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Abstract: Nowadays, cancer therapy remains limited by the conventional one-size-fits-all approach. In 
this context, treatment decisions are based on the clinical stage of disease but fail to ascertain the indi-
vidual´s underlying biology and its role in driving malignancy. The identification of better therapies for 
cancer treatment is thus limited by the lack of sufficient data regarding the characterization of specific 
biochemical signatures associated with each particular cancer patient or group of patients. Metabolomics 
approaches promise a better understanding of cancer, a disease characterized by significant alterations in 
bioenergetic metabolism, by identifying changes in the pattern of metabolite expression in addition to 
changes in the concentration of individual metabolites as well as alterations in biochemical pathways. 
These approaches hold the potential of identifying novel biomarkers with different clinical applications, 
including the development of more specific diagnostic methods based on the characterization of meta-
bolic subtypes, the monitoring of currently used cancer therapeutics to evaluate the response and the 
prognostic outcome with a given therapy, and the evaluation of the mechanisms involved in disease re-
lapse and drug resistance. This review discusses metabolomics applications in different oncological 
processes underlining the potential of this omics approach to further advance the implementation of pre-
cision medicine in the oncology area. 
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1. INTRODUCTION 

Precision medicine promises to tailor therapies for each 
individual by delivering more effective drug treatments 
while avoiding or reducing adverse drug reactions. Towards 
this end, considerable efforts have been made over the last 
few years in the field of pharmacogenomics, with a focus on 
genotyping and identifying specific genetic variations asso-
ciated with drug response. However, clinical pharmacology 
would benefit from the introduction of new methodologies 
capable of providing information that could complement this 
genomic information [1]. This is necessary because drug 
metabolism and utilization involve many different enzymes, 
multiple organs, several compartments and even the micro-
biome, and are not always possible to screen for all possible 
genetic or tissue variants. Furthermore, because drug me-
tabolism varies with ethnicity, age, gender, weight, height, 
and diet – as well as other environmental and physiological 
variables – it can be particularly challenging to predict how 
an individual will respond to a drug based on their genotype 
alone [1-2]. 

In this context, the possibility to directly evaluate the 
phenotype of individuals will play a significant role in de- 
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termining the appropriate drug treatment or in predicting the 
response to therapeutic interventions. Metabolites represent 
the end products of biochemical processes, and their concen-
trations are extremely sensitive to genetic and environmental 
changes. Similar to the terms “transcriptome” or “proteome,” 
the set of metabolites synthesized by a biological system 
constitutes its “metabolome” [3]. The close association be-
tween the metabolome and the genotype of an individual 
also extends to its physiology and surrounding environment, 
thus offering metabolomics an opportunity to assess geno-
type-genotype and genotype-environment interactions [4]. 
Metabolomics is closely linked to the overall physiopa-
thological status of an individual. Thus, metabolomics may 
incorporate the biochemical events of thousands of small 
molecules in the cells, tissues, organs, or biological fluids. 
The qualitative and quantitative alteration of the metabolite 
composition as a consequence of pathological processes or 
drug administration translates into complex metabolic signa-
tures [5]. The analysis of these signatures can potentially 
provide useful information for the diagnosis and prognosis of 
patients as well as for predicting pharmacological responses 
to specific interventions. Furthermore, specific metabolic 
signatures occur after drug treatment, thus providing infor-
mation from pathways targeted or affected by drug therapy. 

Nowadays, tumor genomic profiling is routinely used to 
classify tumor types, identify driver or germline mutations, 
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perform prognostic assessments and make therapeutic deci-
sions [6, 7]. However, the heterogeneity of cancer genomes 
and cancer tissues can make it difficult to determine the un-
derlying causes or ascertain the optimal treatment. Further-
more, the elevated number of mutations and multiple combi-
nations of tumor suppressors and oncogenes make individu-
alized tumor classification or customized therapy almost 
impossible [8]. In general, multiple biochemical pathways 
are affected, owing to the fact that as cancer progresses, mul-
tiple defects in biochemical pathways arise as cancer sub-
verts normal metabolism in an effort to survive [9]. Further-
more, metabolic requirements of cancer cells are different 
from those of most normal differentiated cells, exhibiting 
different metabolic phenotypes [10, 11]. Some tumors seem 
to prefer aerobic glycolysis (Warburg effect) [12], others 
depend more on glutaminolysis [13], and others still are de-
pendent on one-carbon metabolism (choline or folate) [14]. 
Certain tumors may use a combination of two or more of 
these metabolic pathways [10, 11, 13]. Using metabolomics 
to identify the specific metabolic subtype of a particular tu-
mor would enable better customization or informed adjust-
ment of cancer therapies [15]. 

In this review, we provide specific examples of me-
tabolomics applications in the field of clinical pharmacology 
and precision medicine with a focus on the therapeutic man-
agement of cancer (Fig. 1). 

