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ABSTRACT
Aims: This study aimed to investigate the correlation between clot composition and stroke mechanisms in patients undergoing 
endovascular therapy (EVT), using proteomic analysis.
Methods: This study included 35 patients with ischemic stroke (cardioembolism [CE], n = 17; large artery atherosclerosis [LAA], 
n = 6; cancer-related [CR], n = 4; and undetermined (UD) cause, n = 8) who underwent EVT. Retrieved clots were proteomically 
analyzed to identify differentially expressed proteins associated with the three stroke mechanisms and to develop the machine 
learning model.
Results: In the discover stage, 3838 proteins were identified using clot samples from 27 patients with CE, LAA, and CR mech-
anisms. Through functional enrichment and network analysis, 149 proteins were identified as potential candidates for verifi-
cation studies. After verification experiments, 34 proteins were selected as the final candidates to predict stroke mechanisms. 
Furthermore, the machine learning-based model identified three proteins associated with each mechanism (Pleckstrin in CE; 
CD59 glycoprotein in LAA; and Immunoglobulin Heavy Constant Gamma 1 in CR) in the UD group.
Conclusions: This study identified specific protein markers of clots that could differentiate stroke mechanisms in patients un-
dergoing EVT. Therefore, our results could offer valuable insights into elucidating the mechanisms of ischemic stroke, which 
could provide information on more effective secondary prevention strategies.

1   |   Introduction

Approximately 25% of patients experiencing ischemic stroke 
face the grim prospect of recurrence. Therefore, a strategy for 
secondary prevention is to define the underlying cause and 
mechanism of ischemic stroke, enabling the identification of 
targets to mitigate the risk of recurrence [1, 2]. Endovascular 

therapy (EVT) has been the standard of care in patients with 
ischemic stroke and large vessel occlusion (LVO) [3]. Thus, me-
ticulous analysis of clot characteristics and composition could 
be useful for identifying stroke mechanisms and etiologies. 
Assessing the composition of retrieved clots would help differ-
entiate stroke etiology and better inform secondary prevention 
strategies after ischemic stroke. Previous studies employing 
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histological analysis have demonstrated that the composition 
of red blood cells (RBCs), white blood cells (WBCs), and fibrin/
platelets correlates with resistance to intravenous thrombolysis 
(IVT) or EVT in patients with LVO [3–6]. Furthermore, RBC-
rich red thrombi and fibrin-rich white thrombi have been associ-
ated with cardioembolism (CE) and large artery atherosclerosis 
(LAA), respectively [5]. Other studies have reported contrasting 
results or no differences concerning stroke etiologies [3, 4, 6]. 
While some studies have demonstrated an association between 
clot composition and stroke etiologies, there remains insufficient 
evidence of the correlation between the proteins or biomarkers 
constituting a clot and the etiologies of ischemic stroke [4–6]. 
Analyzing the compositions of retrieved clots from occlusive ce-
rebral arteries may provide valuable insights for differentiating 
the etiologies of ischemic stroke. Therefore, this study aimed 
to characterize protein expression patterns through proteomic 
analyses of retrieved clots and identify key protein biomarkers 
based on distinct stroke etiologies.

2   |   Methods

2.1   |   Study Populations and Clinical Information

We prospectively included patients with ischemic stroke due to 
LVO in the intracranial internal carotid artery (ICA), middle 
cerebral artery (MCA), and basilar artery (BA) who underwent 
EVT between July 2017 and September 2019. Inclusion criteria 
are as follows: (1) age > 18 years, (2) confirmed LVO in the ar-
teries mentioned above using brain CT angiography or brain 
MR angiography prior to EVT, and (3) an adequate amount of 
retrieved clots for proteomic analysis. Clot specimens obtained 
during EVT procedures were stored at an appropriate tempera-
ture of −80°C for analysis. During the study period, clot samples 
were collected from a total of 44 patients. However, nine sam-
ples were excluded from the proteomics analysis due to storage 
issues (i.e., not being immediately stored in a liquid nitrogen 
tank after clot retrieval). Successful angiographic recanalization 
was defined by a Thrombolysis in Cerebral Infarction (TICI) 
score of 2b or 3 at the end of EVT [7]. We collected the follow-
ing clinical data from the patients included in this study: demo-
graphic information, body weight (Kg), body mass index (Kg/
m2), laboratory data related to thrombosis such as platelet count, 
coagulation panel, liver function, and renal function, and vascu-
lar risk factors; stroke severity according to National Institute of 
Health Stroke Scores (NIHSS) on admission and at discharge; 
clinical information related to reperfusion therapy such as IVT 
and EVT; prior use of antiplatelet or anticoagulant medications; 
and presence of active cancer. Furthermore, any medications 
taken prior to the index stroke that might affect thrombosis 
were analyzed, including nonsteroidal anti-inflammatory drugs 
(NSAIDs), antidepressants, steroid, and hormone therapy. The 
mechanisms of ischemic stroke were determined at the time of 
discharge as LAA, CE, cancer-related (CR), and undetermined 
(UD) with negative cause according to the classification of the 
Trial of Org 10,172 in acute stroke treatment [8]. Finally, a total 
of 35 patients who had successful recanalization after EVT were 
included as follows for this study: 6 with LAA, 17 with CE, 4 
with CR, and 8 with UD causes. Among them, 27 patients with 
LAA, CE, and CR mechanisms were selected for the analysis. A 
validation study of the model developed for identifying stroke 

