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ABSTRACT Objective: Most of effectiveness assessments of the widely-used Massage therapy were based
on subjective routine clinical assessment tools, such as Visual Analogue Scale (VAS) score. However, few
studies demonstrated the impact of massage on the Electroencephalograph (EEG) rhythm decoding of Motor
imagery (MI) and motion execution (ME) with trunk left/right bending in patients with skeletal muscle
pain. Method: We used the sample entropy (SampEn), permutation entropy (PermuEn), common spatial
pattern (CSP) features, support vector machine (SVM) and logic regression (LR) classifiers. We also used the
convolutional neural network (CNN) and attention-based bi-directional long short-term memory (BiLSTM)
for classification. Results: The averaged SampEn and PermuEn values of alpha rhythm decreased in almost
fourteen channels for five statuses (quiet, MI with left/right bending, ME with left/right bending). It indicated
that massage alleviates the pain for the patients of skeletal pain. Furthermore, compared with the SVM and
LR classifiers, the BiLSTM method achieved a better area under curve (AUC) of 0.89 for the classification
of MI with trunk left/right bending before massage. The AUC became smaller after massage than that before
massage for the classification of MI with trunk left/right bending using CNN and BiLSTM methods. The
Permutation direct indicator (PDI) score showed the significant difference for patients in different statuses
(before vs after massage, and MI vs ME). Conclusions: Massage not only affects the quiet status, but also
affects the MI and ME. Clinical Impact: Massage therapy may affect a bit on the accuracy of MI with trunk
left/right bending and it change the topography of MI and ME with trunk left/right bending for the patients
with skeletal muscle pain.

INDEX TERMS Motor imagery (MI), motion execution (ME), electroencephalograph (EEG), classification,
convolutional neural networks (CNN), attention-based bi-directional long short-term memory (BiLSTM),
permutation disalignment index (PDI), artifact removal.

I. INTRODUCTION
Massage is a widely-used complementary and alternative
therapy in treating patient with skeletal muscle pain. Most
of the previous effectiveness assessment were based on

subjective routine clinical assessment tools [1], such as
10-point Visual Analogue Scale (VAS) score [2], [3], the short
form McGill Pain Questionnaire (MPQ) [2], state anxiety
inventory (STAI) [3], [4], Hospital Anxiety and Depression
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Scale (HADS), Oswestry Disability Index (ODI) [5] for dis-
ability measurement, and hospital stay [6]. Although these
tools have clinical meaning, they are subjective and rough.
Electroencephalogram (EEG) is non-invasive, cheap and con-
venient. In the existing studies using EEG to evaluate the
effect of MT [7]–[9], most analysis focus on EEG absolute
spectral power of four rhythms, such as delta (0-4 Hz), theta
(4-8 Hz), alpha (mu, 8-13 Hz) and beta (13-30 Hz) activ-
ity [10]. In our previous work, we have used entropy-based
method for the EEG evaluation during the quiet status [11].

Motor imagery (MI) is described as the concept of
imagining a motor task without resulting in physical exe-
cution [12], [13]. As an important paradigm of spon-
taneous brain computer interfaces (BCI), MI has been
widely used in the rehabilitation for the motor dysfunction
patients [14]–[17] (facial palsy [15] and knee arthro-
plasty [17]), disorders of consciousness, attention deficit
hyperactivity disorder, schizophrenia, epilepsy, and autism
spectrum disorder [18]. BCI translates EEG signals into
control commands so that physically impaired patients can
control assistive devices. Therefore, the classification of MI
is an important issue and hot topic in recent years [19]–[22].

Motor Execution (ME) is the actual practice of the move-
ment, which is opposed to the MI [12]. Previous studies
showed that MI and ME for hand and foot movements
activate comparable brain areas, also for the execution
of swallowing [23]. MI movement pattern discrimination
were based on quantification of event-related synchroniza-
tion/desynchronization (ERS/ERD) using bandpower (BP)
[12], [24], which were cortical rhythms characterized by
the mu and beta neural activity patterns [25]. ERD showed
stronger contra-lateralization features with movement inten-
tion and execution in the sensorimotor cortices, while ERS
was found prominently in the ipsilateral hemisphere [25].

Very few studies analyze connectivity patterns revealed
by EEG during MI and ME. Some of them focused on
differences in connectivity patterns between MI and ME
[12], [26]. The experimental method most frequently used
to test the common-basis hypothesis for real vs. virtual
movements is function magnetic resonance imaging (fMRI)
[22], [27], Magnetoencephalography (MEG) [28], near
infrared spectroscopy (NIRS) [29], and EEG. The primary
motor cortex (M1) signals’ importance has been reported in
providing the information necessary for BCI. NIRS detects
the mean oxyhemoglobin (oxyHb) to reflect cerebral acti-
vation. However, the high cost of NIRS systems makes
them less suitable for nonclinical settings [30]. Among all
neuroimaging techniques, BCIs based on EEG are well
accepted for practical applications because they are inexpen-
sive, lightweight, portable, noninvasive with minimal clin-
ical risks, user friendly, and comparatively easy to apply
[24]. A previous study using a simple finger-tapping task
suggested that the increasing of oxyHb levels in the supple-
mental motor area (SMA) and premotor area (PMA) dur-
ing MI were similar to those observed during ME [31].
Chaisaen et al. [25] presented the decoding EEG rhythms

during action observation, MI, and ME for the actions of
standing and sitting.