2. MOLECULAR SUBGROUPS BASED ON META-
BOLIC SUBTYPES  

Oncological processes share a common phenotype of un-
controlled cell proliferation. However, there are also disease-
specific alterations in metabolism associated with the meta-
bolic reprogramming taking place during neoplastic trans-
formation [16-20]. Similar to the wide variety of genomic 
alterations exhibited by tumors, metabolic transformation 
observed in neoplastic processes is also heterogeneous and 
extremely sensitive to tissue type, proliferation rate, etc. [21,  
22]. Metabolic phenotyping aims to obtain a comprehensive 
analysis of biological fluids or tissue samples. This analysis 
allows biochemical classification of a person´s physiological 
or pathological state and can be extremely useful in patient 
stratification. So far, patient stratification has been mostly 
performed according to genetic variants, and there are an 
increasing number of examples demonstrating how genetics 
can improve the selection of therapies for particular patient 
classes [23-29]. In this context, the identification of distinct 
metabolic reprogramming events or metabolic subtypes in 
cancer patients can potentially inform clinicians on factors 
that will enhance diagnosis, prognosis or the choice of ther-
apy [30]. The characterization of specific metabolic altera-
tions associated with different neoplastic processes has been 
the subject of different studies in recent years. 

 
Fig. (1). Schematic diagram summarizing the impact of different pathological and pharmacological processes in the metabolism and its ap-
plication to the identification of clinical biomarkers for precision medicine. 
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Chronic lymphocytic leukemia (CLL) is a disease that 
exhibits heterogeneous clinical behavior, with patient sur-
vival times ranging from months to decades [31-32]. Treat-
ment course for this disease has been traditionally based on 
staging systems [33, 34] enabling the classification of pa-
tients into specific outcome groups. Unfortunately, none of 
those systems facilitate the early stage diagnosis or the dis-
crimination of stable and progressive forms of this disease 
[35]. In this context, although several omics approaches have 
been shown to identify differences in CLL patient groups 
[36-38], they are somewhat limited due to their lack of corre-
lation with the dynamic nature of biochemical function [39]. 
MacIntyre et al. [40] performed a Nuclear Magnetic Reso-
nance (NMR) based metabolomics study to examine serum 
metabolomic profiles of early stage, untreated CLL patients 
classified on the basis of the mutational status of the immu-
noglobulin heavy chain variable region (IGHV) or on the 
expression level of ZAP70; two approaches routinely used in 
the clinical management of CLL patients. Metabolic profiles 
of CLL patients exhibited higher concentrations of pyruvate 
and glutamate and decreased concentrations of isoleucine 
compared with controls. Differences in metabolic profiles 
between unmutated (UM-IGHV) and mutated IGHV (M-
IGHV) patients were determined using partial least squares 
discriminatory analysis (PLS-DA). UM-IGHV patients had 
increased concentrations of lactate, fumarate, cholesterol and 
uridine. Furthermore, their metabolic profiles were charac-
terized by decreased concentrations of pyridoxine, glycerol, 
3-hydroxybutyrate and methionine. PLS-DA models based 
on the expression level of ZAP70 showed poor goodness-of-
fit values when compared with the classification based on 
the IGHV mutational status, thus indicating that the latter 
correlates better with the metabolic profiles associated with 
the disease. The results highlighted the usefulness of me-
tabolomics as a non-invasive tool for discriminating different 
CLL molecular subgroups. 

Pancreatic cancer is one of the leading causes of death 
from cancer throughout the world and its 5-year survival rate 
is less than 5%. Pancreatic ductal adenocarcinoma (PDAC), 
the most common type of pancreatic cancer, is the most le-
thal cancer because it is usually diagnosed at an advance 
stage and is resistant to therapy [41, 42]. Surgery remains the 
only curative option, although less than 20% of PDAC pa-
tients are suitable for surgical resection. Even after complete 
resection, there is still a significant subpopulation at risk of 
rapid deterioration and metastatic relapse [43, 44]. One rea-
son for poor outcomes in PDAC may stem from the lack of 
effective pretreatment evaluation methods to select an opti-
mal therapeutic strategy for an individual patient. Using me-
tabolomics approaches, Daemen et al. [45] identified three 
highly distinct metabolic subtypes in PDAC characterized by 
different proliferative capacities. Two of them, the glycolytic 
and lipogenic subtypes, exhibited remarkable differences in 
the utilization of key metabolites associated with energy me-
tabolism (glucose, glutamine), as well as mitochondrial func-
tion. The lipid subtype found in primary PDAC tumor sam-
ples showed a strong association with an epithelial pheno-
type, and the glycolytic subtype with a mesenchymal pheno-
type, thus indicating functional relevance in the progression 
of the disease. Based on these findings, the authors proposed 
a model in which both tumor subtypes are metabolically 

structured to preferentially use different metabolites for pro-
ducing tricarboxylic acid (TCA) intermediates and de novo 
lipogenesis. Furthermore, their analysis suggests that mesen-
chymal tumors may be more vulnerable to ROS-inducing 
agents, potentially through differences in NADPH balance 
and antioxidant responses [46]. Taken together, the results 
provide valuable predictive utility and thereby provide clini-
cal evaluation of a variety of metabolic inhibitors such as 
monocarboxylate transporter 1 (MCT1) and glutaminase 
inhibitors currently undergoing phase I testing across a vari-
ety of tumor indications. 

