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Destination choice game: A spatial 
interaction theory on human 
mobility
Xiao-Yong Yan1,2 & Tao Zhou2

With remarkable significance in migration prediction, global disease mitigation, urban planning and 
many others, an arresting challenge is to predict human mobility fluxes between any two locations. 
A number of methods have been proposed against the above challenge, including the gravity model, 
the intervening opportunity model, the radiation model, the population-weighted opportunity model, 
and so on. Despite their theoretical elegance, all models ignored an intuitive and important ingredient 
in individual decision about where to go, that is, the possible congestion on the way and the possible 
crowding in the destination. Here we propose a microscopic mechanism underlying mobility decisions, 
named destination choice game (DCG), which takes into account the crowding effects resulted from 
spatial interactions among individuals. In comparison with the state-of-the-art models, the present one 
shows more accurate prediction on mobility fluxes across wide scales from intracity trips to intercity 
travels, and further to internal migrations. The well-known gravity model is proved to be the equilibrium 
solution of a degenerated DCG neglecting the crowding effects in the destinations.

Predicting human mobility fluxes between locations is a fundamental problem in transportation science and 
spatial economics1,2. For more than a hundred years researchers have demonstrated the existence of gravity law 
in railway passenger movements3,4, highway car flow4,5, cargo shipping volume6, commuters’ trips7, population 
migration8, and so on. Therefore, the corresponding gravity model and its variants become the mostly widely used 
predictor for mobility fluxes and have found applications in many fields9, such as urban planning10, transportation 
science1,11, infectious disease epidemiology12,13 and migration prediction14. However, the gravity model is just 
an analogy to the Newton’s law, without any insights about the underlying mechanism leading to the observed 
mobility patterns. To capture the underlying mechanism of human mobility, some models accounting for indi-
viduals’ decisions on destination choices were proposed, including the intervening opportunities (IO) model15, 
the radiation model16 and the population-weighted opportunity (PWO) model17,18. Some recently developed 
novel variants and extensions of the radiation and the gravity model19–28 can more accurately predict commuting, 
immigration or long distance travel patterns at different spatial scales. However, all these models assume that 
individuals are independent of each other when selecting destinations, without any interactions.

In reality, individuals consider not only the destination attractiveness and the travelling cost, but also the 
crowding caused by the people who choose the same destination29–31, as well as the congestion brought by the 
people on the same way to the destination31,32. The crowding in the destination even happens in migration, 
because the more people move to a certain place, the competition among job seekers and the living expense 
become higher. For example, in China, the city with larger population are usually of higher house price. However, 
so far, to our knowledge, there is no mechanistic model about human mobility taking into account the crowding 
effects caused by spatial interactions among individuals.

In this paper, we propose a so-called destination choice game (DCG) to model individuals’ decision-makings 
about where to go. In the utility function about destination choice, in addition to the travelling cost and the fixed 
destination attractiveness, we consider the costs resulted from the crowding effects in the destination and the 
congestion in the way. Extensive empirical studies from intracity trips to intercity travels, and further to internal 
migrations have demonstrated the advantages of DCG in accurately predicting human mobility fluxes between 
any two locations, in comparison with other well-known models including the gravity model, IO model, radiation 
model and PWO model. We have further proved that the famous gravity model is equivalent to a degenerated 
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DCG neglecting the crowding effects in the destination. Therefore, the higher accuracy of the prediction of DCG 
indicates the existence of the crowding effects on our decision-makings, which also provides a supportive evi-
dence for the underlying hypothesis of the El Farol Bar problem29 and the minority game30.

