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ABSTRACT
Background: In low-birth-weight girls, obesity increases the risk of
premature adrenarche and metabolic complications. However, the
consistency of this association in normal-birth-weight children and
its potential mediators remain unknown.
Objectives: The objectives were to assess the associations between
obesity indicators and dehydroepiandrosterone sulfate (DHEAS) at
7 y of age and to evaluate the role of hormonal markers on these
associations.
Design: We assessed in 969 participants (6.9 y; 48% girls; all Tan-
ner I) in the Growth and Obesity Chilean Cohort Study the associ-
ations between DHEAS and weight, BMI, waist circumference
(WC), waist-to-height ratio, skinfold thickness, and percentage total
fat (bioimpedance) and determined whether these associations were
related to insulin, insulin-like growth factor I (IGF-I), and leptin.
We also compared BMI and height growth from 0 to 7 y of age in
nonobese and obese children with normal and high DHEAS ($75th
percentile) at 7 y.
Results: DHEAS concentrations were similar between girls (30.361.86
mg/dL) and boys (29.461.73 mg/dL) (P. 0.05); 17.3% of children
were obese (BMI-for-age z score$2 SD). Adiposity indicators were
positively and similarly associated with DHEAS [ie, BMI, b stan-
dardized regression coefficient: 0.23 (95% CI: 0.17, 0.29); WC, b
standardized regression coefficient: 0.23 (95% CI: 0.16, 0.30)];
these associations were only partially related to IGF-I and leptin.
Obese children had twice the risk of high DHEAS (OR: 2.16; 95%
CI: 1.51, 3.09); at 7 y, obese children with high DHEAS were fatter
and more centrally obese than their counterparts (P , 0.05), al-
though their previous growth was similar (P . 0.05). None of the
results differed by sex (P . 0.05).
Conclusion: In children of normal birth weight, obesity is posi-
tively associated with DHEAS at 7 y of age. Am J Clin Nutr
2013;97:318–25.

INTRODUCTION

Adrenarche is a maturational event resulting from the acti-
vation of the zona reticularis of the adrenal gland, which leads to
an increase in the production of the adrenal androgens dehy-
droepiandrosterone and dehydroepiandrosterone sulfate (DHEAS)4

(1). It is identified by an increase in DHEAS production after the
age of 5 y (1–4). Premature adrenarche (PA) is recognized when
signs of androgen action (eg, pubic hair, adult-type body odor, and
seborrhea) appear prematurely (before 8 y in girls, before 9 y in
boys) and are accompanied by elevated serum DHEAS concen-
trations traditionally .40 mg/dL.

Emerging evidence links PA in girls to an increased risk of
developing the metabolic syndrome. Areas of controversy in-
clude the higher risk of polycystic ovary syndrome in girls with
PA and whether low birth weight increases the risk of developing
PA (5–8). Prepubertal obesity has also been associated with
insulin resistance, altered lipid and glucose metabolism (9), and
increased adrenal androgen production (10), which raises the
possibility that PA may be a contributing factor to the de-
velopment of obesity-related metabolic complications (11, 12).

However, the relation between obesity and DHEAS has been
described mainly in girls born with low birth weight (13, 14), and
most obese children have a normal or an increased birth weight
(15). In the general population, some studies have failed to show
an association between adiposity and DHEAS (16), whereas
others have shown an association (10, 17, 18). Importantly, the
mechanisms that might explain this association have not been
elucidated. Insulin and insulin-like growth factor I (IGF-I) have
been suggested to play a role in girls but not in boys (19, 20).
Leptin has also been implicated, but, overall, the potential me-
diators of this association remain largely unknown (1). A better
understanding of the associations between obesity and adrenal
maturation may contribute to an understanding of the pathways
that link childhood obesity to metabolic complications. Thus, our
aim was to assess the associations between serum DHEAS and
obesity indicators, growth, and potential hormonal mediators at 7 y
of age in a well-characterized cohort of Chilean children.