mechanisms was conducted using clots from the eight patients 
with an UD cause. This study was reviewed and approved by 
the Institutional Review Board of our institution (No. H-1805-
050-944 and H-1803-078-931), and the participants or family 
provided written informed consent. Additionally, all methods 
of this study were conducted according to the regulation of the 
Declaration of Helsinki and guidelines.

2.2   |   Clots Collection

EVT was performed according to the standard protocols and 
procedures of our institution. After EVT, clots were carefully 
detached from the retriever devices and preserved at −196°C in 
liquid nitrogen for 30 min until further analysis.

2.3   |   Experimental Design and Statistical 
Rationale

Discovery study included 35 clot samples (n = 17 in CE, n = 6 in 
LAA, n = 4 in CR, and n = 8 in UD) for identification of specific 
proteins according to stroke mechanisms. A total of 35 biologi-
cal replicates and one technical replicate were analyzed in the 
discovery stage. After preprocessing for accurate relative quan-
tification, multiple group comparison analysis was performed 
to identify the group-specific expressed proteins using ANOVA 
with a normal p-value < 0.05. To assess the consistency of 
group-specific expressed proteins, 27 clot samples consisting of 
CE (n = 17), LAA (n = 4), and CR (n = 8) were analyzed with one 
technical replicate using DIA methods as a verification phase. 
Additionally, verified group-specific proteins were evaluated by 
multiple testing correction of the discovery data at the 15% FDR 
level. Furthermore, intra-arterial blood samples were drawn be-
fore and after EVT at the proximal site of the occluded vessel, 
and 10 pre-EVT serums and 10 post-EVT serums from 10 pa-
tients were analyzed. A flowchart for data processing, including 
statistical analysis, was described in Figure S1. Detailed meth-
ods for histologic and proteomic analysis of clots were discussed 
in Data S1. Moreover, detailed statistical analysis and bioinfor-
matics analysis were presented in Data S1.

2.4   |   Developing, Training, and Testing Models 
for the Selection of Stroke Mechanisms

We assessed the discriminatory power of the validated differ-
entially expressed proteins (DEPs) using data-dependent acqui-
sition (DDA) and data-independent acquisition (DIA) analyses. 
Among DEPs, we identified proteins that exhibited equivalent 
expression patterns in both analyses. The selected proteins were 
used to construct a model to predict stroke mechanisms in the 
UD group. The DIA data set was divided into a training set, com-
prising 70% of the data, for constructing the prediction model. 
The remaining data were classified as the test set and used to 
validate the model. To ensure accurate selection and avoid over-
fitting during model development, the entire dataset was tuned 
using 10-fold cross-validation within the training set. Random 
forest (RF) feature selection was employed to determine the 
variable importance among the selected DEPs from the training 
set. Subsequently, a support vector machine (SVM) model was 
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used to predict the conditions of the testing set, and the results 
were applied to the UD group data set. Before feature selection, 
automated machine-learning (AutoML) hyperparameter tuning 
was applied to enhance the performance of the model [9]. The 
protein expression of the final selected feature candidates was 
transformed using the log2 function to develop the model. An 
H2O machine learning platform was used to facilitate hyper-
parameter tuning. This platform provides parallelized imple-
mentations of several supervised machine learning algorithms, 
including RF and generalized linear models. The selected fea-
tures were filtered at the 90th percentile threshold to select the 
top 10% of features that would have a significant impact on the 
accuracy of the developed model.

3   |   Results

3.1   |   Baseline Characteristics and Clinical 
Information

Out of 35 patients, 27 (mean age, 73.3 years; male, 37.0%) were 
selected for analysis of clots based on stroke mechanisms. The 
median NIHSS score upon admission was 19 (IQR, 11–20). Prior 
to EVT, seven patients (24.9%) received IVT (Table 1). Regarding 
the locations of the occluded vessels and the occlusive sites were 
distributed as follows: ICA (33.3%), MCA (59.3%), and BA (7.4%). 
Initial NIHSS was significantly higher in cancer-related group. 
Additionally, Prothrombin Time and International Normalized 
Ratio, and d-dimer levels were significantly elevated in the CR 
group. Regarding previous medications, none of the patients 
had received steroids or hormone therapy. Additionally, no 
statistically significant differences were observed in the use 
of NSAIDs, antidepressants, antiplatelet agents, and anticoag-
ulants across the three groups (Table  1). The laboratory find-
ings indicate that patients with CR stroke exhibited elevated 
levels of D-dimer, as well as prolonged Prothrombin Time and 
International Normalized Ratio values, in comparison to other 
stroke mechanism groups (Table 1). In the analysis of clots using 
H&E staining, there were no differences in the relative propor-
tions of RBCs, fibrin, and leukocytes among the three groups 
(Table 1 and Figure S2). When comparing the clinical informa-
tion between the initially included patients and those with UD 
causes (n = 8), the UD cause group showed significantly lower 
proportions of atrial fibrillation (AF) and patients with func-
tional independence before their stroke (Table S1).