Results
Model.  We introduce the details of the DCG model in the context of travel issues. The number of individuals 
Tij travelling from the starting location i to the destination j is resulted from the cumulation of destination choices 
of all individuals at location i. We model such decision-making process by a multiplayer game with spatial inter-
actions, where each individual chooses one destination from all candidates to maximize his utility. Specifically 
speaking, the utility Uij of an arbitrary individual at location i to choose location j as destination consists of the 
following four parts. (i) The fixed payoff of the destination h A( )j , where h is intuitively assumed to be a monoton-
ically increasing function of j’s attractiveness Aj that is usually dependent on j’s population, GDP, environment, 
and so on33. (ii) The fixed travelling cost Cij. (iii) The congestion effect g T( )ij  on the way, where Tij is the target 
quantity and g  is a monotonically non-decreasing function. (iv) The crowding effect f D( )j  at the destination, 
where f  is a monotonically non-decreasing function and = ∑D Tj i ij is the total number of individuals choosing 
j as their destination. In a word, the utility function Uij reads

= − − −U h A f D C g T( ) ( ) ( ), (1)ij j j ij ij

where destination attractiveness Aj and travelling cost Cij are input data, Tij is the model estimated flux from loca-
tion i to j and destination attraction = ∑D Tj i ij.

In the above destination choice game (DCG), if every individual knows complete information, the equilibrium 
solution guarantees that all Oi individuals at the same starting location i have exactly the same utility no matter 
which destinations to be chosen. Strictly speaking, the variable Tij has to be continuous to guarantee the existence 
of an equilibrium solution, which is a reasonable approximation when there are many individuals in each journey 

→i j. Figure 1a illustrates a simple game scene. Considering a simple utility function = − − −U A D C Tij j j ij ij
1
3

 
that takes into account both the congestion effect on the way and the crowding effect in the destination, we can 
obtain the equilibrium solution based on the equilibrium condition ( =U Ui i3 4) and the conservation law 
( + =T T Oi i i3 4  and + =T T Dj j j1 2 ). The solution is shown in Fig. 1b.

Generally speaking, we cannot obtain the analytical expression of the equilibrium solution, instead, we apply 
the method of successive averages34 (MSA, see Methods) to iteratively approach the solution. Since the 
Weber-Fechner law35 (see Methods) in behavioral economics is a good explanation of how humans perceive the 
change in a given stimulus, we select the logarithmic form determined by the Weber-Fechner law to express the 
destination payoff function h A( )j  as α Aln j, the destination crowding function f D( )j  as γ Dln j and the route con-
gestion function g T( )ij  as Tln ij. On the other hand, since travelling cost often follows an approximate logarithmic 
relationship with distance in multimodal transportation system36, we use β dln ij instead of Cij, where dij is the 
geometric distance between i and j. We then get a practical utility function

α β γ= − − −U A d D Tln ln ln ln , (2)ij j ij j ij

where α, β and γ are nonnegative parameters that can be fitted by real data (see Methods), subject to the largest 
Sørensen similarity index37 (SSI, see Methods). Aj is the location j’s attractiveness, which is approximated by the 
actual number of attracted individuals in the real data.

Prediction.  We use three real data sets, including intracity trips in Abidjan, intercity travels in China and 
internal migrations in US, to test the predictive ability of the DCG model. The data set of intracity trips in Abidjan 
is extracted from the anonymous Call Detail Records (CDR) of phone calls and SMS exchanges between Orange 
Company’s customers in Côte d’Ivoire38. To protect customers’ privacy, the customer identifications have been 
anonymized. The positions of corresponding base stations are used to approximate the positions of starting points 
and destinations. The data set of intercity travels in China18 is extracted from anonymous users’ check-in records 
at Sina Weibo, a large-scale social network in China with functions similar to Twitter. Since here we focus on 
movements between cities, all the check-ins within a prefecture-level city are regarded as the same with a proxy 
position being the centre of the city. The data set of internal migrations in US is downloaded from https://www.
irs.gov/statistics/soi-tax-stats-migration-data. This data set is based on year-to-year address changes reported on 
individual income tax returns and presents migration patterns at the state resolution for the entire US, namely for 
each pair of states i and j in US, we record the number of residents migrated from i to j. The fundamental statistics 
are presented in Table 1. In all the above three data sets and other data sets presented in the Supplementary 
Information, Table S1, every location can be chosen as a destination.