SUBJECTS AND METHODS

Our study sample was drawn from children enrolled in the
Growth and Obesity Chilean Cohort Study, which assesses the
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association of early growth and development of adiposity and
metabolic risk (21, 22). Children were eligible for the study if
they were 3.0–4.9 y of age and attending Junta Nacional de
Jardines Infantiles nursery schools from the south area of San-
tiago, Chile, in September 2006; were singletons; had a gesta-
tional age of 37–42 wk; had a birth weight $2500 g (data
retrieved from medical registries); and had no physical or psy-
chological conditions that could severely affect growth. Almost
85% of the total eligible population agreed to participate (n = 1196),
and no significant differences in age, sex, birth, or anthropo-
metric measures were observed at 4 y between participants and
nonparticipants. Thereafter, annual evaluations have been car-
ried out. In 2009, 1044 children of the original cohort were
evaluated (w87%). For the current analyses, we excluded 36
girls who had breast buds (breast Tanner II), 37 children for
whom we were unable to obtain a blood sample, and 2 children
with implausible DHEAS concentrations; thus, our final sample
size was 969 children. Assuming 80% power and a 2-tailed
significance level of 0.05, we were able to detect small effect
sizes (23). The study protocol was approved by the Institutional
Review Board of the Institute of Nutrition and Food Technology
of the University of Chile. Informed consent was obtained from
all parents or guardians of the children.

BMI and linear growth from 0 to 7 y of age

From 0 to 3 y, weight and height (recumbent length in children
,2 y of age) data were abstracted from health records. The
validity of these data were verified (21). Thereafter, a dietitian
measured weight, height, and waist circumference (WC) annu-
ally by using standardized procedures. At 7 y of age, a single
dietitian carried out all of the measurements. Weight was mea-
sured with a TANITA BC-418 device with a precision of 0.1 kg,
height was measured with a wall-mounted Harpenden stadi-
ometer (Holtain) to the nearest 0.1 cm, and WC (ie, minimum
circumference between the iliac crest and the rib cage) was
measured with a metal inextensible tape (model W606PM;
Lufkin) to the closest 0.1 cm. The intraobserver technical error
of measurement and the mean average bias of the observer were
within the limits suggested by WHO in the growth reference
study (24).

Body composition at 7 y

A single specially trained registered dietitian measured triceps,
biceps, subscapular, suprailiac, and abdominal skinfold thick-
nesses using standardized procedures. Skinfold thicknesses were
measured in triplicate on the right side of the body with a Lange
caliper to the nearest 0.5 mm; the mean value was used in the
analyses. Bioimpedance analysis (BIA) measurements were
collected by a single dietitian using a TANITA Segmental Body
Composition Analyzer (model BC-418).

Pubertal development at 7 y

A single pediatric endocrinologist (VM) assessed breast and
genital development by palpation and classified breast and testes
according to the Tanner stages (25).

Bone age at 7 y

Bone age measurements were obtained from the left hand by
using an ultrasound method (BonAge; Sunlight Co) (26, 27). This
method is based on the differential transmission speed of ul-
trasound through cartilage and bone, and its use for research
purposes has been validated (28). Measurements were obtained in
duplicate and averaged to obtain a final bone age.

Blood sample at 7 y

A trained nurse collected a 25-mL fasting venous blood sample
from the children at arrival to the nursery school. Mothers were
contacted on the day before the sample was drawn to confirm the
absence of fever (.37.58C) or symptoms of acute infection in the
children and to advise them not to provide foods or liquids to
their children before arriving at the nursery the next day. These
conditions were rechecked by the nurse at the time of the blood
collection, and exams were rescheduled if the conditions were
not met. The analyses were conducted at the Nutritional Labora-
tory of the Catholic University of Chile and Institute of Maternal
and Child Research University of Chile. Serum dehydroepian-
drosterone was measured by competitive specific binding ra-
dioimmunoassay supplied by Diagnostic System Laboratories;
intra- and interassay CVs were 3.5% and 5.1%, respectively.
Serum IGF-I was measured by using a standardized locally
developed radioimmunoassay requiring sample extraction as
a first step (sensitivity: 5 ng/mL; intra- and interassay CVs: 8.6%
and 10.2%, respectively) (29). Serum glucose was measured by
using enzymatic colorimetric techniques (HUMAN; Gesell-
schaft für Biochemica und Diagnostica), and serum insulin
was measured with a commercial radioimmunoassay (Siemens
Medical Solutions Diagnostics). The HOMA-IR was calculated
as fasting glucose (mmol/L) 3 fasting insulin (mU/mL)/22.5.
Serum leptin was measured by commercial radioimmunoassay
(Millipore).