However, most of these reports used simple movements
as tasks (left/right hand, foot, and tongue). Furthermore, few
studies reveal the impact of massage therapy on the EEG
rhythm decoding of MI and ME among patients with skeletal
pain. It is unclear whether massage affects the physiological
brain signals (EEG) during the MI or the real motions. The
combination of massage and MI/ME may lead to a new way
to investigate pain relief of the brain. Thus, in this article,
we focus on the massage effectiveness for the MI and ME
with left/right bending. We selected trunk with left/right
bending as theMI task because it is frequently used for patient
with chronic skeletal pain undergoing rehabilitation.

The main contribution of the current study includes three
parts. Firstly, the current study aimed to explore the difference
of rhythms between MI and ME, showing the different cor-
tical activation patterns in different statuses (before or after
massage). Secondly, we compared the EEG entropy-based
feature for the MI left/right motion and the correspond-
ing ME. Combined with the different entropy-based features,
SVM and LR classifiers, as well as convolutional neural
network (CNN), were used to distinguish the resting versus
task performance (the MI or ME). Thirdly, we quantified
the effectiveness of massage for the classification of MI and
ME of left/right bending in different statuses (before or after
massage).

II. METHODS AND PROCEDURES
A. SUBJECTS
There are 71 participants volunteered to join this experi-
ment. The demographic characteristics of patients is shown
in Table 1. All data were expressed in mean values (mean)
and standard deviation (std). All participants had no history
of neurological or psychiatric disorders. They had Skeletal
Muscle Pain (low back pain, neck pain or leg pain). The study
was approved by the institutional review board of the Shen-
zhen Institutes of Advanced Technology, Chinese Academy
of Sciences (SIAT-IRB-170815-H0171) and procedures were
in accordance with the latest revision of the declaration of
Helsinki. All subjects provided written informed consent.

TABLE 1. Demographic characteristics of participants (MEAN ± STD).

B. EXPERIMENT PROCEDURE AND DATA ACQUISITION
The total experiment procedure was shown in Fig. 1.
The Emotiv EPOC+ headset was used for the EEG data
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FIGURE 1. The total experiment procedure.

acquisition. It consists of 14 data channels (AF3, F7, F3, FC5,
T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4) and other two
channels for references (Fig.2 (a)). The band-pass filter is set
between 0.5 to 40 Hz, and sampling frequency is 128 Hz.

The experiment procedure was as follows. Before the
patient received the massage therapy, patients were asked
to close their eyes, sit alone on a chair quietly wearing the
EEG headset and refrain from talking, falling asleep, or mov-
ing during the EEG measurement (Fig.2 (b)-(c)). It lasted
30 seconds. Then they were asked to close their eyes and
image the motion with trunk left bending or right bending.
The next task was to do the real motion with trunk left bend-
ing or trunk right bending. They were asked to stand straight
first with eyes open, then they tried to move their trunk left
or right, keeping the head not moving too heavily (Fig.2 (d)).
At the same time, they listened to a recorder which was tap-
ping five cycles of motions rhythms and followed its instruc-
tion. From the beginning to the end of the recorder, it lasted
about 20 seconds with five cycle motions. The whole test task
lasted about 20 minutes. The Chinese massage treatments
were performed by professional massage therapists, and it
was about half an hour for one subject.

After massage therapy, the patients did the EEG test with
the repeated cycle.

C. EEG PREPROCESSING METHODS
In the preprocessing stage, artifact removal (electromyo-
gram (EMG) and electrooculogram (EOG)) is a key to the
EEG applications [12], [24]. EMG artifacts are caused by
the electrical activities on the head surface from muscle
movements and contraction and EMG activity has a broad
frequency range, overlapping all classic EEG rhythms. There-
fore, for experiments involving manipulations such as move-
ment, it is quite difficult to avoid EMG artifacts.

At present, the blind source separation algorithm (BSS) is
used to separate the EEG and EMG sources into different
components, and then remove themuscle-related components
during the reconstruction process. BSS techniques mainly

FIGURE 2. (a) Emotiv SDK equipment. (b) The front side of participant
wearing Emotiv equipment. (c) Subject did the quiet test and MI with
left/right bending while seating. (d) Subject did the real left bending.