We use three different metrics to quantify the proximity of the DCG model to the real data. Firstly, we inves-
tigate the travel distance distribution, which is the most representative feature to capture human mobility behav-
iours36,39,40. As shown in Fig. 2a–c, the distributions of travel distances predicted by the DCG model are in good 
agreement with the real distributions. We next explore the probability P D( ) that a randomly selected location has 
eventually attracted D travels (in the model, for any location j, Dj is the total number of individuals choosing j as 
their destination). P D( ) is a key quantity measuring the accuracy of origin-constrained mobility models, because 
origin-constrained models cannot ensure the agreement between predicted travels and real travels to a location1. 
Figure 2d–f demonstrate that the predicted and real P D( ) are almost statistically indistinguishable. Thirdly, we 
directly look at the mobility fluxes between all pairs of locations16–18. As shown in Fig. 2g–i, the average fluxes 
predicted by the DCG model are in reasonable agreement with real observations.

https://doi.org/10.1038/s41598-019-46026-w
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We next compare the predicting accuracy on mobility fluxes of DCG with well-known models including the 
gravity models, the intervening opportunities model, the radiation model and the population-weighted opportu-
nities (PWO) model (see Methods). In terms of SSI, as shown in Fig. 3, DCG performs best. Specifically speaking, 

Figure 1.  Illustration of a simple example of DCG. (a) The game scene. The nodes 1 and 2 represent two 
starting locations while the nodes 3 and 4 are two destinations. Oi is the number of individuals located in i, Aj is 
the attractiveness of j, and Cij is the fixed travelling cost from i to j. (b) An example game taking into account 
both the congestion effect on the way and the crowding effect in the destination, with a utility function 

= − − −U A D C Tij j j ij ij
1
3

. (c) An example game that does not consider the crowding effect in the destination, 
with a utility function = − −U A C Tij j ij ij. For both (a and b), the equilibrium solutions are shown in the plots 
while the equations towards the solutions are listed below the plots.

Data set #individuals #movements #locations positional proxy

intracity trips in 
Abidjan 154849 519710 381 base station

intercity travels in 
China 1571056 4976255 340 prefecture-level city

internal migrations 
in US N/A 2498464 51 state capital

Table 1.  Fundamental statistics of the data sets. The second to fifth columns present the number of individuals, 
the number of recorded movements, the number of locations and how to estimate the geographical positions of 
these locations. For migration data, we do not know the precise number of individuals, but it should be close to 
the number of total records since people usually do not migrate frequently.

https://doi.org/10.1038/s41598-019-46026-w
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it is remarkably better than parameter-free models like the radiation model and the PWO model and slightly 
better than the gravity model with two parameters. Supplementary Information, Additional validation of the 
DCG model shows extensive empirical comparisons between predicted and real statistics as well as accuracies of 
different methods for more data sets involving travels inside and between cities in Japan, UK, Belgium, US and 
Norway. Again, in terms of SSI, DCG outperforms other benchmarks in all cases. Not only that, DCG also better 
predicts the travel distance distribution P d( ) and destination attraction distribution P D( ) in most cases (see 
Figs S5 and S6 and Tables S2 and S3).

