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Abstract

Zoonotic diseases are a major cause of morbidity, and productivity losses in both human

and animal populations. Identifying the source of food-borne zoonoses (e.g. an animal

reservoir or food product) is crucial for the identification and prioritisation of food safety

interventions. For many zoonotic diseases it is difficult to attribute human cases to

sources of infection because there is little epidemiological information on the cases. How-

ever, microbial strain typing allows zoonotic pathogens to be categorised, and the relative

frequencies of the strain types among the sources and in human cases allows inference

on the likely source of each infection. We introduce sourceR, an R package for quantita-

tive source attribution, aimed at food-borne diseases. It implements a Bayesian model

using strain-typed surveillance data from both human cases and source samples, capa-

ble of identifying important sources of infection. The model measures the force of infec-

tion from each source, allowing for varying survivability, pathogenicity and virulence of

pathogen strains, and varying abilities of the sources to act as vehicles of infection. A

Bayesian non-parametric (Dirichlet process) approach is used to cluster pathogen strain

types by epidemiological behaviour, avoiding model overfitting and allowing detection of

strain types associated with potentially high “virulence”. sourceR is demonstrated using

Campylobacter jejuni isolate data collected in New Zealand between 2005 and 2008.

Chicken from a particular poultry supplier was identified as the major source of campylo-

bacteriosis, which is qualitatively similar to results of previous studies using the same

dataset. Additionally, the software identifies a cluster of 9 multilocus sequence types with

abnormally high ‘virulence’ in humans. sourceR enables straightforward attribution of

cases of zoonotic infection to putative sources of infection. As sourceR develops, we

intend it to become an important and flexible resource for food-borne disease attribution

studies.
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This is a PLOS Computational Biology software paper.

Introduction

Zoonotic diseases are a major source of human morbidity world wide. In 2010, there were an

estimated 600 million cases globally [1], of which 96 million were Campylobacter spp. resulting

in 21,000 deaths [2]. Attributing cases of food-borne disease to putative sources of infection is

crucial for identifying and prioritising food safety interventions, prompting routine national

recording of human cases and surveillance of high-risk sources in many countries—for exam-

ple FoodNet in the US [3], the Danish Zoonosis Centre (food.dtu.dk), and the Ministry for Pri-

mary Industries in New Zealand (foodsafety.govt.nz).

Traditional approaches to source attribution include observational risk assessment, extrap-

olation of surveillance or outbreak data, and epidemiological field studies [4]. The results of

such direct observational methods may be highly uncertain due to long and variable disease

incubation times, and many exposures of an individual to multiple sources of infection. Never-

theless, statistical modelling of human case count data, incorporating molecular strain typing

of pathogen isolates from national surveillance programmes, has shown promise for identify-

ing important sources of food-borne illness [5, 6].

The aim of this paper is to extend current approaches to statistical source attribution, and

to provide a standard software package, sourceR, providing an intuitive interface to source

attribution models for epidemiological domain specialists. Our principle innovation is a novel

class of Bayesian non-parametric source attribution model which classifies strain types by dif-

ferential epidemiological behaviour and accurately quantifies uncertainty. Furthermore, we

allow for spatial and temporal heterogeneity in case and source data with the aim of detecting

differential exposures to infection sources across space and time. sourceR represents the first

standard software for source attribution, and is designed for use by epidemiologists and public

health decision makers. It is written as an add-on package to R, the open-source lingua-franca

for modern epidemiological analysis, and incorporates an object-orientated style to facilitate

further model development and future maintainability.

The paper is structured as follows. We first introduce a motivating example and review

existing source attribution models. The new model is described in the Design and Implemen-

tation section followed by a demonstration of model fitting using sourceR in the Materials

and Methods section. Results and Discussion sections follow, and it concludes with details of

Availability and Future directions.

Example: Campylobacter food-poisoning in Manawatu, New Zealand

In 2006, New Zealand had one of the highest incidences of campylobacteriosis in the devel-

oped world, with an annual incidence in excess of 400 cases per 100,000 people [7]. Our moti-

vating data set was collected between 2005 and 2008 in the Manawatu region of New Zealand

with the aim of identifying the most important sources of campylobacteriosis and implement-

ing interventions. A campaign to change poultry processing procedures, supported in part by

results from previous quantitative source attribution approaches, was successful in leading to a

sharp decline in campylobacteriosis incidence after 2007 [6].