include independent component analysis (ICA) [32], [33],
canonical correlation analysis (CCA) [34] and independent
vector analysis (IVA) [35]. One fundamental requirement
of the above multichannel techniques is that the number of
channels must be larger than or equal to the number
of underlying sources. To solve this issue, a number of
algorithms have been proposed to decompose ambulatory
EEG into multiple components, such as the wavelet trans-
form, empirical mode decomposition (EMD) [36], ensemble
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empirical mode decomposition (EEMD) [37], multivariate
empirical mode decomposition (MEMD) [38] and singular
spectrum decomposition (SSA) [39]. Furthermore, the imple-
mentation algorithms of two-step strategy had been pre-
sented, such as wavelet ICA (wICA) [40], EEMD-ICA [41],
EEMD-CCA [42], EEMD-IVA [43], MEMD-CCA [44],
MEMD-IVA [45], and SSA-ICA [46] methods. Among these
method, MEMD-CCA combined by MEMD and CCA has
shown a good performance for muscle artifact removal in
the few-channel setting [44]. MEMD-CCA retains EEG con-
tent in almost all channels, in contrast to EEMD-CCA. The
CCA method outperformed a low-pass filter with different
cutoff frequencies and an ICA-based technique for muscle
artifact removal in a real ictal EEG recording [34], and it
is more computationally efficient compared with ICA [30].
MEMD-CCA utilized inter-channel dependence information
seen in the few-channel situation. Thus, we removed EMG
artifact by MEMD-CCA (Fig. 3 (a)). Then we used the
improved method based on wICA to remove EOG artifact
(Fig.3(b)).

1) EMG ARTIFACT REMOVAL
Firstly, MEMD was utilized to decompose 14-channel orig-
inal EEG signals into multivariate intrinsic mode functions
(IMFs) [38]. Then, CCA was applied to decompose the reor-
ganized multivariate IMFs into the underlying sources S. Due
to the broad frequency spectrum of EMG contamination in
EEG recordings, muscle artifacts yield more properties of
temporally white noise, thus they have a low autocorrela-
tion [34]. The last several sources sorted by autocorrelation
were assumed to correspond to muscle artifacts [44]. In our
experiment, autocorrelated CCA sources with autocorrelation
less than 0.3 were assumed to the muscle artifacts. By setting
artifact-related sources to zero during reconstruction, other
IMFs can be summed into the denoised EEG signal in each
channel.

For the EEG data of ME, there were still obvious motion
artifacts after we did the first step using MEMD-CCA
method. Therefore, MEMD was used in the second step
to decompose 14-channel reconstructed EEG data after
MEMD-CCAmethod. It was observed that the EMG artifacts
mainly existed in 6th-9th order IMFs, so 6th-9th order IMFs
were set to zero and the other IMFs were reconstructed to
obtain the artifact-free EEG data.

2) EOG ARTIFACT REMOVAL
The improved wICA method has been presented to improve
EOG artifact removal method [47] and outperformed other
component rejection and wavelet-based EOG removal meth-
ods. The approach is to correct artifacts within the indepen-
dent components instead of rejecting the entire component.
This method preserves as much neural information as possi-
ble from the original signal [47].

In our experiment, after muscle artifacts removal,
EMG-free EEG signals were 0.5-40 Hz band-pass fil-
tered. Then, the filtered EEG data of 14 channels were

FIGURE 3. (a) Flowchart of the EMG artifact removal in the EEG signal.
(b) Flowchart of the EOG removal in the EEG signal.

decomposed by ICA method using EEGLAB’s runica func-
tion, and 14 independent component signals were obtained.
If the independent components containing EOG artifacts [48]
were identified by EEGLAB, a target window size of 1 second
duration around the EOG artifact was used, as this spanned
the length of the EOG artifact waveforms. We used the
wavelet decomposition to remove EOG artifact in target win-
dow. Then, these components were used in the inverse ICA to
reconstruct the cleaned EEG signal. The EEG preprocessing
methods were implemented onMatlab (R2014b,MathWorks,
United States).

After preprocessing, all data were segmented into each
epoch with trial durations 4 s (512 points). The 10 different
sub-sets include quiet without MI before massage (sub-set 1,
1724 epoches), quiet without MI after massage (sub-set 2,
1635 epoches), MI with left bending before massage
(sub-set 3, 995 epoches), MI with left bending after massage
(sub-set 4, 934 epoches), MI with right bending before mas-
sage (sub-set 5, 1038 epoches), MI with right bending after
massage (sub-set 6, 975 epoches), real left bending before
massage (sub-set 7, 1026 epoches), real left bending after
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massage (sub-set 8, 810 epoches), real right bending before
massage (sub-set 9, 963 epoches), and real right bending
after massage (sub-set 10, 865 epoches).

D. FEATURE EXTRACTION
In EEG studies, particular ranges of neural oscillation in alpha
(8-13 Hz) and beta (14-25 Hz) were shown to be associated
with motor control and their applications to BCI have been
investigated.

As MI has limited spatial resolution, low signal-to-
noise ratio (SNR) and highly dynamic characteristics, the
extraction of robust features is a crucial step in developing
a successful BCI system. The common spatial patterns (CSP)
algorithm was the most frequently used method in BCI sys-
tem, which was introduced by Koles et al. in 1990 [49]. CSP
method has been applied in MI hand movements [50]–[52]
andMI foot movement [53]. CSPmethodmaximizes the vari-
ance of signals for one class while minimizing the variance of
the signals for the other. There are several methods to extend
the CSP method to improve the classification accuracy, such
as a filter bank common spatial pattern (FBCSP) [54], spar-
sity approach [55], [56], a sparse filter band common spa-
tial pattern (SFBCSP) [57], temporally constrained sparse
group spatial pattern (TSGSP) [58]. Therefore, we used the
CSP feature as one feature, as the CSP feature is suitable for
MI classification.