Computed indexes

Anthropometric and body-composition indicators

We divided weight (kg) by height squared (m2) to calculate
BMI. We estimated weight-for-age, height-for-age, and BMI-for
age (BAZ) z scores based on the WHO 2007 growth reference
(30). We defined obesity as BAZ$2 SD and overweight as BAZ
$1 SD. Central obesity was defined as WC $ NHANES III
.75th percentile (girls: 63.0 cm; boys: 63.4 cm), because the
use of WC 90th percentile gave a virtually identical categori-
zation for general and central obesity (31). The waist-to-height
ratio was based on the waist perimeter divided by height. Triceps
and subscapular skinfold thicknesses were used to estimate body
fat according to the Slaughter equation (32). Body fat (kg) es-
timated from skinfold thicknesses, by weight (kg) and height
squared (m2), were used to calculate percentage fat (%fat = fat/
weight) and fat mass index (FMI = fat/height2), respectively.
Body fat estimated from BIAwas also divided by height squared
to calculate FMI (FMI BIA). We considered indicators of total
adiposity: weight, BMI, %fat, FMI, and FMI BIA and WC and
waist-to-height measurements as markers of central adiposity.
IGF-I z scores were estimated based on a Chilean reference.
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Maturation indicators

Measured bone age (BA) divided by chronologic age (CA) was
used to assess standardized bone age (BA/CA). A high DHEAS
concentration was defined based on sample distribution (75th
percentile); the cutoffs were 42.0 mg/dL for girls and 45.1 mg/dL
for boys (Table 1).

Statistical analyses

We present the data as either means (or geometric means) and
SDs (SDs = z score) or frequencies and 95% CIs; nonnormal
distributions were log transformed. We tested differences by sex
using Student’s t test for continuous variables or chi-square and
Fisher tests for dichotomous variables. Linear regression models
using standardized coefficients were used to compare associa-
tions between the different adiposity indicators and DHEAS,
and logistic regression models were used to assess the role of
adiposity indicators as predictors of adrenarche. Generalized
linear models served to assess 1) the association of IGF-I, in-
sulin, and leptin and high DHEAS at 7 y and 2) differences in
growth and adiposity and metabolic status at 7 y in nonobese
and obese children with and without high DHEAS at 7 y. All
analyses were adjusted by age. Interactions by sex were all
nonsignificant; thus, the results are presented for both sexes
combined. The associations were considered significant if P ,
0.05. The analyses were conducted by using SAS (version 9.1;
SAS Institute).

RESULTS

DHEAS distribution by sex is presented in Table 1. DHEAS
concentrations were similar between girls and boys (P . 0.05).
Adiposity, metabolic, and hormonal characteristics of the par-
ticipants are presented in Table 2. A total of 969 children
(w50% girls) provided information. The mean age was w7 y;
bone age was slightly advanced (BA/CA: 1.12). On average,
children had close to +1 SDs BMI (BAZ) relative to the WHO
reference, and 40% of the children had excess weight (BMI SDs
.1) with no sex differences (P . 0.05). BMI measurements
suggested that obesity (BAZ .2) was more prevalent in boys
(21.2 compared with 13.1%; P , 0.05); however, estimations
made with the use of more direct measurements of adiposity,
such as skinfold thickness (%fat or FMI) or BIA (FMI BIA),
showed the opposite (both P , 0.05). In both sexes, WC
was close to 59.0 cm, waist-to-height ratio was on average
,0.5 (0.49 6 0.05), and w20% of children had central obesity

(waist .75th percentile). Sixteen percent (n = 28) of the obese
children (n = 168) did not have central obesity, whereas 24%
(n = 42) of the children meeting the criteria for central obesity
(n = 178) were not obese (data not shown). Mean IGF-I con-
centrations were higher in girls than in boys (175.2 6 42.7
compared with 161 6 42.9 ng/mL), but comparisons with
a reference population (SDs) showed that concentrations were
higher in boys than in girls. The boys had higher glucose con-
centrations, but insulin, HOMA-IR, and leptin did not differ by
sex (P . 0.05).