Another example of the application of metabolomics ap-
proaches for characterizing molecular subtypes is provided 
by the work of Fan et al. [47] on breast cancer (BC). This 
neoplastic process is the most common cause of death 
among women worldwide [48]. Human epidermal growth 
factor receptor 2 (HER2) and estrogen receptor (ER) are the 
two key molecular biomarkers to segregate the most distinct 
biological subgroups of BC [49]. Each subtype of BC is ac-
companied with characteristic molecular features, prognosis 
and clinical responses to available medical therapies [50]. 
Determining the molecular subtype of BC is critical for per-
sonalized treatment. However, it requires repeated biopsies 
and subsequent histopathology to study molecular and ge-
netic information from tumor cells for BC diagnosis and 
subtype classification. This analysis is invasive and time-
consuming [51, 52], and it would be desirable to develop 
rapid and sensitive analysis for discriminating different BC 
subtypes. In this context, the authors, using ultraperformance 
liquid chromatography-quadrupole time of flight mass spec-
trometry (UPLC-Q/TOF-MS) and gas chromatography-
quadrupole mass spectrometry (GC-Q/MS), examined the 
metabolic profiles of healthy women and BC patients. The 
results of this study revealed that the metabolic profile of 
HER2-positive patients, compared with HER2-negative pa-
tients, is characterized by specific alterations in glycolysis, 
gluconeogenesis and fatty acid biosynthesis. Moreover, it 
was found that ER-positive patients, compared with the ER-
negative group, exhibited increased metabolism of certain 
amino acids (i.e., alanine, aspartate, glutamine) and purine, 
and decreased glycerolipid catabolism. A combination of 
differentially expressed metabolites (carnitine, lysophos-
phatidylcholine (16:1, 20:4), proline, alanine, glycochenode-
oxycholic acid, valine and 2-octenoic acid) was finally found 
for the discrimination of BC subtypes. Overall, the findings 
demonstrate that the analysis of plasma metabolomic profiles 
provides a test that is faster, less costly, and non-invasive, 
that could be used in combination with other more invasive 
screening procedures. Furthermore, the possibility of dis-
criminating different BC subtypes could facilitate the identi-
fication of new therapeutic pathways from which novel 
agents might be developed. 

A final example of the metabolomics potential to identify 
disease-specific molecular fingerprints is the recent study by 
Zhao et al. [53]. Over the last few years, the molecular char-
acterization of gliomas, as opposed to the classical histopa-
thological one, has emerged as a more accurate method to 
characterize this disease. Several studies have identified al-
terations in different signaling pathways (phosphoinisitide 3-
kinase (PI3K), RTK/RAS/PI3K, EGF receptors (EGFR), 
p53, retinoblastoma (RB), PTEN) as main drivers for high-
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grade gliomas [54, 55]. The understanding of how underly-
ing metabolic alterations could contribute to the aggressive 
phenotype in tumors [55, 56] has triggered the interest in 
using metabolomics for characterizing gliomas [57]. Thus, 
using Grade II to IV glioma tumor tissues, Chinnaiyan et al. 
identified a metabolic classifier that could group glioma tu-
mors into three different subclasses with distinct prognostic 
relevance [57]. In agreement with these findings, recent stud-
ies have underlined the role that specific metabolic altera-
tions can play in the progression of gliomas. Thus, it has 
been reported that hyperglycaemia is associated with a short-
ened overall survival of glioma patients [58]. Other studies 
have suggested that pre-existing diabetes and increased body 
mass index (BMI) could also represent additional risk factors 
for the progression of this disease [59]. More recently, Zhao 
et al. have reported a metabolomics study focused on the 
analysis of plasma samples from glioma patients. The data 
were tested for correlation with glioma grade (high vs low), 
glioblastoma (GBM) vs. malignant gliomas, and isocitrate 
dehydrogenase (IDH) mutation status. They identified a set 
of 18 metabolites showing significantly different levels be-
tween high- and low-grade glioma patients. Similarly, 2 and 
6 metabolites significantly differing between GBM and non-
GBM, and IDH mutation positive and negative patients were 
also identified. Finally, the results of a pathway analysis re-
vealed that IDH mutation positive patients, compared with 
mutation negative ones, exhibited decreased concentrations 
of metabolites associated with the creatine pathway, thus 
perhaps reflecting an increased biochemical activity of this 
pathway in tumors carrying this mutation. Taken together, 
the results show that certain metabolites and metabolic 
pathways could be useful for differentiating glioma tumor 
phenotypes, thus providing additional support to the molecu-
lar classification of gliomas. 