Except the traditional CSP feature for MI, another feature
entropy can quantify the complexity and detect dynamic
change through taking into account the non-linear behav-
ior of time series [59]. Many approaches about entropy
were applied to physiological signals. Approximate entropy
(ApEn) presented by Pincus (1991) [60] is useable to quantify
regularity in data without knowledge about a system, but
it depends heavily on the record length. Sample Entropy
(SampEn) proposed by Richman et al. (2000) [61] is an
improvement of ApEn with respect to computation and accu-
racy of signal regularity. The advantage of SampEn is that it is
insensitive to missing data. Permutation entropy (PermuEn)
presented by Zanin et al. [62] has the quality of simplicity,
robustness and very low computational cost. We also used
Permutation disalignment index (PDI) [63] as an indirect,
EEG-based, measure of brain connectivity to check the effect
before and after massage therapy.

E. CLASSIFIERS
We used support vector machine (SVM) [64] and logistic
regression (LR) [65] for classification. SVM shows good per-
formance in solving problems like small sample size, as well
as being capable of both non-linear and high-dimensional
pattern recognition. In SVM classifier, we used the Gaus-
sian or radial basis function (RBF) kernel, and set the regu-
larization parameter C=100, and gamma=0.001 in SVM. LR
is a discriminative learning classifier that directly estimates
the parameters of the posterior distribution function [65].
We used L1 and L2 regularization jointly to cope with the
overfitting problem [66].

The other method was to apply CNN and attention-based
bi-directional long short-term memory (BiLSTM). A 10-fold
cross-validation method was used for validation of training
set. Training set was set to 0.75 of the whole datasets, and the
test set was set to 0.25 of the whole datasets. The parameter
of random status was set to 7.

F. DEEP LEARNING ARCHITECTURE
CNN has been used as the most commonly solution [67],
as it outperformed other deep learning method in fea-
ture extraction. The CNN structure has many variations,
such as LeNet-5, GoogleLeNet, residual neural network
(ResNet), AlexNet, and the Visual Geometry Groupnetwork
(VGGNet) [67]. VGGNet has been applied in EEG sleep
patterns signals research. The main features of VGGNet
include three points: the convolutional layer is followed by
the max pooling layer to reduce the dimension, the number
of convolution kernels is gradually increasing, and the con-
volutional layer stacking is used [68]. ConsideringVGGNets’
simplicity, we selected an improved VGGNet network in this
article.

We used two methods for the CNN method
(one-dimensional convolution kernel and two-dimensional
convolution kernel). First of all, we used one-dimension
CNN, and it consists of 11 layers (Fig. 4). There are four
convolutional layers (Conv1, Con2, Conv3, Conv4), three
pooling layers (Pool1, Pool2, and Pool3) and three fully
connected layers (FC1, FC2, and FC3). The input shape of
the model was 7168 (512 × 14), where 512 was the number
of temporal samples, and 14 was the number of channels. The
four convolutional layers used 30 one-dimensional convolu-
tion kernels with a size of 1 × 3 for the first convolutional
layer, 25 kernels with a size of 14 × 1 for the second
convolutional layer, 25 kernels with a size of 1 × 3 for the
third convolutional layer, and 50 kernels with a size of 1× 3
for the fourth convolutional layer. In all convolutional layers,
the stride was 1 and the activation function was a linear rec-
tification function (ReLu). After the first two convolutional
layers, all the feature maps corresponding to the samples
are one-dimensional, and these feature maps characterized
the correlation and time characteristics between the different
channels.Maximum pooling layers (Pool1, Pool2, and Pool3)
were set with the pooling size 1× 2, and the step size 2. The
number of hidden units for the fully connected layers (FC1,
FC2, and FC3) were 1024, 512, 100, respectively. The soft-
max output layer completed the output of prediction results.
Table 2 showed the different parameter values evaluated for
CNN optimization.

We also used the VGGnet with two-dimensional convolu-
tion kernel for comparison with the one-dimensional convo-
lution network. the first convolution layer contained the 3×3
kernel. In the second convolutional layer, the kernel size was
3 × 3, with 32 input and 32 channels output. In the third
convolutional layer, we adopted the kernel size 3×3, 64 input
and 64 output. In the fourth layer, we adopted maximum
pooling layer with 2× 2 kernel and 2× 2 strides. In the fifth
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FIGURE 4. The architecture of the proposed CNN model. Conv indicates
the convolutional layer, Pool indicates the pooling layer, FC indicates the
fully connected layer. There are four convolutional layers (Conv1, Con2,
Conv3, Conv4), three pooling layers (Pool1, Pool2, and Pool3) and three
fully connected layers (FC1, FC2, and FC3).

convolution layer, we adopted 3 × 3 convolutional kernel,
64 input, 64 output and stride 1. In the sixth convolutional
layer, we adopted 3 × 3 kernel, 128 input, 128 output and
stride 1. Then, the second maximum pooling layer was used
with 2× 2 pooling size and 2× 2 step. Next, it goes through
the flatten layer, the size is 4×7×128. There were three fully
connected layers in the end (Table 2). The results of VGGnet
were similar to the proposed CNN model.