Campylobacter has many subtypes which are usually defined using Multilocus Sequence

Typing (MLST), a commonly used genotyping method providing a relatively rapid method of

characterising isolates. An MLST sequence type is a unique combination of alleles at specified

gene loci, typically located in conserved regions of the genome [8, 9]. The data set consists of

the dominant MLST-genotype Campylobacter isolated from each source (potential food and
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environmental sources) and human sample. The data was first published in [10], and is

described in detail (including data collection methods) in [11] and [12]. These data are

included in our sourceR package (named campy). We use this data set as a case study, and

compare our results with previously published statistical approaches.

Existing methods of source attribution

The general structure of the source attribution model is that the observed case-counts yi for

strain i (occurring in a defined surveillance period) are mutually independent Poisson distrib-

uted with means

li ¼
Xm

j¼1

ajpij: ð1Þ

where pij is the prevalence of strain i in source j, and “source effects” α measure each source’s

capacity to act as a vehicle of infection. The estimated number of cases attributed to a particu-

lar source j is

x̂ j ¼ â j

Xn

i¼1

pij: ð2Þ

Comparing the relative magnitudes of x̂ j provides a statistical method to prioritise interven-

tion strategies to the most important sources of infection. The model is fitted in a Bayesian

framework as posteriors for functions of parameters (such as ξ) are easily calculated, and to

allow previous knowledge to be incorporated via informative priors.

A significant problem is that this model does not allow for some strain types have differen-

tial affinities for human infection resulting in over-dispersion of y. Additionally, it does not

allow for uncertainty in P, inherent in sample based source data. In the rest of this section, we

review current extensions to Eq 1 aimed at accounting for the Poisson over-dispersion in

observed case numbers, and incorporating uncertainty in source surveillance data. In particu-

lar, the preliminary developments made by Hald et al. [5] and Müllner et al. [6] form an ontol-

ogy on which we base our innovations.

Over-dispersion. Hald et al. [5] address the issue of Poisson over-dispersion in Eq 1 by

introducing a “type effect” q accounting for some strain types being more adapted to human

infection than others.

li ¼ qi
Xm

j¼1

ajcjpij: ð3Þ

Additionally, they include an offset c representing known rates of consumption of each

source foodstuff, allowing α to be interpreted as a source-specific factor independent of expo-

sure. However, the addition of q as a vector of uncorrelated unknowns over-specifies the

model, withm + n parameters but only n independent disease case count observations. Hald

et al. therefore reduce the number of parameters by heuristic a priori grouping of the elements

of q, albeit with the generally undesirable property that quantification of uncertainty in the

most appropriate choice of grouping is not readily permissible.

The “Modified Hald” model of Müllner et al. [6] treats q as log Normally distributed ran-

dom effect, with unit mean and unknown variance τ2

qi � logNormalð1; t2Þ ð4Þ
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with a Gamma-distributed prior distribution imposed on τ2. However, this approach suffers

from a posteriori non-identifiability of q and τ2, hindering the performance of MCMC algo-

rithms used to fit the model [13]. Though this may be ameliorated by choosing an informative

prior for τ2 with small mean, it results in severe shrinkage of q and inference which is sensitive

to the choice of prior.

Uncertainty in source sampling. The Modified Hald model introduces uncertainty into

the prevalences pij by modelling the source sampling process. Let sj denote the total number of

source samples collected from source j = 1, . . .,m, of which xij are positive for pathogen type i.
Normalisation of the number of positive samples xij gives the relative prevalence rij ¼
xij=
Pn

i¼1
xij of type i in source j. The relative prevalence rij is then combined with the preva-

lence of positive samples kj ¼
Pn

i¼1
xij=sj to calculate the absolute prevalence pij = rij × kj of

strain i in source j. The Modified Hald model was fitted in WinBUGS using an approximate

two stage process [6]. First, a posterior distribution was estimated for the absolute prevalence

of source types p, using the model specified in Eqs (5) and (6):

r�j � Dirichlet ð1Þ 8 j ð5Þ

kj � Betað1; 1Þ 8 j ð6Þ

The marginal posterior for each element of p was then approximated by a Beta distribution

pij � Beta ðwij; vijÞ

(using the method of moments to calculate wij and vij) which was then used as an independent

prior in step 2. Since each isolate is assigned to only one type, we must observe
Pn

i¼1
rij ¼ 1,

and therefore
Pn

i¼1
pij ¼ kj. This is not enforced when using independent Beta priors for each

pij which results in kj (the probability of a sample being positive given the sample is from

source j) no longer being constrained to be between 0 and 1.