Derivation of the gravity model.  To further understand the advantage of the DCG model in comparison 
with the well-adopted gravity models, we give a close look at the key mechanism differentiated from all previous 
models, that is, the extra cost caused by the crowding effect, as inspired by the famous minority game30. 
Accordingly, we test a simplified model without the term f D( )j  in Eq. (1). Figure 1c illustrates an example with a 
simple utility function = − −U A C Tij j ij ij that only takes into account the congestion effect on the way. Similar 
to the case shown in Fig. 1b, the equilibrium solution can be obtained by the equilibrium condition and the con-
servation law. For a more general and complicated utility function (by removing the term related to the crowding 
effect in Eq. (2))

α β= − −U A d Tln ln ln , (3)ij j ij ij

based on the potential game theory41, one can prove that the equilibrium solution is equivalent to the solution of 
the following optimization problem

Figure 2.  Comparing the predictions of DCG model and the empirical data. (a–c) Predicted and real 
distributions of travel distances P d( ). (d–f) Predicted and real distributions of locations’s attracted travels P D( ). 
(g–i) Predicted and observed fluxes. The gray points are scatter plot for each pair of locations. The blue points 
represent the average number of predicted travels in different bins. The standard boxplots represent the 
distribution of predicted travels in different bins. A box is marked in green if the line =y x lies between 10% 
and 91% in that bin and in red otherwise. The data presented in (d–i) are binned using the logarithmic binning 
method.

https://doi.org/10.1038/s41598-019-46026-w
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Since the objective function is strictly convex, the solution is existent and unique. Applying the Lagrange 
multiplier method, we can obtain the solution of Eq. (4), which is exactly the same to the gravity model with two 
free parameters (i.e., Gravity 2, Eq. (11)), and if we set α = 1 in Eq. (3), the solution degenerates to the gravity 
model with one free parameter (i.e., Gravity 1, Eq. (10)). The detailed derivation is shown in Supplementary 
Information, Derivation of the gravity model using potential game theory. The significance of such interesting 
finding is threefold. Firstly, it provides a theoretical bridge that connecting the DCG model and the gravity model, 
which are seemingly two unrelated theories. Indeed, it provides an alternative way to derive the gravity model. 
Secondly, comparing with the gravity models, the higher accuracy of the prediction from the DCG model sug-
gests the existence of the crowding effect in our decision-making about where to go, which also provides a positive 
evidence for the validity of the critical hypothesis underlying the minority game. Thirdly, the improvement of 
accuracy from Gravity 2 to the DCG model can be treated as a measure for the crowding effect, which is, to our 
knowledge, the first quantitative measure for the crowding effect in human mobility.

Discussion
In summary, the theoretical advantages of DCG are twofold. First of all, it does not require any prerequisite from 
God’s perspective, like the constraint on total costs in the maximum entropy approach42,43 and the deterministic 
utility theory44, or any oversubtle assumption, like the independent identical Gumbel distribution to generate the 
hypothetically unobserved utilities associated with travels in the random utility theory45. Instead, the two assump-
tions underlying DCG, namely (i) each individual chooses a destination to maximize his utility and (ii) conges-
tion and crowding will decrease utility, are very reasonable. Therefore, in comparison with the above-mentioned 
theories, DCG shows a more realistic explanation towards the gravity model by neglecting the crowding effect in 
destinations (see some other derivations to the gravity model in Supplementary Information, Other derivations 
of the gravity model). Secondly, the present game theoretical framework is more universal and extendable. As the 
travelling costs and crowding effects are naturally included in the utility function, DCG is easy to be extended to 
deal with more complicated spatial interactions that depend on individuals’ choices about not only destinations, 
but also departure time, travel modes, travel routes, and so on46–48. Not only that, the utility function of DCG can 
also be extended in predicting specific mobility behaviours. For example, when predicting the mobility fluxes in a 
multi-modal transportation system, the logarithmic (or linear logarithmic) function of distance is usually used to 
calculate the fixed travel cost between locations, while when predicting in a single-modal transportation system, 
the linear cost-distance function is usually used36. For the destination payoff, destination crowding cost and route 
congestion cost in the utility function, although the DCG model has obtained better prediction accuracy by using 
the logarithmic functions inspired by the Weber-Fechner law, the realistic payoff and cost functions may be much 
more complicated. Therefore if we can mine real cost functions by some machine learning algorithms from real 
data, the prediction accuracy could be further improved.