Another deep learning method Bidirectional long short-
term memory networks (LSTM) (Fig.5) was used in this
study. LSTM introduced by Hochreiter & Schmidhuber
(1997) is a special kind of recurrent neural network (RNN)
architecture with long short memory units as hidden units.
LSTMs are explicitly designed to avoid the long-term depen-
dency problem. BiLSTM is composed of two ordinary
LSTMs, a forward LSTM using past information, and a
reverse order LSTM using future information, so that at
time t, both the information at time t-1 and the information
can be used Information to time t + 1. Generally speaking,
since the bidirectional LSTM can use the information of the

TABLE 2. Different parameter values evaluated for CNN optimization.

FIGURE 5. The architecture of the BiLSTM model.

past time and the future time at the same time, the final pre-
diction will be more accurate than the unidirectional LSTM.
Table 3 showed the architectural details of the proposed
BiLSTMmodel. As shown in the Fig.5, the number of LSTM
neurons propagated forward and backward is 256. Data were
input into BiLSTM network, then two fully connected layers
were used. The number of neurons in the first and the second
full connected layer was 64 and 64, respectively. In our
study, the parameters were set as follows. Input layer included
14 channels, maximum length of series was 512 points,
LSTM model size was 256, attention size was set to 8, batch
size was set to 64, and hidden layer was set to 64 (Table 3).

CNN and BiLSTM methods were implemented using
Python, and the simulations were run on a computer with
Windows 10 system with 32 GB of memory, a 256 GB Solid
State Drives (SSD), an NVIDIA GeForce RTX 2070 card and
a 8-core Intel (R) Core (TM) i7-9700 CPU @3.00 GHz.

G. STATISTICAL ANALYSIS
Data were analyzed using Statistical Product and Service
Solutions (SPSS) 19.0 software (IBM corporation, USA)
to analyze the significant difference between two different
conditions. The one-way analysis of variance (ANOVA) [69],
[70] was used in analyzing the significant difference between
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FIGURE 6. Artifacts removal. (a) Original signal of motion execution with right bending. (b) CCA component after MEMD-CCA processing for the
AF3 channel. (c) Components with autocorrelation less than 0.3 were assumed to the muscle artifacts. (d) The original signal before (in black) and after
EMG artifact removal (in red). (e) Signal before (in red) and after EOG artifact removal (in black).

TABLE 3. Architectural details of the proposed BiLSTM model.

two statuses. The significant difference p was set to 0.05.
Repeated measures ANOVA compared outcome variables at
baseline (measures taken immediately before the first mas-
sage) with outcome measures (measure taken immediately
after massage). If the variance of two groups was not equal,
we will choose nonparametric tests (Brown-Forsythe or
Welch) to test the significance between two groups. We also
used the Mann-Whitney U test when the variance was not
equal for two groups.Mean value and standard deviation (SD)
were plot in the figures.

III. RESULTS
A. THE COMPARISON BETWEEN THE ORIGINAL SIGNAL
AND THE SIGNAL AFTER MEMD-CCA
Fig. 6 (a), (b) and (c) showed the original data of real right
bending, the result after MEMD-CCA processing for the
AF3 channel and the autocorrelation value of CCA compo-
nent which was used in the EMG artifact removal. The signal

FIGURE 7. PSD of the original EEG data and the data after MEMD-CCA
processing for ME with left bending before massage. The horizontal axis
represents frequency with unit Hz and the vertical axis represents PSD
with unit dB. (a) AF3. (b) F7. (c) F3. (d) FC5. (e) T7. (f) P7. (g) O1. (h) O2.
(i) P8. (j) T8. (k) FC6. (l) F4. (m) F8. (n) AF4.

after EMG artifact removal and the signal after EOG artifact
removal were shown in Fig.6 (d) and (e). EMG and EOG
artifact removal had a good performance.
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TABLE 4. The statistical analysis of different features in alpha rhythm (mean ± std).

B. THE COMPARISON BETWEEN THE POWER SPECTRUM
DENSITY OF THE ORIGINAL SIGNAL AND THE SIGNAL
AFTER MEMD-CCA
Fig. 7 showed the power spectrum density (PSD) of the
original EEG data and the data after MEMD-CCA processing
for EEG with real left bending before massage respectively.
The fourteen channels were AF3, F7, F3, FC5, T7, P7, O1,
O2, P8, T8, FC6, F4, F8 and AF4. The PSD values of the
signal after MEMD-CCA in different channel were relatively
lower in the high frequency band than the PSD in the low-
frequency band, since the channels corrupted with heavy

artifact in high frequency. These results were consistant with
the results in [44] using the CCA method.

C. THE COMPARISON OF SampEn OF FOUR RHYTHMS
BEFORE AND AFTER MASSAGE FOR PATIENTS IN
DIFFERENT STATUS
We calculated the statistical analysis of different features of
alpha rhythm (mean±std) in Table 4 . It was shown that the
SampEn and PermuEn values were lower after massage than
that before massage significantly.
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FIGURE 8. SampEn and PermuEn features of alpha rhythm before and after massage for
patients in different status. (a) Quiet status. (b) MI with left bending. (c) MI with right bending.
(d) ME with left bending. (e) ME with right bending. ∗ denotes significant difference p<0.05. ∗∗

denotes significant difference p<0.01.