3. PREDICTIVE BIOMARKERS: PHARMACOME-
TABOLOMICS  

The identification of biomarkers for therapy selection can 
optimize treatment of cancer patients and potentially also 
reduce the cost of prescription drugs for the healthcare sys-
tem. Biomarker discovery through metabolomics can play a 
large role in the discovery of metabolic biomarkers, both in 
cases where other biomarkers are available by providing 
additional biomarkers to strengthen the predictive accuracy, 
and also in cases where no therapy response predictive bio-
markers are available yet [60]. The application of me-
tabolomics to the prediction of the specific patient response 
to drug treatments is termed pharmacometabolomics. This 
approach is based on the identification of individual´s me-
tabolomics profiles, which represent a large repertoire of 
metabolites reflecting the complex interactions among gene 
expression, protein expression, physiopathological condi-
tions, age, gut microbiome, and the environment better than 
other omics profiles [61]. Consequently, the metabolomics 
profile is more closely associated to a patient´s pharmacol-
ogical phenotype and could be more informative than ge-
nomic or proteomic data when trying to understand the 
mechanisms of inter-patient variability in response to drug 
therapy [62-65]. 

Blackshall et al. performed a study focused on the 
evaluation of the toxicity predictive ability of pretreatment 

serum metabolic profiles obtained using 1H-NMR spectros-
copy in patients with inoperable colorectal cancer (CRC) 
receiving single agent capecitabine. This compound is an 
oral prodrug of 5-fluorouracil (5-FU) [66] that is absorbed 
from the gastrointestinal tract and undergoes a three-step 
activation process to 5-FU within the tumor [67]. The aim of 
this study was to determine whether a metabolomic profile 
obtained from pretreatment serum samples could predict 
toxicity from capecitabine in patients with advanced CRC. 
Using serum samples collected from patients with a diagno-
sis of locally, advanced or metastatic CRC (mCRC), they 
found that toxicity severity over the treatment period was 
associated with pre-existing high levels of different low-
density lipoprotein-derived lipids. The results of this study 
suggest that metabolomic profiles can discriminate patient 
subgroups more prone to adverse events and have a promis-
ing role in the evaluation of therapeutic treatments for on-
cological patients before initiating chemotherapy. 

Another study in the area of mCRC was carried out by 
Bertini et al. [68] using 1H-NMR spectroscopy. In this case, 
they focused on the analysis of serum samples from mCRC 
patients before third-line treatment with cetuximab and iri-
notecan, and healthy individuals. The statistical model gen-
erated could robustly discriminate healthy individuals from 
mCRC patients with 100% cross-validated accuracy. General 
applicability of the resultant classifier was successfully vali-
dated using an independent set. The capability of the 1H-
NMR profiles to predict overall survival (OS) after start of 
treatment with cetuximab and irinotecan, using pretreatment 
serum samples, was tested on a subset of samples from the 
training set with maximally divergent OS, and the classifier 
validated on the independent set of patients with mCRC. 
Results showed that the levels of several metabolites were 
significantly different between mCRC patients and healthy 
individuals, as well as between mCRC patients with short 
and long OS. In particular, it was found that serum me-
tabolomic profile of mCRC is characterized by a higher in-
tensity of the signals of CH2-COOR of lipids and the N-
acetyl resonance of glycoproteins; this effect being larger for 
patients with short OS. Furthermore, patients with short OS 
showed decreased serum concentrations of polyunsaturated 
lipids. Overall, their findings show that 1H-NMR profiling of 
patient serum samples not only offers a strong metabolomic 
signature of mCRC but also its analysis can lead to the de-
velopment of a tool for predicting OS. 

As pointed out previously, BC is a clinically heterogene-
ous disease, which requires a variety of treatments and leads 
to different outcomes. In this context, the early identification 
of chemotherapy responder and non-responder patients has 
critical implications for improving long-term survival, as 
well as for the identification of other therapeutically effec-
tive treatment regimes. In a study carried out by Wei et al. 
[69], serum metabolomic profiles, using a combination of 
NMR spectroscopy and liquid chromatography-mass spec-
trometry (LC-MS), were obtained to predict the response to 
neoadjuvant chemotherapy in BC patients. Samples were 
collected from BC patients with complete, partial and no 
response to chemotherapy. Using this experimental ap-
proach, it was found that the concentration of four metabo-
lites, three (threonine, isoleucine, glutamine) identified by 
NMR and one (linolenic acid) using LC-MS were signifi-
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cantly different when comparing response to chemotherapy 
and were well correlated with pathologic complete response 
(pCR). A predictive model developed combining NMR and 
MS derived metabolites correctly classified pCR and stable 
disease (SD) BC patients with 100% specificity and 80% 
sensitivity. These results indicate that several blood-based 
metabolites are response predictive and that this approach, 
although requiring further validation using larger patient 
cohorts, could result in more precise treatment protocols for 
BC patients. 