Design and implementation

Our approach addresses the deficiencies inherent in both the Hald and Modified Hald models

by fitting a joint model for both source and human case sampling with non-parametric cluster-

ing of the type effects. This allows integration over uncertainty in the source sampling process

without resorting to an approximate marginal probability distribution on p. The overdisper-

sion is solved by non-parametrically clustering the pathogen types using a Dirichlet process

(DP) on the type effect vector q. This is a data driven, automatic method which reduces the

effective number of parameters in the model without requiring strong assumptions about τ2 in

Eq 4. Additionally, it quantifies the similarity between epidemiological characteristics (viru-

lence, pathogenicity and survivability) of the subtypes forming the basis of future research on

the genetic determinants of this behaviour. Often, human case data is associated with location

such as urban/rural, or GPS coordinates whilst food samples are likely to be less spatially con-

strained (due to distances between production and sale locations). Both human and source

data may exist for multiple time-periods. Therefore, we allow for spatial and temporal hetero-

geneity in the data.
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HaldDP model

As with the Hald model, we assume the number of human cases yitl identified by isolation of

subtype i in time-period t at location l is Poisson distributed

yitl � Poisson ðlitl ¼ qi
Xm

j¼1

ajtlpijtÞ ð7Þ

We allow for different exposures of humans to sources in different locations and times, by

allowing the source effects to vary between times and locations, αjtl.
For each source j, we model the number of positive source samples

xjt � Multinomialðsþjt ; rjtÞ ð8Þ

where xjt = (xijt, i = 1,. . .,n)T denotes the vector of type-counts in source j in time-period t,
sþjt ¼

Pn
i¼1
xijt denotes the number of positive samples obtained, and rjt denotes a vector of

relative prevalences Pr(typei|sourcej, timet). This automatically places the constraint
Pn

i¼1
rijt ¼ 1. The source case model is then coupled to the human case model through the

simple relationship

pijt ¼ rijtkjt ð9Þ

where kjt is the prevalence of any isolate in source j in time-period t.
In principle, a Beta distribution could be used to model kjt, arising as the conjugate poste-

rior distribution of a Binomial sampling model for sþjt positive samples from sjt tested, and a

Beta prior on kjt. We instead choose to fix the source prevalences at their empirical estimates

(kjt ¼ sþjt =sjt) because the number of source samples is typically high.

The type effects q, which are assumed invariant across time or location, are drawn from a

DP with base distribution Q0 and a concentration parameter aq

qi � DP aq;Q0

� �
: ð10Þ

The Dirichlet process is a probability distribution whose range is a set of probability distri-

butions and is defined by a base distribution and concentration parameter [14]. The concen-

tration parameter of the DP aq encodes prior information on the number of groups K to which

the pathogen types are assigned. The Gamma base distribution of the DP Q0 induces a prior

for the cluster locations. The DP groups the elements of q into a finite set of clusters 1: κ
(unknown a priori) with values θ1,. . .,θκ which addresses the inevitable over-dispersion in the

case counts y robustly and clusters subtypes into groups with similar epidemiological

behaviour.

Heterogeneity in the source matrix x is required to identify clusters from sources, which

may not be guaranteed a priori due to the observational nature of the data collection.

Inference

This section describes how the model is fitted in a Bayesian context by first describing the

McMC algorithm used to fit this model, then developing the prior model.

McMC algorithm. The joint model over all unobserved and observed quantities is fitted

using Markov chain Monte Carlo (McMC, full details in S1 Appendix). The source effects and

relative prevalence parameters are updated using independent adaptive Metropolis-Hastings

updates [15]. The type effects q are modelled using a DP (Eq 10) with a Gamma base distribu-

tion Q0 * Gamma(aθ,bθ). The choice of a Gamma base distribution with the Poisson

sourceR: Classification and source attribution of infectious agents among heterogeneous populations
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likelihood (Eq 7) permits the use of a marginal Gibbs strategy for efficient sampling from the

posterior ditribution of q. Each observation i is assigned to a cluster k with value θk, such that

qi 7! θk. The algorithm proceeds by alternately sampling from the posterior of the group

assignments (adding new clusters or deleting empty clusters as necessary), and the posterior of

θk for each cluster.