Fig. 8 showed that SampEn and PermuEn features of
alpha rhythm decreased significantly after massage in almost
fourteen channels than that before massage for patients in
five statuses (quiet, MI with left/right bending, ME with
left/right bending). At the same time, VAS was signifi-
cantly lower after massage than before massage (Table 4).
It indicates that massage alleviated the pain for the patients

of skeletal pain, and it affects five statuses which showed the
similar tendency.

Fig.9 showed the averaged SampEn of four rhythms for
patients doing left bending and right bending in four sta-
tuses. It can be seen that there were increased channels with
significant difference in alpha and beta rhythms for the MI
with left bending and right bending (Fig. 9 (a) and (b))
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FIGURE 9. SampEn of four rhythms for patients doing left bending and right bending in four statuses. (a) Motion image (MI) before massage.
(b) MI after massage. (c) Motion execution (ME) before massage. (d) ME after massage. ∗ denotes significant difference p<0.05. ∗∗ denotes
significant difference p<0.01.

after massage than that before massage. However, for ME
after massage, there is no increased channels with significant
difference for four rhythms of left and right bending when
compared to the ME before massage (Fig. 9 (c) and (d)).

Fig.10 showed the averaged SampEn of four rhythms for
patients doing MI and ME in four statuses. It can be seen that
for four statuses (left bending before and after massage, right
bending before and after massage), the averaged SampEn of
delta, alpha and beta rhythm for the ME was significantly
higher than that for the MI, and the averaged SampEn of
theta rhythm for the ME was significantly lower than that for
the MI.

D. THE COMPARISON OF SampEn TOPOMAPS OF FOUR
RHYTHMS BEFORE AND AFTER MASSAGE FOR PATIENTS
IN DIFFERENT STATUSES
Brain topography analysis aimed to explore the brain con-
nectome using either functional or effective connectivity dur-
ing MI and ME tasks. Fig. 11 showed the comparison of
SampEn topomaps of four rhythms before and after massage
for patients in different statuses (MI with left bending, MI
with right bending, ME with left bending, and ME with right
bending). It can be seen that the averaged SampEn values
in topomaps became smaller in four rhythms for MI with
left bending after massage (Fig.11 (a)), and smaller SampEn
values of three rhythms (theta, alpha, beta) could be found for
MI with right bending after massage, ME left/right bending

after massage (Fig. 11 (b)-(d)). Fig.12 showed the compari-
son between the MI and ME in different statuses. It can be
seen that the SampEn values of the delta, alpha and beta
rhythm were higher in ME than the MI with the same motion,
while SampEn values of the theta rhythm were smaller in ME
than the MI with the same motion.

E. PERFORMANCE EVALUATION OF CLASSIFIERS USING
DIFFERENT FEATURES IN CLASSIFYING TWO STATUSES
(BEFORE VS AFTER MASSAGE, MI VS REAL MOTIONS)
Table 6 showed Precision, F1-score, and Area under curve
(AUC) (%) for the performance evaluation of classifiers in
classifying two statuses (before and after massage). Table 7
showed Precision, F1-score, and AUC for the performance
evaluation of classifiers in classifying two statuses (MI and
real motions).

F. THE ACCURACY OF CLASSIFICATION FOR MI WITH
TRUNK LEFT/RIGHT BENDING USING CNN AND BiLSTM
Fig. 13 showed the performance of classification for MI with
trunk left/right bending using CNN and BiLSTMmethods for
the patients with skeletal muscle pain before or after massage
therapy respectively. Before the massage therapy, the AUC
for CNN and BiLSTM was 0.77 and 0.89, respectively. After
the massage therapy, the AUC for CNN and BiLSTM was
0.75 and 0.88, respectively.
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FIGURE 10. SampEn of four rhythms for patients doing MI and ME in four statuses. (a) Left bending before massage. (b) Left bending after massage.
(c) Right bending before massage. (d) Right bending after massage. ∗ denotes significant difference p<0.05. ∗∗ denotes significant difference p<0.01.

It was interesting that the averaged test accuracy decreased
a bit using the patient’s data after massage therapy using
both methods (CNN and BiLSTM). Furthermore, the AUC
of BiLSTM was higher than that of CNN method in both
cases (before and after massage therapy). It may due to that
the massage therapy make the patients with skeletal pain feel
more comfortable on the affected side and pain decreased.
The difference of patients’ motor imagery between left and
right bending decreased.

We also used the data after filtering (1-40) Hz, and com-
bined all the data in quiet, ME, orMI statuses. Table 5 showed
that using CNN+LSTM method. The accuracy of classifi-
cation was 86.95±0.79%, 68.09±4.32, 85.78±1.14 for quiet
vs. ME, quiet vs. MI, MI vs. ME, respectively.

G. PDI SCORES FOR FOUR RHYTHMS OF PATIENTS IN
13 INTER- CHANNELS
Fig. 14 showed the PDI scores before and after massage
in 13 inter-channels for patients in different statuses. Fig.15
showed the PDI values of four rhythms for patients doing left
bending and right bending. Fig.16 showed the PDI values
of four rhythms for patients doing MI or ME in different
statuses (left bending before massage, left bending after mas-
sage, right bending before massage and right bending after
massage).