3.2   |   Quantitative Proteome Analysis of Clot 
Samples Based on Stroke Mechanisms

For global proteome profiling, clot samples were analyzed from 
four groups including CE (n = 17), LAA (n = 6), CR (n = 4), and 
UD (n = 8). The analysis scheme is presented in Figure  1 and 
Figure S1. To obtain an in-depth proteome of clot samples with-
out depletion of high-abundant blood proteins, we used a com-
bination of peptide prefractionation and a matching library of 
pooled clot. In total, 3839 proteins were identified at FDR < 1% 
(Table S2). Among these, an average 1944, 1851, 2109, and 1981 
proteins were quantified in the CE, LAA, CR, and UD groups, 
respectively (Figure S3A and Table S2). The reproducibility of 
global proteome profiling was evaluated by calculating the 

coefficient of variation (CV) in the quantification of proteins 
throughout all LC–MS/MS runs in each sample group, indi-
cating that our label-free quantification shows high reproduc-
ibility (Figure S3B). As expected, blood proteins were observed 
as highly abundant proteins in dynamic ranges of the clot pro-
teome that spanned seven orders (Figure S3C–E).

To discover protein signatures among sample groups accord-
ing to determined stroke mechanisms, we first performed sta-
tistical analysis using three groups, including CE, LAA, and 
CR. A total of 2573 proteins were identified in common, oc-
cupying 74.0% of total identified proteins in the three groups 
(Figure  S4A). Principal component analysis (PCA) revealed 
a degree of separation between the LAA and CR groups, al-
though some overlap with the CE group was observed. The CE 
group's distribution suggests potential heterogeneity in protein 
expression within this group, as it overlaps with both LAA 
and CR groups (Figure S4B). Using proteins with 70% of valid 
values (Table S3), a total 260 DEPs were identified among the 
three groups based on ANOVA multiple group comparison test 
(Table S4). Additionally, hierarchical clustering using 260 DEPs 
resulted in the identification of three distinct expression clus-
ters (Cluster 1,2, and 3), showing the increased expression of 
proteins associated with each stroke mechanism in comparison 
to other stroke mechanisms (Figure S4C). Cluster 1 represents 
the upregulation of proteins from LAA groups among the three 
groups, whereas cluster 2 represents the upregulation of proteins 
from CE groups. Upregulation of proteins from CR groups was 
observed in cluster 3.

3.3   |   Functional Enrichment and Protein 
Interaction Analysis After Hierarchical Clustering 
According to Stroke Mechanisms

To investigate molecular pathophysiology according to three 
different stroke etiologies, gene ontology (GO) analysis was con-
ducted on each cluster. Although several biological processes 
including protein metabolic processes, immune response, and 
actin filament-related processes underlie in more than one 
stroke etiology due to the complexity of the cerebrovascular dis-
ease, many biological processes are supposed to play a role in the 
pathophysiology of each stroke subtype. For example, in cluster 
1 (LAA specific), 79 proteins that are known to be associated 
with processes such as ubiquitination, the ubiquitin-proteasome 
system, endothelial migration, and atheroma formation were 
significantly upregulated (Figure S5A and Table S5). In cluster 
2 (CE specific), many proteins were significantly enriched to 
several terms related to fibrillation, such as actin cytoskeleton 
organization, supramolecular fiber organization, and platelet 
aggregation (Figure  S5C and Table  S6). Hemostasis, coagu-
lation, apoptotic processes, and tricarboxylic acid cycle were 
also enriched, which are associated with major cardiovascular 
events including AF, thrombosis, cardiomyopathy, and myocar-
dial infarction [10–13]. In the CR specific group (cluster 3), 37 
proteins that are associated with cancer markers, tumorigen-
esis, and immune systems, including the complement system, 
were significantly upregulated (Figure S5E and Table S7).

By integrating these GO terms, 11 modules were obtained in 
cluster 1, which are mostly associated with protein metabolic 
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TABLE 1    |    Baseline characteristics of the study population.