The standardized regression coefficients (and 95% CIs) for
DHEAS concentrations at 7 y of age, per sample-specific 1-SD
increments in adiposity indicators at 7 y, are shown in Figure 1.
All total and central adiposity indicators related similarly to
DHEAS concentrations [eg, WC, b standardized regression
coefficient: 0.23 (95% CI: 0.16, 0.30); waist-to-height ratio, b
standardized regression coefficient: 0.19 (95% CI: 0.13, 0.26)];
overall, the effect sizes were small (all ,0.3).

The associations of obesity, metabolic, and hormonal in-
dicators with high DHEAS at 7 y are shown in Table 3. Obese

TABLE 1

DHEAS distribution in 969 prepubertal (Tanner stage I) Chilean

school-age (7 y) children, by sex1

DHEAS (mg/dL)

Percentile Girls (n = 464) Boys (n = 505) All (n = 969)

10th 14.8 13.5 14.5

25th 20.2 19.4 20.1

50th 30.1 30.7 30.9

75th 42.0 45.1 44.9

90th 61.7 68.5 64.2

1DHEAS, dehydroepiandrosterone sulfate.

TABLE 2

Anthropometric, metabolic, and hormonal indicators of 969 prepubertal

Chilean school-age children, by sex1

Boys

(n = 505)

Girls

(n = 464) P2

Age (mo) 82.6 6 5.43 81.9 6 5.2 0.16

Bone age/chronologic age 1.13 6 0.13 1.12 6 0.15 0.001

Height (cm) 121.2 6 5.51 120.2 6 5.20 0.02

Height-for-age z score 0.04 6 0.93 0.06 6 0.90 0.29

Adiposity indicators

Weight (kg) 25.5 6 4.88 24.8 6 4.50 0.33

Weight-for-age z score 0.69 6 1.2 0.63 6 1.01 0.96

BMI (kg/m2) 17.2 6 2.39 17.1 6 2.26 0.87

BAZ 0.93 6 1.25 0.79 6 1.02 0.21

BAZ $1 [% (n)] 44.3 (223) 39.7 (185) 0.12

BAZ $2 [% (n)] 21.2 (107) 13.1 (61) 0.001

Percentage fat (%)4 15.0 6 5.1 16.6 6 4.4 ,0.0001

Fat mass index (kg/m2)4 2.69 6 1.33 2.92 6 1.17 ,0.0001

Fat mass index, BIA (kg/m2) 3.98 6 1.38 4.38 6 1.33 ,0.0001

WC (cm) 59.0 6 6.66 58.6 6 6.30 0.98

WC $75th percentile [% (n)]5 18.1 (91) 18.7 (87) 0.49

Waist-height ratio 0.49 6 0.05 0.49 6 0.04 0.28

Hormonal and metabolic markers

DHEAS (mg/dL)6 30.3 6 1.9 29.4 6 1.73 0.92

Glucose (mg/dL) 90.3 6 6.3 88.8 6 6.05 0.001

Insulin (mg/dL)6 5.31 6 1.19 5.43 6 1.22 0.07

HOMA-IR6 1.19 6 1.22 1.20 6 1.24 0.57

IGF-I (ng/mL) 161.0 6 42.9 175.2 6 42.7 ,0.0001

IGF-I (z score) 20.13 6 0.69 20.50 6 0.72 ,0.0001

Leptin (ng/mL)6 4.81 6 1.75 4.91 6 1.80 0.30

1Anthropometric z scores are based on WHO 2007. BAZ, BMI-for-

age z score; BIA, bioimpedance analysis (by TANITA BC-418); DHEAS,

dehydroepiandrosterone sulfate; IGF-I, insulin-like growth factor I; WC,

waist circumference.
2Differences between the sexes were estimated by using a t test and chi-

square tests.
3Mean 6 SD (all such values).
4Based on skinfold thicknesses determined by using the Slaughter