TABLE 5. Comparisons between two statuses (quiet, me, mi) using the
data after filtering (1-40 Hz) and artifacts removal of participants
(mean ± std).

IV. DISCUSSION
The current study investigated the differences in brain activity
variation resulting from massage for the MI with left/right
bending and real left/right bending. We used SampEn, Per-
muEn and CSP for the feature extraction, and we used
SVM and LR classifier for the classification. We also used
the deep learning architecture (CNN and BiLSTM) for
the classification of MI with left/right bending and real
left/right bending. Fig.9 showed the differences of Sam-
pEn of four rhythms before and after massage for patients
in ME and MI statuses for the first time. The SampEn
and PermuEn features for MI with trunk bending showed
significant decrease for the massage therapy effectiveness,
which indicated the lower complexity in the left hemi-
sphere. The complexity of the topomaps became less after
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TABLE 6. Precision, F1-score, and Area under curve (AUC) (%) for the performance evaluation of classifiers in classifying two statuses (Before massage
vs. after massage).
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TABLE 7. Precision, F1-score, and Area under curve (AUC) (%) for the performance evaluation of classifiers in classifying two statuses (MI vs. ME).

massage than that before massage. These results were con-
sistent with the decreased VAS for the clinical outcome.
It indicated that the massage changed the relaxation level of
patient.

Fig.14 also showed that there were significant differences
using the PDI score in beta rhythm in four statuses after
massage compared to the same motion before massage. This
result was coincident with the result in [62] which showed
that the hypnosis during real movement can significantly
reduce ERD during motor performance.

Very few studies analyze connectivity patterns revealed
by EEG during MI. Few of them focused on differ-
ences in connectivity patterns between MI and motor
execution [12], [26], [71]. These motions include real
and imaginary rhythmic for real foot, imaginary foot, real
hand, and imaginary hand movements [12], [27] and finger
tapping [71], swallowing [22], self-feeding activity using
chopsticks [70]. ME and MI are very similar processes [70].
The studies found overlapping activity in the inferior frontal
gyrus and precentral regions (including premotor areas
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FIGURE 11. Patients’ four rhythms’ topomaps during (a) MI with left bending (before vs. after massage), (b) MI with
right bending (before vs. after massage), (c) ME with left bending (before vs. after massage), (d) ME with right bending
(before vs. after massage).

VOLUME 9, 2021 2100320



H. Li et al.: Massage Therapy’s Effectiveness on the Decoding EEG Rhythms of Left/Right MI and ME in Patients

FIGURE 12. Patients’ four rhythms’ topomaps during (a) MI vs. ME with left bending before massage, (b) MI vs. ME with right
bending before massage, (c) MI vs. ME with left bending after massage, (d) MI vs. ME with right bending after massage.

2100320 VOLUME 9, 2021



H. Li et al.: Massage Therapy’s Effectiveness on the Decoding EEG Rhythms of Left/Right MI and ME in Patients

FIGURE 13. Performance of classification for MI with trunk left/right bending before massage using CNN and BiLSTM. (a) Accuracy of CNN method
before massage. (b) Accuracy of BiLSTM method before massage. (c) Receiver operating characteristic (ROC) and Accuracy under curve (AUC) of CNN
method before massage. (d) ROC and AUC of BiLSTM method before massage. (e) Accuracy of CNN method before massage. (f) Accuracy of BiLSTM
method before massage. (g) ROC and AUC of CNN method before massage. (h) ROC and AUC of BiLSTM method before massage.

FIGURE 14. PDI values of four rhythms before and after massage for patients in different statuses. (a) MI with left bending. (b) MI with right bending.
(c) ME with left bending. (d) ME with right bending. ∗ denotes significant difference p<0.05. ∗∗ denotes significant difference p<0.01.

and SMA) between both tasks [29]. Rimbert et al. [16]
presented the hypnotic statuses modulated sensorimotor beta
rhythms during ME and MI. It was suggested that the status
of hypnosis changed the sensorimotor beta rhythm during

the ERD phase but maintains the ERS phase in the mu and
beta frequency band. In our study, it indicated a different
activation of the motor cortex due to the massage therapy.
To our knowledge, massage therapy’s effectiveness on the
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FIGURE 15. PDI values of four rhythms for patients doing left bending and right bending in different statuses. (a) MI before massage. (b) MI after
massage. (c) Real motion before massage. (d) Real motion after massage. ∗ denotes significant difference p<0.05. ∗∗ denotes significant difference
p<0.01.

classification ofMI andMEwith left/right motions in patients
with skeletal muscle pain has not been investigated.

Previous work [72] showed that the averaged decod-
ing accuracy among all participants was only 67.1 ±
12.5% (mean±SD) for the ME, and decoding accuracy
was 48.7 ± 8.7% (p<0.05) for the imagined movements.
J. Asensio-Cubero et al. [73] applied wavelet lifting over
graphs for EEG in BCI applications with the mean accuracy
from 0.527 (± 0.08) to 0.624 (± 0.13). They used wavelet
with LS that obtains better classification performance for
85% of the subjects studied than FGWs under the same
conditions [73].