Total (n = 27) CE (n = 17, 63.05) LAA (n = 6, 22.2%) CR (n = 4, 14.8%) p

Age, mean (SD), y 73.3 (12.9) 77.7 (8.1) 68.7 (14.6) 61.3 (19.8) 0.037

Sex (Male), n (%) 10 (37.0) 5 (29.4) 3 (50.0) 2 (50.0) 0.612

Body weight, mean 
(SD), Kg

56.9 (11.8) 56.2 (12.8) 56.0 (5.1) 61.3 (16.3) 0.737

BMI, mean (SD), Kg/
m2

22.1 (3.5) 22.1 (3.9) 22.2 (2.4) 22.1 (4.1) 0.998

HT, n (%) 17 (63.0) 11 (64.7) 4 (66.7) 2 (50.0) 0.862

DM, n (%) 10 (37.0) 4 (23.5) 5 (83.3) 1 (25.0) 0.034

DL, n (%) 6 (22.2) 2 (11.8) 3 (50.0) 1 (25.0) 0.080

Previous Stroke Hx. 
n (%)

5 (18.5) 4 (23.5) 1 (20.0) 0 (0.0) 0.798

Coronary artery 
disease, n (%)

3 (11.1) 2 (11.8) 1 (16.7) 0 (0.0) 1.000

A.fib, n (%) 17 (63.0) 17 (100.0) 0 (0.0) 0 (0.0) < 0.001

Smoking, n (%) 5 (18.5) 3 (17.6) 2 (33.3) 0 (0.0) 0.621

Active cancer, n (%) 4 (14.8) 0 (0.0) 0 (0.0) 4 (100.0) < 0.001

Initial NIHSS, 
median (IQR)

19 (16–23) 18.0 (14.5–21.0) 19.5 (15.0–23.0) 24.0 (22.3–25.0) 0.036

Discharge NIHSS, 
median (IQR)

8 (3–15) 6.0 (4.0–16.0) 5.0 (1.8–13.5) 12.5 (10.5–17.5) 0.076

Prestroke mRS = 0, 
n (%)

23 (85.2) 14 (82.4) 6 (100.0) 3 (75.0) 0.582

Lesion, n (%)

MCA 16 (59.3) 11 (64.7) 2 (33.3) 3 (75.0) 0.162

ICA 9 (33.3) 6 (35.3) 2 (33.3) 1 (25.0)

BA 2 (7.4) 0 (0.0) 2 (33.3) 0 (0.0)

IV thrombolysis, n 
(%)

7 (25.9) 5 (29.4) 0 (0.0) 2 (50.0) 0.148

Prior antiplatelet 
agents, n (%)

7 (25.9) 4 (23.5) 3 (50.0) 0 (0.0) 0.201

Prior anticoagulants, 
n (%)

4 (14.8) 3 (17.6) 0 (0.0) 1 (25.0) 0.582

Prior NSAID, n (%) 1 (3.7%) 1 (5.9) 0 (0.0) 0 (0.0) 1.000

Prior antidepressants, 
n (%)

3 (11.1%) 3 (17.6) 0 (0.0) 0 (0.0) 0.721

Onset to ER visit 
time (min), median 
(IQR)

50.0 (36.0–180.0) 57.0 (37.5–117.0) 43.5 (31.0–230.5) 137.5 (25.3–258.8) 0.708

Onset to rt-PA time 
(min), median (IQR)

95.0 (60.0–100.0) 95.0 (74.5–120.5) N/A 78.5 (59.0- N/A) 1.000

Onset to reperfusion 
time (min), median 
(IQR)

210.0 (180.0–320.0) 201.0 (179.0–313.0) 231.0 (117.5–386.8) 261.0 (165.0–393.0) 0.560

(Continues)
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process regulation (module 1), actin depolymerization com-
plex (module 2), and response to metal homeostasis (module 
3) (Figure S6A). In cluster 2, 13 modules were enriched into 
biological processes mainly related to cellular macromolecule 
protein (module 1), ameboidal cell adhesion (module 2), and 
hydrolase involvement in apoptosis (module 3) (Figure S6B). 
Only three modules were obtained in cluster 3, consisting of 
immune response activation (module 1), protein activity reg-
ulation (module 2), and complement activation alternative 
(module 3).

Next, only GO terms that can be supported by the experimen-
tal evidence or literature were manually picked to narrow 
down the list of protein candidates. In each cluster, the pro-
teins included in the selected GO terms were mapped to a list 
of proteins, showing that 62, 57, and 30 proteins were identi-
fied as potential candidates for predictive features and vali-
dation studies in the LAA, CE, and CR groups, respectively 
(Table  S8). To assess our selection of protein candidates, we 
constructed a protein–protein interaction (PPI) network in 
each cluster. The candidate proteins in LAA-specific group 
were mainly related to the regulation of protein metabolic 
processes, the regulation of immune system processes, and 
protein ubiquitination (Figure  S5B). Interestingly, main hub 
proteins (SNCA, SLC4A1, and EPB42) were mainly related to 
lipid pathways and inflammation that play an emerging role 
in LAA [14]. In the case of the CE group, 57 proteins were 

mainly involved in the regulation of hemostasis, vesicle-
mediated transport, apoptotic signaling processes, and small 
GTPase-mediated signal transduction (Figure  S5D). ACTB, 
TLN1, PLEK, ROCK2, SRC, and CSK were observed as main 
hub proteins, which are closely associated with coagulation, 
hemostasis, and thrombosis [15]. Remarkably, main hub pro-
teins in the CR group were VTN, C3, C4B, C9, and CFH that 
play a major role in the complementary pathway (Figure S5F), 
which has gained increased attention as a major contributor to 
cancer-related coagulopathy [16].