In addition to theoretical advantages, DCG could better aid government officials in transportation interven-
tion. For example, if the government would like to raise congestion charges in some areas (e.g., in Beijing, the 
parking fees in central urban areas are surprisingly high), the parameter-free models like the radiation model 
and the PWO model cannot predict the quantitative impacts on travelling patterns since the population distri-
bution is not changed, instead, the game theoretical framework could respond to the policy changes by rewriting 
its utility function. Another example is to forecast and regulate tourism demand49. In China, in the vacations 
of the National Day and the Spring Festival, many people stream in a few most popular tourist spots, leading 

Figure 3.  Comparing predicting accuracy of the DCG model and well-known benchmarks in terms of SSI.

https://doi.org/10.1038/s41598-019-46026-w
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to unimaginable crowding and great environmental pressure. Recently, Chinese government forecasts tour-
ism demand before those golden holidays based on the booking information about air tickets, train tickets and 
entrance tickets, and then the visitors are effectively redistributed to more diverse tourist spots with remarkable 
decreases of visitors to the most noticed a few spots. Such phenomenon can be explained by the crowding effects 
in the destination choices, but none of other known models. In a word, DCG is more relevant to real practices and 
thus of potential to be enriched towards an assistance for decision making.

Methods
Method of successive averages.  The method of successive averages (MSA) is an iterative algorithms to 
solve various mathematical problems34. For a general fixed point problem =x F x( ), the nth iteration in the MSA 
uses the current solution x n( ) to find a new solution =y F x( )n n( ) ( ) . The next current solution is an average of these 
two solutions λ= λ− ++x 1 x y( )n 1 n n n n( ) ( ) ( ) ( ) ( ), where λ< <0 1n( )  is a parameter. For the DCG model, the MSA 
contains the following steps:

Step 1: Initialization. Set the iteration index =n 1. Calculate an initial solution for the number of individuals 
travelling from i to j

=
∑

α β

α β

−

−T O
A d

A d
,

(5)
ij i

j ij

j j ij

n( )

where Oi is an independent variable representing the number of travellers starting from location i, Aj is the attrac-
tiveness of location j and dij is the distance from i to j (Oi, Aj and dij are all initial input variables).

Step 2: Calculate a new solution for the number of individuals travelling from i to j

=
∑

α β γ

α β γ

− −

− −
F O

A d D

A d D

[ ]

[ ]
,

(6)
ij i

j ij j

j j ij j

n
n

n
( )

( )

( )

where = ∑D Tj i ij
n n( ) ( ) is the total number of individuals choosing j as their destination.

Step 3: Calculate the average solution

λ λ= − + .+T T F(1 ) (7)ij ij ij
n n n n n( 1) ( ) ( ) ( ) ( )

If ε| − | <+T Tij ij
n n( 1) ( )  (ε is a very small threshold, set as 0.01 in the work), the algorithm stops with current 

solution being the approximated solution; Otherwise, let = +n n 1 and return to Step 2.
For simplicity, we use a fixed parameter λ λ= = .0 5n( ) .

Weber-Fechner law.  Weber-Fechner Law (WFL) is a well-known law in behavioural psychology35, which 
represents the relationship between human perception and the magnitude of a physical stimulus. WFL assumes 
the differential change in perception dp to be directly proportional to the relative change dW/W of a physical 
stimulus with size W, namely κ=p W Wd d / , where κ is a constant. From this relation, one can derive a logarith-
mic function κ=p W Wln( / )0 , where p equals the magnitude of perception, and the constant W0 can be inter-
preted as stimulus threshold. This equation means the magnitude of perception is proportional to the logarithm 
of the magnitude of physical stimulus. The WFL is widely used to determine the explicit quantitative utility 
function in behavioural economics35, and thus we adopt it in Eq. (2).