equation (32).
5NHANES III percentiles: Fernandez (75th percentile = 63.0 cm for

girls and 63.4 cm for boys) (31).
6Variables not normally distributed were log transformed.
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children had twice the risk of high DHEAS (OR: 2.16; 95% CI:
1.51, 3.09). IGF-I SDs and leptin were also associated with high
DHEAS [OR: 1.35 (95% CI: 1.16, 1.57) and 1.04 (95% CI: 1.01,
1.08), respectively], but only the effect of IGF-I (OR: 1.30; 95%
CI: 1.11, 1.52) and not of leptin (OR: 1.01; 95% CI: 0.97, 1.05)
was independent of obesity. Insulin was not associated with high
DHEAS at 7 y (P . 0.05). Obesity remained associated with
high DHEAS (OR: 2.05; 95% CI: 1.36, 3.09), even after all of
the studied metabolic indicators were accounted for.

The interactions between obesity and high DHEAS were not
significant for any of the anthropometric, metabolic, or hormonal
outcomes; nonetheless, the differences between the nonobese and
obese children with normal or elevated DHEAS at 7 y are shown
in Table 4 for illustrative purposes only. Obese children with
higher DHEAS concentrations at 7 y had more total (%fat: 24.3
compared with 22.8; P , 0.05) and central (WC: 70.3 cm
compared with 68.5 cm; waist-to-height ratio: 0.568 compared
with 0.558; P , 0.05) adiposity and lower insulin (5.75 com-
pared with 6.11 mg/dL; P , 0.05) and HOMA-IR values (1.30
compared with 1.41; P , 0.05) than did their nonobese coun-
terparts, but no differences in sex distribution, standardized bone
age, height, or other metabolic markers were observed (P .
0.05). Nonobese children with elevated DHEAS at 7 y were also
generally and centrally fatter (%fat: 2.55 compared with 2.29;
WC: 57.6 cm compared with 56.4 cm; P , 0.05) than their
nonobese counterparts with normal DHEAS, and they also had
more advanced bone age (BA/CA: 1.15 compared with 1.11; P ,
0.05) and higher IGF-I concentrations (190.3 ng/mL compared
with 174.7 ng/mL; P , 0.05). All variables, except for age, were
significantly higher in obese than in nonobese children (P, 0.05).

Growth of nonobese and obese children with and without
high DHEAS at 7 y

The ponderal and linear growth of nonobese and obese chil-
dren who had high DHEAS at 7 y compared with those who did

not is shown in Figure 2. We observed that children with high
DHEAS (either nonobese or obese) have growth patterns similar
to those of their counterparts (P. 0.05), whereas obese children
were fatter and taller from 12 and 48 mo than were nonobese
children, respectively (P , 0.05).

Central obesity analyses (data not shown)

We repeated logistic analyses considering central obesity in-
stead of obesity. The results were slightly stronger in magnitude
and in the same direction than were the results of analyses using
obesity [unadjusted model OR: 2.02 (95% CI: 1.46, 2.80); full
model OR: 1.85 (95% CI: 0.99, 3.52)]. Differences in growth
patterns between centrally obese children with high DHEAS
concentrations and those without high concentrations were
similar to those observed in generally obese children. We also
repeated the analyses considering a cutoff for WC based on Cook
et al (33), and the results were unchanged.

Breast Tanner II (exploratory analyses)

Girls with breast Tanner II (n = 36) had higher DHEAS
concentrations and were fatter and had a higher standardized
bone age than did prepubertal girls (see Tables S1 and S2
under “Supplemental data” in the online issue). Nonetheless,
associations between adiposity and hormonal and metabolic
markers and high DHEAS concentrations at 7 y (61.2 mg/dL)
were similar in magnitude and direction than in prepubertal girls
(see Table S3 under “Supplemental data” in the online issue).