A more recent study, focused on a homogeneous popula-
tion of BC patients, has been reported by Miolo et al. [61]. 
The authors applied a pharmacometabolomics approach to 
identify biomarkers potentially associated with pCR to tras-
tuzumab-paclitaxel neoadjuvant therapy in HER-2 positive 
BC patients. Based on histological response, the patients 
were subdivided into two groups, good and poor responders. 
The pretreatment serum metabolomic profiles of all patients 
were analyzed using a targeted approach by LC-MS. Differ-
ences in the metabolomic profile between the two groups 
were investigated by multivariate statistical analysis. The 
most relevant metabolites in the comparison between the two 
groups of BC patients were spermidine and tryptophan. 
Good responders showed higher amounts of spermidine and 
lower amounts of tryptophan compared with the poor re-
sponders. The serum levels of these two metabolites identi-
fied patients who achieved complete response with a sensi-
tivity of 90% and a specificity of 87%. The results provide 
an indication of the impact that the specific patient´s metabo-
lism has in the response achieved following cancer treat-
ment, and could represent a relevant tool for selecting pa-
tients more prone to benefit from the trastuzumab-paclitaxel 
neoadjuvant therapy. 

4. TREATMENT MONITORING 

For decades, and even in modern medicine, individual 
metabolites have been used for diagnosis and monitoring of 
disease progression and therapy response [70-72]. Because 
of its exceptional ability to cover the metabolome, me-
tabolomics provides a much more comprehensive assessment 
of patient´s biological/health status than the measurement of 
single metabolites as has been used in conventional disease 
management. This makes metabolomics a powerful tool for 
the identification, quantification and development of bio-
markers [70]. Interestingly, metabolic signatures have also 
been characterized for the specific response to several drugs, 
and the importance of such signatures is due to the fact that 
they represent the metabolic changes in pathways that are 
targeted by or affected by drug treatment [73]. Combined 
examination of disease metabolic characteristics and treat-
ment response could provide metabolic biomarkers very use-
ful for personalization of therapies. Particularly, the investi-
gation of metabolic changes in different neoplastic processes 
following drug administration is becoming the subject of 
different studies in recent years [74]. 

Multiple Myeloma (MM) remains an incurable disease. 
New approaches are required for improving survival and for 
the development of the necessary tools to assess the progno-
sis of MM patients and their response to therapeutic treat-
ments. Puchades-Carrasco et al. performed a 1H-NMR spec-

troscopy study to characterize the specific metabolic profile 
of MM patients by conducting a comparative analysis of 
serum samples from healthy individuals and MM patients 
[75]. Furthermore, a comparison between the metabolic pro-
files of MM patients at the time of diagnosis and after 
achievement of complete remission was conducted. An in-
depth analysis of the changes in the levels of the metabolites 
involved in the discrimination between the different groups 
revealed three different behaviors. Thus, some metabolites 
(3-hydroxybutyrate, arginine, acetate, etc.) whose levels 
were different when comparing MM patients at diagnosis 
and healthy individuals did show the same trend when the 
comparison was performed between MM patients at diagno-
sis and after complete remission. This behavior could be 
indicative of metabolic alterations associated with MM that 
are not modified after patients achieve complete remission. 
Interestingly, another group of metabolites (lactate, citrate, 
etc.) was characterized by exhibiting variations when MM 
patients at diagnosis and after complete remission were 
compared, but not when that comparison included MM pa-
tients at diagnosis and healthy individuals. It could perhaps 
reflect metabolic alterations caused by MM treatment that 
are not associated with the response to treatment. Finally, 
there were other metabolites (cholesterol, lipids, glutamine, 
lysine, etc.) displaying changes in the opposite direction after 
MM treatment was initiated, suggesting these metabolites 
could be reflecting the metabolic alterations induced by the 
treatment in the characteristic profiles of MM patients. Over-
all, this study suggests that the analysis of metabolic profiles 
of MM patients provides an opportunity for characterizing 
metabolites associated with treatment efficacy and response. 

Renal Cell Carcinoma (RCC) is one of the most 
chemoresistant cancers, and treatment of its metastatic form 
(mRCC) usually relies on therapies based on angiogenesis or 
mTOR inhibitors. A good understanding of the metabolic 
impact of these therapeutic treatments is critical to predict 
the patient response and adjust personalized therapies. Jo-
bard et al. carried out a metabolomic investigation of serum 
samples from patients with mRCC to identify metabolic sig-
natures associated with targeted therapies [76]. To this end, 
pretreatment and serial on-treatment (2 and 5-6 weeks) sam-
ples were obtained from mRCC patients receiving either a 
bevacizumab and temsirolimus combination (experimental 
arm A) or a standard treatment: sunitinib (arm B) or inter-
feron-α plus bevacizumab (arm C). Metabolic profiles were 
obtained using NMR spectroscopy and compared on-
treatment or between treatments. Their results revealed a 
specific metabolomic signature associated with the response 
to the experimental combination of bevacizumab and temsi-
rolimus, together with the presence of an earlier modification 
of the metabolism, compared to patients treated with the two 
standard therapies. Unlike the two standard treatment 
groups, significant changes in different metabolites (glucose, 
N-acetylglycoproteins, lipids, lipoproteins (LDL and 
VLDL)) were identified in the experimental arm. After 2 
weeks of therapy, only the lipids showed a high discrimina-
tory power. However, a large number of significant changes 
in several metabolites were identified in the experimental 
arm after 5–6 weeks of treatment, some of them showing 
strong discriminatory power. On-treatment samples were 
characterized by exhibiting elevated levels of several me-
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tabolites (acetoacetate, acetone, glucose, glycerol, alanine, 
glutamine, glycine, isoleucine, leucine, valine, cholesterol, 
lipids, LDL, VLDL lipoproteins and N-acetylglycoproteins), 
and decreased levels of ethanol and lactate when compared 
with pretreatment samples. Taken together, their findings 
highlight the potential of metabolomic approaches to study 
effects associated with the mechanism of action of drugs. 