3.4   |   HRM-DIA Verification Phase

Potential candidates selected from functional enrichment anal-
ysis were verified using orthogonal methods. Using spiked-in 
11 iRT peptides, the DIA acquisition and targeted data analysis 
were performed with retention-time-normalized spectral librar-
ies [17]. The HRM-DIA experiments resulted in the quantifica-
tion of 1043 proteins (Table S9) in a total 27 clot samples. We 
performed ANOVA pattern clustering analysis of differentially 
expressed proteins related to three stroke mechanisms with 
ANOVA p-value < 0.05. The hierarchical cluster revealed that 
three clusters are observed with a pattern of upregulated pro-
teins, with 71, 357, and 6 proteins in cluster 1 (LAA specific), 
cluster 2 (CE specific), and cluster 3 (CR specific), respectively 
(Figure S7 and Table S10).

Total (n = 27) CE (n = 17, 63.05) LAA (n = 6, 22.2%) CR (n = 4, 14.8%) p

Laboratory information, mean (SD)

WBC (×1000)/uL 9.13 ± 4.37 8.59 ± 4.10 9.82 ± 1.00 10.4 ± 8.33 0.712

Hb, g/dL 12.6 ± 2.2 12.8 ± 1.8 13.1 ± 1.8 10.9 ± 4.0 0.280

PLT (×1000)/uL 207.9 ± 79.6 213.8 ± 73.6 217.8 ± 84.3 168.0 ± 108.3 0.570

PT-INR 1.05 ± 0.12 1.02 ± 0.06 1.00 ± 0.05 1.23 ± 0.22 0.001

aPTT, sec 29.5 ± 3.4 29.6 ± 2.9 28.5 ± 2.2 30.6 ± 6.6 0.635

D-dimer, ug/mL 3.37 ± 4.81 2.23 ± 2.22 1.47 ± 1.38 11.02 ± 8.84 0.001

Initial glucose, 
mg/dL

164.0 ± 67.4 147.8 ± 34.1 147.8 ± 55.9 179.3 ± 153.8 0.248

BUN, mg/dL 16.3 ± 6.5 15.8 ± 5.4 19.8 ± 8.7 12.8 ± 6.2 0.222

Cr, mg/dL 1.03 ± 0.60 1.08 ± 0.66 1.13 ± 0.57 0.70 ± 0.26 0.489

AST, IU/L 24.9 ± 6.4 25.7 ± 6.8 21.5 ± 4.8 26.8 ± 6.0 0.324

ALT, IU/L 19.2 ± 8.3 19.8 ± 9.0 19.8 ± 7.1 15.8 ± 7.5 0.684

Ca, mg/dL 8.8 ± 0.5 8.9 ± 0.4 8.7 ± 0.3 8.3 ± 0.6 0.066

Clot proportion in H&E stain, n (%)

RBC 40.3 ± 26.1 39.4 ± 21.7 33.4 ± 12.2 49.0 ± 47.3 0.734

Fibrin 55.5 ± 25.5 56.1 ± 21.5 62.3 ± 14.0 47.9 ± 45.7 0.767

Leukocytes 4.1 ± 1.8 4.4 ± 1.7 4.7 ± 1.5 3.0 ± 2.2 0.361

Abbreviations: A.fib, atrial fibrillation; ALT, alanine aminotransferase; aPTT, Activated Partial Thromboplastin Time; AST, aspartat aminotransferase; BA, basilar 
artery: emergency room; BUN, blood urea nitrogen; Ca, calcium; CE, cardioembolism; CR, cancer-related; Cr, creatinine; DL, dyslipidemia; DM, diabetes mellitus; H 
& E, Hematoxylin and Eosin; Hb, hemoglobin; HT, hypertension; ICA, intracranial carotid artery; IQR, interquartile range; LAA, large artery atherosclerosis; MCA, 
middle cerebral artery; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; PLT, platelet; PT-INR, Prothrombin Time and International 
Normalized Ratio; RBC, red blood cell; rt-PA, recombinant tissue plasminogen activator; SD, standard deviation; WBC, white blood cell.

TABLE 1    |    (Continued)
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In comparison with discovery data, 10, 23, and 2 proteins were 
commonly identified in cluster 1, 2, and 3, respectively (Figure S7 
and Table  S10). Additional pair-wise analyses were performed 
to compare significant individual expression changes (Table  2). 
Finally, 34 proteins were selected as the final candidates for fea-
ture selection, except for the PRDX6 protein, which showed no 
significant p-value in pair-wise comparisons. Expression patterns 
for 10, 22, and 2 proteins in LAA, CE, and CR specific groups were 
shown as Figure  2. These proteins were subsequently used for 
deep learning feature selection. Additionally, results of blood sam-
ples in CE were shown in the Data S2. Especially, we found that 
RAB1A, TLN1, UBE2L3, and YWHAH were included in the final 
blood protein candidates related to the CE mechanism. Identified 
proteins from arterial blood were found to have increased expres-
sion in the clots of the CE mechanism group (Table S13).