Priors. The parameters αtl and q account for a multitude of source and type specific fac-

tors which are difficult to quantify a priori. Therefore, with no single real-world interpretation,

the distributional form of the priors were chosen for their flexibility. A Dirichlet prior is placed

on each rjt which suitably constrains the individuals rijs such that
Pn

i¼1
rijt ¼ 1. A Dirichlet

prior is also placed on each αtl, with the constraint
Pm

j¼1
ajtl ¼ 1 aiding identifiability between

the mean of the source and type effect parameters. In sourceR, the concentration parameter

of the DP αq is specified by the analyst as a modelling decision.

We note that the choice of base distribution Q0 may have a stronger effect than anticipated

due to the small size of the relative prevalence and source effect parameters. This can been

seen by considering the marginal posterior for θk

yk � Gamma ay þ
X

i:Si¼k

yi; by þ
X

i:Si¼k

Xm

j¼1

aj � pij

 !

The term
P

i:Si¼k

Pm
j¼1

aj � pij is very small (due to the Dirichlet priors on α and rj), which

can result in even a fairly small rate parameter (bθ) dominating.

Code implementation

Standard McMC packages (e.g. WinBUGS, Stan, PyMC3) cannot implement marginal Gibbs

sampling for Dirichlet processes, necessitating a custom McMC framework (see section

‘Extensibility’). We chose R as a platform because of its ubiquity in epidemiology, and

advanced support for post-processing of McMC samples. Dependencies on other R packages

are required, but these are installed automatically by R’s package manager.

sourceR uses an object-oriented design, which allows separation of the model from the

McMC algorithm. Internally, the model is represented as a directed acyclic graph (DAG) in

which nodes are represented by an R6 class hierarchy. Generic adaptive Metropolis Hastings

algorithms are attached to each parameter node, with the conditional independence properties

of the DAG allowing automatic computation of the required (log) conditional posterior

densities.

A difficulty with the DAG setup is the representation of the DP model on the type effects q,

since each update of the marginal Gibbs sampler requires structural alterations. Therefore, we

subsume the entire DP into a single node, with a bespoke marginal Gibbs sampling algorithm

written for our Gamma base-distribution and Poisson likelihood model.

Materials and methods

The case study below illustrates how the sourceR package is used in practice. We compare

the results of our approach with results from the Modified Hald, Asymmetric Island (see S2

Appendix and [16, 17]), and the “Dutch” model (see S3 Appendix and [18]). The priors for

our model were selected to be minimally informative. The prevalence kj is calculated by divid-

ing the number of positive samples by the total number of samples for each source. In the data

below, we note that for several samples the MLST typing failed, with the number of positive

samples exceeding the apparent total number of MLST-typed isolates. Assuming MLST typing

fails independently of pathogen type, this does not bias our results.

sourceR: Classification and source attribution of infectious agents among heterogeneous populations
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The model fitting process begins by formatting the data, constructing the HaldDP model

and setting the McMC parameters before running the algorithm using the update()
method.
## Formatdata
y <- Y(data= campy$cases,# Cases
y = “Human”,type = “Type”,time = “Time”,location= “Location”)

x <- X(data= campy$sources,# Sources
x = “Count”,type = “Type”,time = “Time”,source= “Source”)

k <- Prev(data= campy$prev,# Prevalences
prev = “Value”,time = “Time”,source= “Source”)

## Set priors
priors= list(a_theta= 0.01,b_theta= 0.00001,a_alpha= 1, a_r = 0.1)
## Constructmodel
my_model<- HaldDP(y= y, x = x, k = k, priors= priors,a_q = 0.1)
## Set mcmc parameters
my_model$mcmc_params(n_iter= 1000,burn_in= 10000,thin = 500)
## Run model
my_model$update()

The sourceR package provides methods to extract and subset the complex posterior, cal-

culate medians and credible intervals (with three possible methods percentile, SPIn [19], or

Chen-Shao [20]) and plot a heatmap with a dendrogram showing the clustering of the type

effects.
my_model$extract()
my_model$summary(alpha = 0.05,CI_type= “percentiles”)
my_model$plot_heatmap()

Results

Fig 1 shows the the proportion of cases attributed to each source. The HaldDP model identi-

fied the highest proportion of human campylobacteriosis cases as coming from chicken pro-

duced by supplier A (a median of 67 percent of cases attributed). A further 11 percent were

attributed to Chicken from poultry supplier B and 17 percent to Ovine. The median values for

the proportion of cases attributed to each source are qualitatively similar between all models

except the Dutch method.