Sørensen similarity index.  Sørensen similarity index is a similarity measure between two samples37. Here 
we apply a modified version17 of the index to measure whether real fluxes are correctly reproduced (on average) 
by theoretical models, defined as

∑∑=
−

′

+ ′≠N N
T T

T T
SSI 1

( 1)
2min( , )

,
(8)i

N

j i

N
ij ij

ij ij

where Tij is the predicted fluxes from location i to j and ′T ij is the empirical fluxes. Obviously, if each Tij is equal to 
′T ij the index is 1, while if all Tij are far from the real values, the index is close to 0.

Parameter estimation.  We use grid search method50 to estimate the three parameters α, β and γ of the 
DCG model. We first set the candidate value for each parameter from 0 to 10 at an interval of 0.01, and then 
exhaust all the candidate parameter sets to calculate the SSI (see Eq. (8)) of the DCG model, and finally select the 
parameter set that maximizes SSI. The parameter estimation results are shown in Supplementary Information, 
Table S1.

Benchmark models.  We select two classical models, the gravity model and the intervening opportunities 
model, and two parameter-free models, the radiation model and the population-weighted opportunities model, 
as the benchmark models for comparison with the DCG model.

	 (i)	 The gravity model is the earliest proposed and the most widely used spatial interaction model2. The basic 
assumption is that the flow Tij between two locations i and j is proportional to the population mi and mj of 
the two locations and inversely proportional to the power function of the distance dij between the two 
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locations, as

α= βT
m m

d
,

(9)
ij

i j

ij

where α and β are parameters. To guarantee the predicted flow matrix T satisfies = ∑O Ti j ij, we use two 
origin-constrained gravity models1. The first one is called Gravity 1 as it has only one parameter, namely

=
∑

β

β

−

−T O
A d

A d
,

(10)
ij i

j ij

j j ij

while the second one is named Gravity 2 for it has two parameters, as

=
∑

.
α β

α β

−

−T O
A d

A d (11)
ij i

j ij

j j ij

	(ii)	 The intervening opportunities (IO) model15 argues that the destination choice is not directly related to 
distance but to the relative accessibility of opportunities to satisfy the traveller. The model’s basic assump-
tion is that for an arbitrary traveller departed from the origin i, there is a constant very small probability 
α/β that this traveller is satisfied with a single opportunity. Assume the number of opportunities at the jth 
location (ordered by its distance from i) is proportional to its population mj, i. e. the number of opportuni-
ties is βmj, and thus the probability that this traveller is attracted by the jth location is approximated αmj. 
Let α= −−q q m(1 )i

j
i

j
j

( ) ( 1)  be the probability that this traveller has not been satisfied by the first to the jth 
locations (i itself can be treated as the 0th location), we can get the relationship = −α α− −q e /(1 e )i

j S M( ) ij  
between the probability qi

j( ) and the total population Sij in the circle of radius dij centred at location i, where 
M is the total population of all locations. Furthermore, we can get the expected fluxes from i to j is

= − =
−

−
.

α α

α
−

− − −

−T O q q O( ) e e
1 e (12)ij i i

j
i

j
i

S m S

M
( 1) ( )

( )ij j ij

	(iii)	 The radiation model16 assumes that an individual at location i will select the nearest location j as destina-
tion, whose benefits (randomly selected from an arbitrary continuous probability distribution p z( )) are 
higher than the best offer available at the origin i. The fluxes Tij predicted by the radiation model is

=
−

.T O
m m

S m S( ) (13)
ij i

i j

ij j ij

	(iv)	 The population-weighted opportunities (PWO) model17 assumes that the probability of travel from i to j is 
proportional to the attractiveness of destination j, inversely proportional to the population Sji in the circle 
centred at the destination with radius dij, minus a finite-size correction 1/M. It results to the analytical 
solution as

=



 −





∑


 −





.T O
m

m
(14)

ij i

j S M

j j S M

1 1

1 1

ji

ji

Data Availability
Data available on request from the authors.
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