3.5   |   Random Forest Feature Selection to Identify 
Stroke Mechanisms in the Undermined Cause Group

To categorize the stroke mechanisms in the UD group, a combi-
nation of the RF machine learning algorithm and deep learning-
based AutoML hyperparameter tuning was employed to construct 
a prediction model. The intensity data of the final prediction fea-
ture candidates were generated and applied to the intensity data 
of the UD group using DDA analysis. First, the intensity data of 
the feature candidates were subjected to RF feature selection using 
500 trees. Concurrently, the deep learning AutoML was applied 
to regulate the complexity of the model and to prevent overfitting 

or underfitting. This analysis yielded 879 models, and the fea-
tures were evaluated and scored by visualizing the importance 
plot (Figure  3A) to determine the most reliable features. Thirty 
candidates were evaluated and ranked according to their impor-
tance. The selection process involved refining the list to include 
only the top 10% most reliable features. As a result, PLEK, CD59, 
and IGHG1 proteins were chosen (Figure 3B). Proteins in the CE, 
LAA, and CR groups exhibited statistically significant and specific 
upregulation, collectively forming a model. The developed model 
was implemented in a cohort of eight patients belonging to the UD 
group. The developed model suggested that CE is the most likely 
cause of ischemic stroke in six patients, and it suggested the CR 
mechanism in one patient. In one patient, the developed model 
suggested the LAA mechanism by the developed model, further 
observation during the follow-up period confirmed that the pa-
tient had AF, which led to the conclusion that CE was the cause 
of the ischemic stroke (Table S11). Among eight patients during 
the follow-up period, the stroke mechanism was confirmed in four 
patients, and three of them matched the results of the prediction 
method, indicating a positive predictive value (PPV) of 75.0%, 
whereas in four cases, the cause remained UD and prediction rates 
(Tables S11 and S12).

4   |   Discussion

This study conducted a proteomic analysis of patients with isch-
emic stroke treated with EVT, identified specific biomarkers, and 
elucidated the underlying biological pathways associated with 

FIGURE 1    |    Overall scheme of analysis. This figure was created with Biore​nder.​com and exported under a paid subscription.

http://biorender.com
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TABLE 2    |    The statistical significance and expression difference from ANOVA and t test between each group of final prediction feature candidates.

ANOVA T-test

Cluster
Gene 
name p

Log2FC 
(CE vs. 
LAA) p Sig

Log2FC 
[CE vs. 