DISCUSSION

In this large cohort of normal-birth-weight children, we found
that indicators of total and central adiposity were positively and
similarly related to DHEAS concentrations at 7 y in both girls and

FIGURE 1. Standardized regression coefficients (and 95% CIs) for
DHEAS concentrations at 7 y of age per sample-specific 1-SD increments
in adiposity indicators at 7 y in 969 prepubertal Chilean children. Multiple
linear models adjusted by age and sex. Fat index = fat mass based on
skinfold thickness/height2; fat mass index BIA = fat mass based on
bioimpedance/height2; waist/height = waist-to-height ratio. Each of the
following values corresponds to the standard deviation: DHEAS: 1.83;
weight: 4.71; BMI: 2.33; %fat: 4.82; fat mass index: 1.26; fat mass index
BIA: 1.33; waist: 6.49; waist-to-height ratio: 0.05. BIA, bioimpedance
analysis; DHEAS, dehydroepiandrosterone sulfate.

TABLE 3

Association of adiposity and hormonal and metabolic markers and high

DHEAS at 7 y of age in 969 prepubertal Chilean children1

OR 95% CI

BAZ $2

Model 1 2.16 1.51, 3.09

Model 3 2.05 1.36, 3.09

Insulin

Model 1 1.02 0.93, 1.12

Model 2 0.97 0.88, 1.07

Model 3 0.95 0.86, 1.06

IGF-I (z score)

Model 1 1.35 1.16, 1.57

Model 2 1.30 1.11, 1.52

Model 3 1.31 1.12, 1.53

Leptin

Model 1 1.04 1.01, 1.08

Model 2 1.01 0.97, 1.05

Model 3 1.00 0.96, 1.05

1A high DHEAS concentration is defined as $42.0 mg/dL in girls and

$45.1 mg/dL in boys, based on sample distribution. Model 1: age + sex + one

anthropometric or hormonal/metabolic marker; model 2: age + sex + BAZ$2 +

one hormonal/metabolic marker; model 3: age + sex + BAZ$2 + all hormonal/

metabolic markers. BAZ, BMI-for-age z score; DHEAS, dehydroepiandroster-

one sulfate; IGF-I, insulin-like growth factor I.
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boys; these association were only partially related to IGF-I and
leptin concentrations. Obese children had almost twice the risk of
having high DHEAS concentrations at 7 y than did normal-
weight children. Obese children with higher DHEAS concen-
trations at 7 y were fatter than their counterparts, but they did not
differ in their current metabolic/hormonal status and their earlier
ponderal and linear growth.

In our sample, obesity and central obesity were relatively
common (w20%), as would be expected for a posttransitional
urban population such as that of Santiago, Chile. Obesity has
been shown to be positively associated with adrenal maturation
(10, 17, 18); however, not all of the studies have reported pos-
itive findings (16). For example, one small longitudinal study
found an association between changes in BMI and increases in
DHEAS but failed to show a cross-sectional association between
the 2 indicators (10), even when using a more specific indicator
of adiposity such as skinfold thickness. In our study, we found
a small positive association among 3 different indicators of
adiposity (BMI, skinfold thickness, and WC) and DHEAS
concentrations at 7 y. Central adiposity tended to be more
strongly associated to DHEAS than did general adiposity. This
finding is consistent with a potential role of cortisol as an ini-
tiator of adrenal maturation, because central obesity is associ-
ated with increased cortisol secretions (34, 35). Nonetheless,

these conclusions have to be tempered given that only w7% of
the children were discordant (ie, were obese but not centrally
obese). We found that associations between adiposity and
DHEAS were of similar magnitude and direction in both girls
and boys, even after Tanner II girls were excluded from the
analyses. Other authors have reported similar results in pre-
puberty (1, 36). It was also shown that the effect of early growth
on adrenal maturation is of similar magnitude in both sexes (37).
We add to the existing literature by showing that the effects of
adiposity on adrenal maturation do not show evidence of sexual
dimorphism at this age.

