeletion as 0. A
p-value < 0.05 was considered statistically significant.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Clinical Characteristics
The clinical and pathological characteristics of all 157 patients
are summarized in Table 1. Of the 157 enrolled patients with
WHO grade II gliomas, 73 (46.5%) were women and the ages
of patients ranged from 20 to 68 years (mean ± standard
deviation, 41.6 ± 10.4 years). There were 76 (48.4%) patients
with astrocytomas with mutant IDH, 16 (10.2%) patients with
astrocytoma with wild-type IDH, and 65 (41.4%) patients with
oligodendrogliomas with mutant IDH and 1p/19q codeletion.
The mean ± standard deviation of tumor volume was 59.87 ±
52.74 cm3.

Radiomic Features Selection
A total of 431 radiomic features were extracted from each
sequence, and a total of 1,293 radiomic features grouped by
age and gender were screened by the E-net in the nested cross-
validation. The number of selected signatures ranged from 11 to
103. Features that were selected in all of the 10 loops were
considered to be the most valuable features. Six valuable
radiomic features and age were selected in each outer loop
(Table 2). Most of the radiomic features were textual (group 3)
with wavelet transformed features (group 4) such as
Informational Measure of Correlation_2, Long Run High Gray
Level Emphasis_2, Long Run High Gray Level Emphasis_1,
Short Run Low Gray Level Emphasis_1, Low Gray Level Run
Emphasis_1, and Cluster Tendency. Only Skewness_1 extracted
from CE-T1WI belonged to the wavelet transformation of first-
order statistics (Group 1) features. We compared the value of age
and z-scored value of six selected radiomic features between 1p/
19q co-deletion and non-codeletion groups. The results showed
that all the features except age (p = 0.2366) and CE-
T1WI_Group 4_Cluster Tendency_6 (p = 0.7415) in the 1p/
19q co-deletion group were significantly different (p < 0.05) from
those in the 1p/19q non-codeletion groups.

Model Performances
The AUC of the SVM models with features selected by E-net
in the nested CV was 0.8079 (95% CI, 0.733–0.8755) (Figure 2).
The accuracy, sensitivity, specificity, precision, and F1-score of
the prediction model were 0.758 (0.6879–0.8217), 0.5846
(0.4328–0.68), 0.8804 (0.8025–0.9359), 0.7755 (0.6515–0.8889),
and 0.6667 (0.5201–0.7705), respectively. The range of box
TABLE 2 | Selected valuable features.

Feature name Selected times p*

Age 10 0.2366
T2WI_Group 4_Informational Measure of Correlation_2 10 0.0004
T2WI_Group 3_Long Run High Gray Level Emphasis_2 10 0.0319
T2WI_Group 4_Long Run High Gray Level Emphasis_1 10 <0.0001
T1WI_Group 4_Short Run Low Gray Level Emphasis_1 10 <0.0001
T1WI_Group 4_Low Gray Level Run Emphasis_1 10 <0.0001
CE-T1WI_Group 4_Skewness_1 10 <0.0001
CE-T1WI_Group 4_Cluster Tendency_6 10 0.7415
July 2021 | Volume 11 | Article
*p-value of comparison between 1p/19q co-deletion and non-codeletion groups using unpaired t-test, the p-value < 0.05 were bolded.
TABLE 1 | Baseline demographics and clinical characteristics of patients.

Variable Value

Number of Patients 157
Sex, %
Male 84 (53.5%)
Female 73 (46.5%)

Age (years)* 41.6 ± 10.4
Pathology classification, %
Diffuse astrocytoma, IDH-mutant 76 (48.4%)
Diffuse astrocytoma, IDH-wildtype 16 (10.2%)
Oligodendroglioma, IDH-mutant, and 1p/19q codeletion 65 (41.4%)

Tumor volume (cm3)* 59.87 ± 52.74
*Data are mean ± standard deviation.
IDH, isocitrate dehydrogenase; NOS, not otherwise specified.
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constraint and kernel scale parameters of SVM classifiers in the
nested CV were 2.1544–1000 and 10–215.4435, respectively. The
hyperparameters and performances of models in each outer loop
are summarized in Supplementary Table S1. The misclassified
number of patients in the patients with wild-type IDH was 4/16.
We further performed the 1p/19q predictive models in patients
with mutant IDH. The predictive models reached an AUC,
accuracy, sensitivity/recall, specificity, precision and F1-score
of 0.8105 (0.732—0.8801), 0.7589 (0.6879—0.8227), 0.6462
(0.5189—0.754), 0.8553 (0.7746—0.9275), 0.7925 (0.6667—
0.8966) and 0.7119 (0.5825—0.8234).

The p and r values of the point-biserial-correlation were <
0.001 and 0.52, respectively. Moreover, the p value of t tests for
comparison of posterior probabilities of groups, which was
computed by the 1p/19q predictive model, for different 1p/19q
status was < 0.001. The results indicated that these radiomic
features could distinguish and predict the 1p/19q status of
patients (Figure 3).
DISCUSSION

Patients with gliomas without 1p/19q co-deletions have poor
prognostic survival outcomes (32, 33). Previous findings showed
similar survival outcomes for patients with 1p/19q co-deletions
Frontiers in Oncology | www.frontiersin.org 5
who underwent subtotal resection. This information prevents
damage to the eloquent cortices through total resection, which
could potentially cause functional deficits (paralysis, aphasia,
etc.) (8). Considering this, the prediction of 1p/19q co-deletion
before surgery is useful in determining neurosurgery strategies.
In this study, we built a machine learning model to
preoperatively predict the status of 1p/19q co-deletion using
radiomics analysis.