Daly et al. [26] showed that the averaged AUC was about
80% for the executed taps and imagined taps at each fre-
quency band. Chaisaen et al. [25] showed that the classifi-
cation of action observation and MI providing the highest
mean accuracy at 82.73± 2.54% in the stand-to-sit transition.
Yilmaz et al. [21] used the CSP method and achieved the
maximum accuracy of 60.61% in case of Emotiv Epoc head-
set and 86.5% for wet gel electrodes. Athanasiou et al. [12]
showed that the real and imaginary similarity for handmotion
and foot motion is 85.71% and 71.41%, respectively, while
the hand and foot motion’s discrimination for real is 28.57%

and 14.28%, respectively. However, there are few studies
about the MI applied on the patient with skeletal pain. Com-
paring with the previous work for classification between
MI and ME [72], our results achieved a better accuracy
(88%). In addition, the number of subjects were ten (healthy
participants), while 71 patients participated in our study.
Furthermore, the motions include three simple right upper
limb movement, while our motions include left and right
trunk bending.

In our experiment, we used the Emotiv EPOC equipment.
Martinez-Leon et al. [74] provided an assessment of the
Emotiv EPOC on the MI problem and showed that the per-
formance of this headset was comparable to that found in
professional devices when using the same number of sensors
and sensor positions for a three status MI cognitive process.

The system accuracy was very similar for the Emotiv
EPOC datasets whereas quite different for BCI Competition
datasets (ranging from 59.45% to 83.19%). Schiatti et al. [75]
used Emotiv EPOC for MI identification, and presented that
limiting the analysis to EPOC channels caused a decrease
of classification accuracy. The best classification accuracies
were 62%, 61.5% and 63% respectively for three subjects.
However, in our study, we used deep learning method and
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FIGURE 16. PDI values of four rhythms for patients doing MI or ME in different statuses. (a) Left bending before massage. (b) Left bending
after massage. (c) Right bending before massage. (d) Right bending after massage. ∗ denotes significant difference p<0.05. ∗∗ denotes
significant difference p<0.01.

achieved a better performance. Compared to these works, our
results using the deep learning method CNN and BiLSTM
achieved comparable results considering the Emotiv equip-
ment’s data.

The previous fMRI test used a few electrodes (C3, C4,
Cz) to capture the corresponding EEG patterns for MI [76].
Other use 7 electrodes (CP1, CPz, CP2, C1, Cz, C2, FC1,
FCz, and FC2) to focus on [12]. Although the Emotiv EPOC
doesn’t have any electrodes placed on the supposed optimal
spot for MI BCI, Emotiv EPOC is still can be used for
MI BCI [77]. There are a few studies about the Emotiv
EPOC on the MI. For instance, Osama and Aslam [78] used
FC5 electrode’s signal as feedback. E. Fatmawati et al. [79]
extracted features of alpha-frequency, beta frequency, mu
maximum power and maximum beta power using probabilis-
tic neural network (PNN) on F3, F4, FC5, FC6 electrode
components, and testing accuracy achieved 82.6%-87.6%.
Stock and Balbinot [80] used FC5, FC6, P7 and P8 of the
10-20 system, and a discussion about the differences of
using C3, C4, P3, and P4 position is proposed. The maxi-
mum classification results for the proposed experiment and
for the BCI Competition dataset were, respectively, 79%
and 85%. In our experiment, FC5, FC6, AF3, AF4 elec-
trode showed significant difference due to the massage
therapy.

Interestingly, the SampEn of delta, alpha and beta rhythm
all decreased in real motion compared to that in MI in four
conditions. It indicated that the complexity of ME was more
than that of MI in delta, alpha and beta rhythms, and less in
theta rhythm. Compared with the SampEn and CSP feature,
BiLSTM method received the highest classification accu-
racy (0.89) for the MI with trunk left/right bending before
massage.

Study evidence showed that patients with lesions in
the parietal and frontal cortices have difficulty perform-
ing MI, though they had ability to perform MI despite
chronic or severe motor impairments [16]. In our study,
for patients with chronic skeletal pain, they have mild to
moderate level of dysfunction. Further studies are need to be
investigated in the field.

V. CONCLUSION
In this study, we investigated the effectiveness of massage
on the four rhythms for MI and ME, and its classification
between the left bending and right bending. We conducted an
experiment on 71 patients with skeletal muscle pain, using
MI and ME tasks before and after massage. The averaged
SampEn values of four rhythms decreased in almost fourteen
channels for five statuses (quiet, MI with left/right bend-
ing, ME with left/right bending). It indicated that massage
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alleviated the pain for the patients of skeletal pain after mas-
sage. The SampEn values of the delta, alpha and beta rhythm
were higher in ME than in MI with the same motion, while
SampEn values of the theta rhythm were smaller in ME than
in MI with the same motion. PDI scores showed significant
difference in alpha and beta rhythms before and after massage
in different motions (MI and ME). The deep learning method
achieved comparable accuracy to existing methods in the
literature. It showed the effectiveness of massage not only in
the quiet status, but also in the MI and ME.
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