Fig 1. Comparison of the proportion of human campylobacteriosis cases attributable to each source. The models compared are:

M1 (Dutch model), M2 (Modified Hald model), M3 (Island model) and M4 (HaldDP model). Error bars represent 95% percentile confidence

or credible intervals with medians shown as a cross. Violin plots show the marginal posteriors of the ξj parameters.

https://doi.org/10.1371/journal.pcbi.1005564.g001
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To visualise how the DP has clustered the type effects, Gower’s distance [21] is used to com-

pute a dissimilarity matrix between all pairs of types. Fig 2 shows that the DP identified four

main type clusters (from 91 types). The violin plots of the marginal posterior distributions for

each type effect (Fig 3) show the largest group of types has very small type effects and wide

credible intervals compared to the other groups.

Model fit and convergence was assessed visually using trace and autocorrelation plots (see

Fig A and Fig B in S4 Appendix).

Fig 2. Heatmap showing the grouping of the type effects (q). A white pixel represents a dissimilarity value of 1 between a pair of sub

types, whilst dark blue (see pixels on the diagonal) gives a value of zero. The grey coloured bar shows the groupings if the dendrogram is cut

at 4 groups.

https://doi.org/10.1371/journal.pcbi.1005564.g002
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Discussion

sourceR represents a significant advance in source attribution modelling, and translation of

advanced statistical methods into mainstream epidemiological use. In particular, the DP clus-

tering results in a large decrease in the effective number of parameters in the model and allows

detection of unusually virulent subtypes (group 2 in Fig 3) by epidemiological behaviour. The

subtypes in each cluster have similar epidemiological traits (such as virulence, pathogenicity

and survivability) which forms the basis for future research on genetic determinants of those

traits. Additionally, if a particular type moved into the high virulence group when repeating

the analysis with further data from a later time period, it would flag that type as possibly evolv-

ing to become more risky for humans. The type effects for group 3 subtypes have very wide

credible intervals due to the sparsity of source samples and human cases for those types.

The relatively large uncertainty for the disease origin (the credible intervals of ξ) is likely

due to C. jejuni’s complex epidemiology [6] giving rise to a posteriori correlations between

components of α and q. This is expected due to bias/variance trade-off: the Dutch and Island

Fig 3. Violin plots of the marginal distributions of the type effects (q). Note that the y axis uses a a log scale axis. The fill colour

matches the coloured grouping bar on the heatmap.

https://doi.org/10.1371/journal.pcbi.1005564.g003
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models both lack type effects risking biased results due to not all types being equally likely to

infect humans. The Island model also possesses inherently strong and difficult to verify a priori
assumptions (see [16] and S2 Appendix) which are not subject to uncertainty quantification.

Moreover, by removing the approximation inherent in the Modified Hald model, we expect

the HaldDP model to more accurately reflect inferential uncertainty—this is particularly

important for decision making in food hygiene policy, especially when commercial interests

must be supported by rigorous scientific advice.

Mixing and a posteriori correlations of the HaldDP model are significantly decreased in

comparison to the Modified Hald model, if not entirely resolved. Although heterogeneity in X
is required to fit the models, a sparse or highly unbalanced source matrix increases posterior

correlations between some source and type effects. In our experience, the algorithm works best

when the source matrix has a moderate amount of heterogeneity.

Whilst the HaldDP results for ξ are qualitatively similar to those from the other models

(Fig 1, we note an interesting disagreement between the Island and Hald model derivatives

when comparing the the number of cases attributed to Ovine and Bovine. We conjecture that

this may be due to some non-identifiability between Bovine and Ovine sources as both sources

have high contamination from the same types increasing the sensitivity of ξ to sampling error.

It may also be due to lack of explicit source and type effects in the Island model. Resolving this

disparity is the subject of ongoing research.

Availability and future directions

The stable release version of sourceR is available from the Comprehensive R Archive Net-

work, released under a GPL-3 licence. The development version is available at http://fhm-

chicas-code.lancs.ac.uk/millerp/sourceR. As this package develops, we intend sourceR to

become a platform for new source attribution model development, providing a central analytic

resource for public health professionals.

The main focus of extending sourceRwill be on modelling spatiotemporal correlation in

the time and location dependent parameters. A spatiotemporal correlation model on αtl could

be used to identify particular foci of source contamination, enabling targeted investigation of

particular food supply regions. Implementation of time varying type effects may be appropri-

ate as Campylobacter can evolve quickly and genetic variation conferring virulence may not be

apparent from coarse-scale MLST typing [22]. Interaction terms between some sources and

types would allow for the biologically plausible possibility that certain types are differentially

likely to survive and cause disease, dependent on the food source they appear in. Additionally,

water/ environmental samples could be attributed to the other sources of infection allowing

estimation of the proportion of cases attributed to different paths of infection (direct infection

from the source versus infection via the environment).