Chronic Myeloid Leukaemia (CML) is a myeloprolifera-
tive disorder characterized by the presence of the Philadel-
phia chromosome originating from the t(9;22) (q34;q11) 
reciprocal translocation. It includes the fusion gene BCR-
ABL1 encoding the Bcr-Abl protein with constitutive tyro-
sine kinase activity, thus triggering various intracellular sig-
nalling pathways that lead to the malignant transformation of 
the cell [77, 78]. The majority of CML patients have an op-
timal response to tyrosine kinase inhibitors (TKIs). During 
the treatment with TKIs, cytogenetic examination and real-
time polymerase chain reaction quantitation of residual leu-
kemic cells with an active BCR-ABL1 gene are used for the 
monitoring of CML patients. However, these methods evalu-
ate the early response to TKI treatment at 3, 6, and 12 
months from the beginning of the treatment [79]. The major-
ity of treatment failures occurs during the first 2 years of the 
TKI therapy and are not always detected or predicted using 
routine monitoring. Therefore, new methods for the im-
provement of the prognostic assessment of CML patients are 
clearly needed. Karlikova et al. [80] examined the me-
tabolome (plasma, leukocytes) of CML patients at the time 
of diagnosis and after their treatment with hydroxyurea and 
subsequent treatment with TKIs (imatinib, dasatinib, 
nilotinib) in comparison with healthy subjects to identify 
changes in metabolites induced by the disease and its treat-
ment. The global metabolic profiles obtained by LC-MS 
were able to discriminate CML patients at diagnosis and 
those treated with hydroxyurea from CML patients treated 
with TKIs and healthy individuals. Metabolic differences 
were mainly associated with changes at the level of gly-
colisis, the TCA cycle and amino acid metabolism. The re-
sults of this study underline the potential of metabolomics as 
an additional method for the assessment of the treatment 
response in CML patients after TKIs. 

GBMs progress rapidly, making response evaluation us-
ing Magnetic Resonance Imaging (MRI) not sufficiently 
effective considering treatment effects are only observed 
after several months following treatment. Therefore, addi-
tional biomarkers providing reliable information on treat-
ment efficacy at an early stage are required. Mören et al. [81] 
analyzed, using GC-TOF-MS, serum samples from patients 
with GBM during the initial phase of radiotherapy. The 
study design included the evaluation of samples obtained 
from GBM patients just before treatment and after the sec-
ond and fifth radiation doses. Results were compared in rela-
tion to previous data from microdialysis in tumor tissue (i.e., 
the extracellular compartment) from the same patients. Sig-
nificant changes in metabolite patterns in serum were ob-
served when comparing samples collected before and after 
early radiotherapy. A number of amino acids and fatty acids 
together with myo-inositol, creatinine and urea were among 
the metabolites that experienced a decrease in concentration 
during treatment, while citric acid was among the metabo-
lites that increased in concentration. The comparison be-

tween the results obtained in serum and in tumor extracellu-
lar fluid revealed a common pattern in both compartments, 
with the exception of glutamine and glutamate, whose levels 
were decreased in serum after treatment and increased in the 
tumor extracellular fluid. Overall, the findings show that 
serum metabolomics could be a valuable tool for assessing 
early response to radiotherapy in malignant glioma. 

5. ACQUIRED RESISTANCE AND RELAPSE 

The use of metabolomics for the assessment of treatment 
effect, as both a predictive measure of efficacy and as 
pharmacodynamic marker, has been shown previously. 
However, metabolomics can also provide very valuable 
information regarding other pharmacological events, such as 
drug resistance and disease relapse. Cancer cells that do not 
respond or evade therapy play a critical role in the 
biochemical mechanisms leading to relapse. Therefore, a 
better understanding of the metabolic rewiring involved in 
drug resistance could lead to opportunities for the devel-
opment of new therapeutic strategies [82]. Cancer is a clonal 
disease able to generate new subclones with modified traits 
that are naturally selected based on their capabilities to sur-
vive and grow in specific circumstances [83-85]. Therefore, 
cancer cells able to adapt or resist treatment will be selected 
under therapeutic pressure, thus leading to relapsing disease, 
which is usually associated with a poor prognosis [84, 86, 
87]. In this context, a deeper insight into the biochemical 
underpinnings of treatment resistance and cancer progression 
as provided by metabolomics could lead to the discovery of 
new therapeutic targets and the achievement of 
individualized disease management [88]. 