Several reports recognize the association of obesity as
a “switch” for adrenarche. However, the direct mechanisms
through which this process starts are still unknown. In vitro
studies suggest a role for insulin and IGF-I; however, in vivo
studies have shown conflicting results (38). Correlations be-
tween insulin and IGF-I and DHEAS have been shown in pre-
pubertal girls but not in boys (19, 20). Children with PA have
higher insulin and IGF-I and lower IGF binding protein-1 con-
centrations (39, 40), although this finding has not been consis-
tent (41). In this study, we showed that IGF-I had a small effect
on DHEAS that remained significant after adjustment for BMI
and insulin concentrations. This observation agrees with the
studies of Baquedano et al (42), who demonstrated the presence
of IGF-I/IGF-I receptor in the outer zone of the adrenal cortex
during childhood and adolescence, but no evidence of a direct
action of IGF-I on the zona reticularis. Leptin has been also
explored as a trigger of adrenarche; however, the evidence re-
mains inconsistent (43). In our model, we found a significant
relation between leptin and DHEAS that disappeared after ad-
justment for indicators of adiposity. Conversely, the strength of
the associations between adiposity indicators and DHEAS de-
creased when leptin was added to the model, which suggests
a mediator role. Overall, the hormonal markers that we explored
(insulin, IGF-I, and leptin) only partially explained the obesity
and DHEAS associations, which suggests that other factors may
be implicated.

We found, that obesity was positively associated with DHEAS,
although not all obese children had high DHEAS concentrations.
In our cohort, children with higher DHEAS concentrations were
fatter (in general and centrally) than their counterparts and tended
to be taller and have a higher bone age, although these differences
were not always significantly different. It has been shown that
a progressive increase in serum concentrations of DHEAS
roughly parallel an increase in bone age in both healthy and obese
populations (17, 44). Metabolic markers also did not differ
among obese persons with and without adrenarche, although
a higher concentration of IGF-I was suggested. Further follow-up
of these children will allow assessment of how DHEAS con-
centrations at this age will affect the metabolic health of these
children.

In our population-based cohort, in contrast with what has been
shown in clinical settings (41), we observed that children with
high DHEAS concentrations at 7 y grew similarly to their normal
counterparts from 0 to 7 y of age. It was suggested that obese
children with high DHEAS concentrations had an earlier adi-
posity rebound than did the rest of the obese children; however,
we were unable to further explore this observation because our
data were limited to yearly measurements, which do not allow
a precise estimation of the age at which adiposity rebound occurs.

FIGURE 2. BMI and linear growth of 996 prepubertal Chilean children
by nutritional status and DHEAS concentrations at 7 y of age. Dotted lines
indicate 95% superior CIs for OH and 95% inferior CIs for ON. Dotted and
dashed lines indicate 95% superior CIs for NOH and 95% inferior CIs for
NON. Generalized linear models were adjusted for age and sex. Obesity =
BAZ $2, WHO 2007; anthropometric z scores are based on WHO 2006–
2007. Differences between nonobese and obese children were significant (P
, 0.05) from 12 mo on (BMI and BAZ) and from 48 mo on (HAZ); all
remaining differences and interactions between obesity and high DHEAS
concentrations were not significant (P . 0.05). BAZ, BMI-for-age z score;
DHEAS, dehydroepiandrosterone sulfate; HAZ, height-for-age z score;
NOH, nonobese high DHEAS; NON, nonobese normal DHEAS; OH,
obese high DHEAS; ON, obese normal DHEAS.
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Our study had the same limitations inherent with the in-
terpretation of cross-sectional analyses, which does not allow
firm conclusions on the direction of the associations and thus
cannot be used to infer causality. Nonetheless, we had a large
population that was restricted in terms of age, which allowed us to
explore the association of adiposity and adrenal maturation
considering different indicators of adiposity and potential hor-
monal mediators assessing the effect of potential sex differences
and controlling a potential confounder role of age. We expect that
further follow-up of these children will allow us to better dis-
entangle the timing of the different events.

In conclusion, childhood obesity has reached epidemic pro-
portions on a global scale (45). This is a matter of concern given
the number of complications and conditions associated with
childhood obesity, such as metabolic, cardiovascular, and cancer
disease. PA has also been linked to the emergence of metabolic
and other health complications (5, 14, 39). We showed here, in
a population of normal-birth-weight school-age children, that
obesity and DHEAS are positively associated (11). It remains to
be determined how high DHEAS concentrations will affect the
emergence of the metabolic complications of obesity, but it might
be possible that avoiding the development of PAmay be a manner
of decreasing childhood obesity burden and the potential lifelong
metabolic derangements derived from this condition.
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