However, including interaction terms and additional paths of infection would significantly

increase the number of parameters and the number and strength of posterior correlations.

With higher posterior correlations, the current Metropolis-Hastings based fitting algorithm

would suffer from a loss of efficiency. This could be addressed with gradient-based fitting algo-

rithms such as Hamiltonian Monte Carlo (HMC) [23] which are designed to converge to high-

dimensional, non-orthogonal target distributions much more quickly. In particular, the No

U-Turn Sample (NUTS) presents an attractive method for tuning HMC adaptively, a quality

which we consider necessary to minimise user intervention and maximise research productiv-

ity [24].

With increased interest in source attribution models for both food-borne pathogens,

sourceR has been written with extensibility in mind. In particular, the DAG representation
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allows for rapid construction of modified and new models. The package routines are written

in R (as opposed to C or C++) to aid readability, with the node class hierarchy and three stage

workflow designed to aid the addition of new model classes. All internal classes and methods

are documented to enable prospective developers to familiarise themselves with the source

code quickly, and an extensive test suite is provided. We note that the DAG framework is not

limited solely to source attribution models and may used for other Bayesian applications, par-

ticularly those for which a Dirichlet process is required.

Conclusions

We have presented a novel source attribution model which builds upon, and unites, the Hald

and Modified Hald approaches. It is widely applicable, fully joint, and does not require approx-

imations or a large number of assumptions. Mixing and a posteriori correlations are signifi-

cantly decreased in comparison to the Modified Hald model. Furthermore, it allows the data

to inform type effect clusteringusing a Bayesian non-parametric model which identifies groups

of sub types with similarputative virulence, pathogenicity and survivability. This is a significant

improvement over the previous attempts to improve model identifiability (fixing some source

and type effects a priori, or modelling the type effects as random using a 2 stage model). Like

the Modified Hald model, the new model incorporates uncertainty in the prevalence matrix

into the model, however, it does this by fitting a fully joint model rather than a 2 step model.

Thishas the advantage of allowing the human cases to influence the uncertainty in the source

data and preserves the restriction on the sum of the prevalences for each source. The sour-
ceR package implements this model to enable straightforward attribution of cases of zoonotic

infection to putative sources of infection by epidemiologists and public health decision

makers.
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and Geoff Jones (for his helpful input on automatic clustering methods).

Author Contributions

Conceptualization: CJ.

Data curation: JM.

sourceR: Classification and source attribution of infectious agents among heterogeneous populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005564 May 30, 2017 11 / 13

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005564.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005564.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005564.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005564.s004
https://doi.org/10.1371/journal.pcbi.1005564


Formal analysis: PM CJ.

Funding acquisition: NF.

Methodology: PM CJ JM.

Project administration: CJ.

Software: PM CJ.

Supervision: CJ JM NF.

Validation: PM CJ JM NF.

Visualization: PM.

Writing – original draft: PM.

Writing – review & editing: PM CJ JM NF.

References
1. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, et al. World Health Organization

Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med.

2015; 12(12):1–23. https://doi.org/10.1371/journal.pmed.1001923

2. World Health Organization. WHO estimates of the global burden of foodborne diseases: foodborne dis-

ease burden epidemiology reference group 2007–2015; 2015. available on the WHO web site (www.

who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211

Geneva 27, Switzerland. Available from: http://apps.who.int/iris/bitstream/10665/199350/1/

9789241565165_eng.pdf?ua=1.

3. Pires SM, Evers EG, van Pelt W, Ayers T, Scallan E, Angulao FJ, et al. Attributing the human disease

burden of foodbourne infections to specific sources. Foodborne Pathogens and Disease. 2009; 6

(4):417–24. https://doi.org/10.1089/fpd.2008.0208 PMID: 19415971

4. Crump JA, Griffin PM, Angulo FJ. Bacterial Contamination of Animal Feed and Its Relationship to

Human Foodborne Illness. Clinical Infectious Diseases. 2002; 35(7):859–865. https://doi.org/10.1086/

342885 PMID: 12228823

5. Hald T, Vose D, Wegener H, Koupeev T. A Bayesian Approach to Quantify the Contribution of Animal-

Food Sources to Human Salmonellosis. Risk Analysis. 2004; 24(1):255–269. https://doi.org/10.1111/j.

0272-4332.2004.00427.x PMID: 15028016
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