Different mechanisms have been described as potential 
contributors to imatinib resistance in CML [89-94]. Addi-
tionally, the remodelling of cellular metabolism has been 
explored as a possible mechanism underlying enhanced cell 
proliferation and growth in the presence of imatinib [95]. 
Human CML cell lines with loss of imatinib sensitivity dis-
play increased glycolytic rate and phosphocoline levels, 
metabolic alterations that are considered to sustain cell pro-
liferation in these conditions [96]. Imatinib treatment has 
also been associated with a significant reduction of the nu-
cleic acid and fatty acid synthesis mediated by the inhibition 
of the pentose phosphate shunt [97]. Inhibitory effects in-
duced by imatinib can be overcome by a shift from oxidative 
to non-oxidative pathways, thus facilitating the production of 
critical biomolecules involved in cell proliferation [98]. In a 
metabolomic study carried out using 1H-NMR, Dewar et al. 
examined the metabolic profiles of a CML cell line (MyL) 
and a subline displaying resistance to imatinib (MyL-R) 
[99]. The authors showed that once cells became resistant to 
imatinib, this condition was maintained even in the absence 
of this drug. These cells exhibited a different metabolic phe-
notype to that of the parental CML cell line, and were char-
acterized by a decreased glycolytic rate, as well as by re-
duced levels of choline derivatives and taurine, and increased 
creatinine levels. They also demonstrated that the resistant 
cells maintained a portion of the creatinine pool as phos-
phocreatine, which may provide an additional energy reserve 
allowing cells to escape imatinib-mediated cell death. The 
results of this study show the potential of metabolomics to 
provide a better understanding of the contribution of cellular 
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metabolism to particular disease states, drug responses and 
alterations in biological conditions. 

Ovarian cancer (OC) is responsible for the highest mor-
tality of all cancers of the female reproductive system. OCs 
are generally sensitive to chemotherapy and often initially 
respond well to standard primary treatment with cytoreduc-
tive surgery and first-line platinum and taxane-based chemo-
therapy [100]. Even though the presence or development of 
platinum resistance is a major obstacle in successful OC 
treatment, platinum therapy is still the principal treatment for 
recurrent tumors [101]. The development of resistance to 
platinum has been associated with processes that limit the 
efficacy of this drug (e.g., reduced drug accumulation, drug 
inactivation or improved drug efflux) or activate different 
survival mechanisms (enhanced DNA repair, upregulation of 
anti-apoptotic genes, etc.) [102-103]. While advancements 
have been made in understanding the molecular deregulation 
underlying chemoresistance, they have not led to the devel-
opment of therapeutic solutions able to improve the clinical 
management of chemoresistant tumors. In this context, new 
strategies for identifying platinum resistant tumors are very 
much needed. Poisson et al. carried out a study aiming to 
identify the metabolic alterations that are specifically associ-
ated with platinum resistance in OC [104]. To that end, a 
global metabolic analysis of the A2780 platinum-sensitive 
and its platinum-resistant derivative C200 OC cell line was 
performed using UPLC-MS and GC-MS. Functional analysis 
based on KEGG [105] and IPA (http://www.ingenuity.com/) 
revealed that the methionine degradation super-pathway and 
cysteine biosynthesis were the top two canonical pathways 
affected. The main metabolic networks involved in platinum 
resistance were associated with energy production, and small 
molecule and carbohydrate metabolism. An in-depth analysis 
of the data showed that the most significant alterations were 
associated with pathways involved in glutathione and poly-
amine synthesis. Overall, the findings show that the chemo-
resistant C200 OC cells have distinct metabolic alterations 
that may contribute to its platinum resistance. This study 
shows that platinum resistance in OC is characterized by a 
specific metabolic profile, thus providing an opportunity for 
the identification and therapeutic treatment of chemoresistant 
tumors [104]. 

Despite the favorable response to initial therapy, most 
OC patients relapse within 18 months [106]. Recurrent OC 
usually develops chemotherapy resistance and invariable is 
fatal [107]. Recent metabolomic based studies in OC have 
been applied to the screening of urine, plasma, and tumor 
tissue from OC patients and control population [108-113]. 
These studies focused on the discrimination between healthy 
and OC patients [108-110], and profiling of malignant and 
borderline ovarian tumors [109], providing a better under-
standing of OC pathogenesis and facilitating clinical diagno-
sis of this disease [110, 111, 114-116]. However, to improve 
survival rates, new efforts should be devoted to investigate 
metabolic alterations associated with response to OC treat-
ment and disease relapse. In a recent study, Ke et al. [115] 
performed a metabolomic study by rapid resolution liquid 
chromatography mass spectrometry (RRLC-MS) including 
plasma samples from OC patients at the time of diagnosis 
(primary OC patients) and after cytoreductive surgery (post-
operative OC patients), matched controls and matched recur-