CR] p Sig

Log2FC 
(LAA 

vs. CR) p Sig

CE 
specific

ILK 0.0156 0.4915 0.0071 ** 0.4098 0.0481 * 0.5897 0.7863 —

TGFB1 0.0344 0.7267 0.0205 * 0.7146 0.0391 * 0.0121 0.9833 —

RAB7A 0.0029 1.8130 0.0001 **** 0.9600 0.0901 — 0.8527 0.4039 —

PTPN1 0.0059 1.8510 0.0012 ** 0.0882 0.8879 — −1.7630 0.0622 —

APRT 0.0003 2.0540 0.0001 **** 1.8790 0.0027 ** −0.1750 0.8733 —

ROCK2 0.0005 1.6390 0.0001 **** 0.9382 0.0489 * −0.7005 0.2987 —

PLEK 0.0001 1.0020 0.0001 **** 0.4321 0.0658 — −0.5696 0.1033 —

SRC 0.0137 0.8579 0.0002 *** 1.1660 0.0196 * 0.3082 0.7192 —

CSRP1 0.0045 1.2470 0.0033 ** 1.2100 0.0272 * 0.0369 0.9420 —

CSK 0.0039 0.8740 0.0004 *** 0.2447 0.3276 — −0.6293 0.2007 —

ATP5PO 0.0048 0.6468 0.0302 * 2.3060 0.0037 ** 1.6600 0.1850 —

RAB14 0.0010 1.4030 0.0001 **** 0.7642 0.0390 * −0.6390 0.3698 —

YWHAG 0.0090 0.4911 0.0014 ** 0.6322 0.0189 * 0.1411 0.7149 —

TMSB4X 0.0001 1.0700 0.0001 **** 0.3829 0.1203 — −0.6866 0.0292 *

RAB1A 0.0004 0.9920 0.0002 *** 0.8751 0.0005 *** 0.1169 0.8263 —

UBE2L3 0.0065 1.9010 0.0012 ** −0.2373 0.7443 — −2.1390 0.0304 *

YWHAH 0.0411 0.5888 0.0045 ** 0.0401 0.8812 — −0.5487 0.1940 —

EHD1 0.0072 0.7949 0.0001 *** 0.7175 0.0301 * −0.0770 0.8934 —

SAR1A 0.0208 0.7361 0.0012 ** 0.4255 0.1933 — −0.3106 0.5095 —

TLN1 0.0001 0.9632 0.0001 **** 0.5511 0.0164 * −0.4121 0.2963 —

CORO1B 0.0048 1.4632 0.0001 **** 0.4557 0.2183 — −1.0082 0.1823 —

UNC13D 0.0011 1.3212 0.0001 **** 0.0370 0.7853 * −0.5350 0.4303 —

LAA 
specific

GNG2 0.0040 −0.8930 0.0215 * −0.3392 0.4259 — 1.2320 0.0116 *

CAMP 0.0023 −1.3970 0.0001 **** −0.5710 0.1459 — 1.9680 0.0125 *

ELANE 0.0058 −1.1200 0.0006 *** −0.3437 0.4219 — 1.4640 0.0536 —

LAMP1 0.0035 −0.7563 0.0005 *** 0.4041 0.1059 — 0.3522 0.3283 —

EPB42 0.0415 −1.6070 0.0082 ** −0.1873 0.8004 — 1.7940 0.1365 —

RAP2B 0.0260 −0.6388 0.0061 ** 0.0464 0.8183 — 0.5924 0.2236 —

RAP1A 0.0296 −0.9426 0.0032 ** 0.8241 0.0971 — 0.1185 0.8638 —

LCN2 0.0191 −0.7973 0.0831 — −1.2820 0.0424 * 2.0790 0.0405 *

AGO2 0.0205 −1.2720 0.0167 * −0.4061 0.4303 — 1.6780 0.0423 *

CD59 0.0033 −1.414 0.0004 *** −0.2206 0.5603 — 1.1940 0.1397 *

CR 
specific

IGHG1 0.0362 −0.7187 0.0682 — −1.1210 0.0284 * −0.4026 0.5013 —

VTN 0.0064 0.6200 0.0348 * −0.6336 0.0446 * −1.2540 0.0075 **

Note: Sig: *(p < 0.05), **(p < 0.01), ***(p < 0.001), and ****(p < 0.0001).
Abbreviations: CE, cardioembolism; CR, cancer-related; LAA, large artery atherosclerosis.
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stroke mechanisms, including LAA, CE, and CR. In CE clots, 
elevated levels of proteins associated with thrombosis and he-
mostasis pathways, such as PLEK, ROCK2, TLN1, and RAB14, 
were detected. In addition, proteins from clots were identified 
with increased expression in arterial blood of the CE group. The 
LAA mechanism clots demonstrated elevated levels of proteins 
such as CD59, LAMP1, and ELANE, which are associated with 
the ubiquitin-proteasome pathway and the progression of ath-
erosclerosis. CR clots exhibited high levels of proteins associated 
with active cancer and immune responses, such as IGHG1 and 

VTN. These proteins are involved in tumorigenesis and the im-
mune system, including the complement system. Additionally, a 
machine learning-based approach was developed to accurately 
identify stroke mechanisms by analyzing the specific proteins 
associated with mechanisms. Notably, three proteins, PLEK, 
CD59, and IGHG1, exhibited precise categorization of the three 
groups, yielding a 75.0% PPV.

The accurate determination of the underlying cause of isch-
emic stroke is a fundamental component for secondary 

FIGURE 2    |    Expression patterns of final candidates for feature selection. Dot plot showing expression level of final candidate proteins among 
three stroke mechanism groups. The mean with standard deviations is marked as line and distinguish it by different colors. Final candidates consist-
ed of 10, 22, and 2 proteins, in the LAA (A), CE (B), and CR (C) group, respectively. The statistical significance from student t-test are also marked 
with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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prevention [1, 2]. Patients with an UD cause have limitations 
in choosing appropriate antithrombotic therapy for secondary 
prevention, leading to an increased risk of stroke recurrence 
when compared to individuals with a known cause of stroke 
[18, 19]. Previous studies have attempted to establish a cor-
relation between thrombus composition and stroke etiologies 
through histopathological and immunohistochemical analy-
ses [3–6]. Histological analysis was used to assess the compo-
sition of blood clots, which typically include RBCs, platelets/
fibrin, and leukocytes [3–6, 20]. Several studies have sug-
gested a correlation between RBC-rich clots and CE etiology, 

whereas platelet/fibrin-rich clots have been linked to LAA eti-
ology [5]. However, contrasting findings have been presented 
by other studies, suggesting that fibrin-rich clots are associ-
ated with CE, while RBC-rich clots are associated with LAA 
[6, 20]. Furthermore, a few studies reported a lower proportion 
of RBCs in clots from a CR ischemic stroke [6, 13]. However, 
our study found that there was no significant difference in the 
compositions of RBCs, fibrin, and leukocytes in clots among 
the three mechanisms in consistency with previous some 
studies [4, 6]. Histological analysis showed inconclusive re-
sults in terms of identifying stroke mechanisms using clots.