The predictive models of lower-grade gliomas (including
WHO grade II and III gliomas) based on 1p/19q status and
radiomics analysis can be clinically useful. Zhou et al. extracted
textural features from preoperative MRIs of 165 patients of The
Cancer Imaging Archive (TCIA) data set to develop a logistic
regression model that achieves an AUC of 0.78 in predicting 1p/
19q status of lower-grade gliomas (34). Further studies by this
group showed a lower AUC of 0.72 of 1p/19q status prediction
(random forest model) in all grade gliomas with an IDH
mutation (35). Another study using nested LOOCV Xg-boost
model exhibited a higher AUC (0.83 ± 0.03) in lower-grade
gliomas (36), which may owe to the nested cross-validation.
Considering information leakage of the validation group in the
holdout method for CV and the small sample size, nested CV was
considered the “gold standard” for building a predictive model
(30). Previous studies developed a deep learning model including
the features extracted from MRI, positron emission tomography,
A

B

FIGURE 2 | Performance of 1p/19q co-deletion predictive models. (A) Receiver operating characteristic (ROC) curve and precision-recall (P-R) curve of the
predictive models in low-grade gliomas. (B) ROC curve and P-R curve of the predictive models in low-grade gliomas with mutant IDH.
July 2021 | Volume 11 | Article 616740
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and computed tomography (CT), which showed an overall
accuracy of 75.1% in the prediction of 1p/19q status in lower-
grade gliomas (37). Since the predictive performance of these
models was restrained by the small sample size, data
augmentation was introduced to enlarge the size of the
training set. Based on Cycle Generative Adversarial Network,
multi-stream convolutional autoencoder and feature fusion are
proposed for the prediction of 1p/19q co-deletion, which
displayed an accuracy of 78.41% in low-grade gliomas (38).
After adding 30-fold augmented data, another study improved
the accuracy of the convolutional neural networks model from
78.3% to 87.7% (39). However, it ignored the global information
of tumors since only three MRI slices were used.

Although the prediction of 1p/19q status can achieve good
outcomes among patients with lower-grade gliomas (40),
building an effective predictive model for low-grade gliomas,
which only contain WHO grade II gliomas, is complicated
primarily because of the limited sample size. However, the
radiomic features of low-grade gliomas are different from those
in WHO grade III in conventional MRI sequences (41, 42). To
avoid bias caused by the differences of radiomic features in
different WHO grades, our study developed a radiomic-based
SVM model to predict 1p/19q co-deletions in WHO grade II
gliomas. Although the sample size was limited, it allowed the
results to be more consistent. Our model showed a similar
performance to the machine-learning and deep-learning
models mentioned above, with an overall AUC of 0.8079 and
an accuracy of 0.758 (34, 35, 38, 39). We specifically analyzed the
predictive model in the subgroup analysis of gliomas with
mutant IDH, which excluded the influence of gliomas with
wild-type IDH, and found a similar performance value. We
further compared the predictive probabilities for patients with
1p/19q co-deletion and non-codeletion, and the result exhibited
a significant difference. These results indicated that radiomics
analysis combined with machine learning can potentially predict
1p/19q mutation in WHO grade II gliomas.

We extracted six valuable radiomic signatures from each
outer loop for our predictive model. Gliomas with 1p/19q co-
Frontiers in Oncology | www.frontiersin.org 6
deletion showed a lower homogeneity than those without (43).
Our findings confirmed that a lower Informational Measure of
correlation in T2WI is exhibited in patients with 1p/19q co-
deletion, which shows a positive correlation with homogeneity
degrees (44). Moreover, cluster tendency is another feature used
to reveal the degree of homogeneity, which represents the
measure of the groupings of voxels with similar gray-level
values. Our results showed that patients with 1p/19q co-
deletion had a lower Cluster Tendency than those patients
without. This finding indicated that the degree of homogeneity
in an oligodendroglioma is lower compared with an astrocytoma
(45). Besides, features belonging to Gray Level Run Length are
often applied to distinguish malignant and benign brain tumors
(46). In our model, these features (Long Run High Gray Level
Emphasis and Short Run Low Gray Level) were crucial for
predicting the status of 1p/19q co-deletion due to the
difference in prognostic outcomes between oligodendroglioma
and astrocytoma (1, 3). Furthermore, skewness, which was
significantly different in patients with or without 1p/19q co-
deletion, was a classical feature used in distinguishing brain
tumors and in the differentiation of glioblastomas and primary
central neuro-lymphoma (8, 47, 48).

There are several limitations to the present study. First, our
model was generated using retrospectively collected data.
Although we performed nested CV to minimize the potential
bias, the lack of an external validation data set limited the
generalizability of our models. In addition, since our small
sample size limited the efficacy of our model, we plan to
develop a model based on a larger population combined with
independent external validation. Furthermore, we would like to
develop a multi-model radiological data-based classifiers in the
future, which would include T2-FLAIR, diffusion-weighted
imaging, and CT (49–53).

In conclusion, we developed a nested cross-validation
machine learning model with efficacy and robust performance,
which displayed an AUC of 0.8079 and an accuracy of 0.758. Our
results revealed the potential clinical utility of radiomics analysis
in the preoperative prediction of 1p/19q status, which can aid in
FIGURE 3 | Boxplots comparing differences of posterior probabilities between 1p/19q co-deletion and non-codeletion groups.
July 2021 | Volume 11 | Article 616740
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preoperative genomic marker prediction and making customized
neurosurgery plans and glioma management before
postoperative pathology.
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