rent OC patients. They found that, compared with primary 
OC patients, relapsed OC patients showed substantial meta-
bolic alterations. A series of amino acids (l-histidine, l-
tryptophan, and l-phenylalanine) and amino acid-related me-
tabolites (kynurenine, 2,3-dihydroxyvaleric acid, glyceric 
acid, and α-ketoisovaleric acid) were remarkably increased 
in relapsed OC patients compared with the primary OC pa-
tients. Further significant alterations in recurrent OC patients 
were observed within lipid metabolism, as indicated by sig-
nificantly increased levels of lysophosphatidylcholines 
(LPCs), lysophosphatidylethanolamines (LPEs) and fatty 
acids. Recent studies have also suggested that adverse lipid 
profile raises prostate cancer (PCa) recurrence risk [117]. 
Therefore, alterations of these metabolites might serve as 
specific biomarkers for OC recurrence and possibly as me-
tabolism-based drug targets. This study underlines the poten-
tial of metabolomics to identify metabolic changes in re-
sponse to advanced OC, surgery and recurrence, which could 
facilitate both understanding and monitoring of OC devel-
opment and progression. 

Another example of the application of metabolomics to 
the identification of metabolic signatures associated with 
disease relapse is provided by the work of Tenori et al. on 
early stage BC patients [118]. Following surgical excision of 
the breast lesion and surgical sampling and/or dissection of 
axillary nodes, BC patients might be offered loco-regional 
radiotherapy and/or post-operative (adjuvant) systemic ther-
apy. The rationale behind this approach is that residual mi-
crometastatic disease might be eradicated by chemotherapy. 
If not eradicated, micrometastases might progress to incur-
able disseminated BC. In current clinical practice, microme-
tastatic disease is detectable as circulating tumour cells in the 
peripheral blood and disseminated tumours cells in the bone 
marrow. However, not all patients with micrometastases will 
develop clinically evident macrometastatic disease [119]. 
Furthermore, factors beyond the presence of micrometasta-
ses, such as tumour cell dormancy, host immunity, and the 
microenvironment, influence the clinical outcome. There-
fore, novel prognostic and predictive biomarkers are required 
to guide the use of systemic therapy in individuals with early 
BC. In this context, Tenori et al. explored, using NMR, 
whether serum metabolomic profiles could distinguish be-
tween early and metastatic BC patients, and predict disease 
relapse in early stage patients. They found that disease re-
lapse is associated with significantly lower levels of histidine 
and higher levels of glucose and lipids compared with BC 
patients with no relapse. Although validation studies are re-
quired, the study underlines the potential of metabolomics as 
a host and tumour-derived prognostic tool, thus providing an 
avenue for predicting disease relapse in individuals with 
early stage BC. 

CONCLUSION 

Cancer is a metabolic disease. Cancer cells are character-
ized by substantial modifications in different metabolic 
pathways (glycolysis, TCA cycle, oxidative phosphorylation, 
etc.) as well as in the metabolism of lipids and amino acids 
[120]. In this context, metabolomics holds great promise for 
a better understanding of the molecular determinants of can-
cer, as well as could be extremely useful for advancing in the 
development of new biomarkers for the diagnosis, prognosis 
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and treatment of neoplastic processes. In fact, this approach 
has been used to identify and validate molecular mechanisms 
involved in carcinogenesis and proliferation, as well as bio-
markers of clinical value in the diagnosis/prognosis of dif-
ferent neoplastic processes, and even contribute to the stag-
ing of cancers and characterization of treatment efficacy 
[121]. In this review, we have summarized different exam-
ples that have emerged in the last few years demonstrating 
the potential of metabolomics tools and data in preclinical 
and clinical development. For example, the ability to sub-
classify patients could contribute to clinical trial design and 
increase success in choosing patients for trial inclusion. Fur-
thermore, the possibility of identifying metabolic alterations 
associated with the presence or the response to particular 
drugs or drug treatments will undoubtedly contribute to get a 
deeper insight into the mode-of-action of drugs, as well as on 
characterizing the metabolic impact on the pharmacokinetics 
and pharmacodynamics of the therapeutic treatments [1]. 
Finally, metabolomics approaches are very well suited for 
uncovering other pharmacological events, such as drug resis-
tance and disease relapse. The information derived from 
these metabolomic studies could in turn help to identify new 
therapeutic targets and eventually novel molecularly targeted 
agents that could further facilitate the implementation of 
precision medicine in the oncology area. 

LIST OF ABBREVIATIONS  

5-FU = 5-Fluorouracil 
BC = Breast Cancer 
BMI = Body Mass Index 
CLL = Chronic Lymphocytic Leukemia 
CML = Chronic Myeloid Leukemia 
CRC = Colorectal Cancer 
EGFR = EGF Receptors 
ER = Estrogen Receptor 
GBM = Glioblastoma 
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Mass Spectrometry 
HER2 = Human Epidermal Growth Factor 
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IDH = Isocitrate Dehydrogenase 
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LPCs = Lysophosphatidylcholines 
LPEs = Lysophosphatidylethanolamines 
mCRC = Metastatic CRC 
MCT1 = Monocarboxylate Transporter 1 
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MRI = Magnetic Resonance Imaging 
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OS = Overall Survival 
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RB = Retinoblastoma 
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