FIGURE 3    |    Results of feature selection to predict the UD (undetermined) group. Importance plot after random forest feature selection and hy-
perparameter tuning using AutoML. We refined the results with 90th percentile, which shows the top 10% of importance scores (threshold: 5.02). 
The 90th percentile is indicated by a dashed line (A). Scatter plot of the features selected as prediction model. Pleckstrin (PLEK), CD59 glycoprotein 
(CD59), and Immunoglobulin Heavy Constant Gamma 1 (IGHG1) were specifically upregulated in the CE, LAA, and CR groups, respectively (B). 
The median and standard deviation of the intensity data are indicated by dashed lines and distinguished by color. The statistical significance are 
marked with asterisks (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001).
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This study identified specific pathways and biomarkers to differ-
entiate ischemic stroke mechanisms using LC–MS/MS analysis 
and a machine learning method. We identified 260 of the 3726 
proteins that were analyzed in the clots. These proteins are cat-
egorized into distinct clusters based on their involvement in key 
biological processes related to stroke mechanisms. Proteins such 
as PLEK, ROCK2, TLN1, and RAB14 in CE were associated with 
platelet activation, platelet adhesion, and thrombus formation. 
Proteins including CD59, LAMP1, and ELAN involved in LAA 
play crucial roles in the survival, proliferation, and migration of 
macrophages, potentially influencing the development of athero-
sclerosis in large arteries. In the CR mechanism, the identified bi-
ological processes with IGHG1 and VTN proteins were tumor cell 
growth and the microenvironment of the tumor cells. Regarding 
the mechanisms of CE and LAA, the key biological processes ob-
served in this study were similar to those reported in previous 
studies [21, 22]. However, no study has investigated the biological 
processes and proteins involved in the CR mechanism.

We developed a new method using machine learning based 
on RF feature selection following the PPI and validated DEPs. 
Therefore, we predicted the mechanisms of stroke based on 
three identified proteins. First, we found that PLEK is a reliable 
predictor of CE stroke. This protein plays a significant role in 
thrombus platelet activation, platelet adhesion, and thrombosis, 
as it is a major target of protein kinase C in platelets [23, 24]. 
Second, CD59 is an identified protein for predicting the LAA 
mechanism, as it has a regulatory role in complement mem-
brane attack complex assembly for mediating endothelial dam-
age and foam cell formation of the atherosclerosis plaque. These 
pathways are involved in the atherosclerotic process in endothe-
lial cells, smooth muscle cells, and inflammatory cells [25–27]. 
Finally, IGHG1 was found to be a reliable predictor of CR stroke, 
known to promote tumor expansion and invasion in multiple 
malignancies [28–30]. By applying the developed method to 
eight patients with strokes of an UD cause, we predicted the un-
derlying mechanisms with an impressive 75.0% PPV.

Distinguishing cell-derived from blood-derived proteins in clots 
is challenging due to significant overlap in protein composi-
tion between blood components and cells involved in clotting, 
compounded by protein modifications and degradation within 
the clot. Furthermore, especially with samples from biopsies or 
minimally invasive procedures, limited clot quantities hinder 
comprehensive validation using traditional biochemical meth-
ods like Western blotting and IHC, which require substantial 
material for multiple target analyses. Consequently, accurately 
pinpointing protein origin and spatial distribution within clots 
necessitates employing advanced techniques such as MS-based 
spatial proteomics, offering higher sensitivity, multiplexing ca-
pabilities, and spatial resolution even with limited samples. This 
approach is crucial for a more comprehensive understanding of 
clot composition and dynamics, ultimately facilitating the devel-
opment of targeted diagnostic and therapeutic strategies.

This study has several limitations. First, the sample size is rel-
atively small. Despite this limitation, we conducted an analysis 
of various mechanisms, such as cancer– stroke. Furthermore, 
identified proteins of the arterial blood samples in the occluded 
arteries matched the proteins found from the clots in the CE 
mechanism. Second, owing to the limited size of the study, we 

were unable to evaluate potential confounders such as prior use 
of antiplatelet agents, anticoagulants, and tPA. In addition, we 
could not adjust the ordinary p-value using multiple hypothesis 
testing due to the large inter/intra-group variation of clot pro-
tein level as well as the small sample size. To make up for the 
lack of statistical power, we performed additional experiments 
using an orthogonal method to verify the results of the discovery 
stage. Furthermore, hyperparameter tuning and threshold set-
tings were applied to minimize these errors in the development 
of the prediction model. Third, the power of the validation study 
in the UD group is limited because of a small sample size and 
follow-up period of the UD group (n = 8).

5   |   Conclusions

In conclusion, potential clot protein biomarkers linked to stroke 
mechanisms such as CE, LAA, and CR have been identified in 
this study. Furthermore, a methodology was devised to facilitate 
the discovery of biomarkers specific to various stroke subtypes, 
including CE, LAA, and CR, utilizing proteomic analysis. Our 
findings indicate the potential utility of clot analysis in iden-
tifying distinct biomarkers linked to the pathophysiology of 
thrombus formation. This information may help clinicians bet-
ter differentiate stroke etiologies, particularly in cases with UD 
causes, such as those having two or more etiologies or embolic 
stroke of UD source. Furthermore, it could help in choosing op-
timal antithrombotic or anticoagulation strategies for second-
ary prevention based on the specific stroke etiologies. This pilot 
study is based on a small sample size; therefore, more extensive 
research is needed to validate and establish these correlations in 
a larger patient population.
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