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Abstract
This review article describes our simplified biophysical model for the response of a group of cells to ionizing radiation. The
model, which is a product of 10 years of studies, acts as (a) a comprehensive stochastic approach based on the Monte Carlo
simulation with a probability tree and (b) the thereof derived detailed deterministic models describing the selected biophysical
and radiobiological phenomena in an analytical manner. Specifically, the presented model describes effects such as the risk of
neoplastic transformation of cells relative to the absorbed radiation dose, the dynamics of tumor development, the priming dose
effect (also called the Raper–Yonezawa effect) based on the introduced adaptive response approach, and the bystander effect.
The model is also modifiable depending on users’ potential needs.
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Introduction

From a purely physical perspective, every living organism is a
complex system. Such systems are characterized by a very
unpredictable behavior, as many different influencing factors
must be taken into account. Therefore, it is very difficult, if not
impossible, to describe the response of a complex system to a
given factor in a strict mathematical formalism. However, using
appropriate numerical methods, one can create a model which
provides a good approximation of reality within an acceptable
range. Such a model can successfully describe the behavior of
an organism exposed to one specific external stressor. One of
the most important effects of stressor interaction is cancer
induction, which is of crucial interest to the presented paper.

Cancer is a genetic disease—it is caused by stable changes
in DNA which controls the normal functioning of a cell,
created as a result of error or damage. In 2020, 19.3 million
estimated worldwide cancer cases were reported, of which

almost 10.0 million were fatal.1 Exposure to external agents
may potentially result in induction of a neoplasm in the human
body. According to the mutational theories, more than one
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oncogenic mutation is responsible for initial steps in the
neoplastic process, until the cells eventually sustain enough
genetic alteration to become autonomous, which results in
cancer. It is conservatively estimated that 5% of human
cancers are caused by viruses, 5% by radiation, and the re-
maining 90% by chemicals.2

In the context of the presented paper, ionizing radiation is a
special case of an external factor (the stressor) that affects the
complex system of a living organism. The subject of the
general impact of radiation on health is very wide and will not
be discussed here—this article focuses on the description of
various attempts to model the impact of ionizing radiation on
carcinogenesis initiation and progression, methods of model’s
programming and statistical description, as well as on the
description of selected biophysical and radiobiological phe-
nomena, which contribute significantly to the complexity of its
response to radiation.

Numerous models describe the ionizing radiation inter-
action with living organism(s), especially on the cellular level.
The analysis of different numerical models (Table 1) shows
that there is a need for a versatile, adjustable, and homoge-
neous model that reliably describes the consequences of ir-
radiation: for example, neoplastic transformation (cancer
formation) and all significant non-targeted effects. Previous
models feature basic consideration of the cellular effects (i.e.,
bystander effect), are complicated numerical programs using
many physical models, or explicitly focus on one type of
radiation or cell.

This review article shows our own approach which presents
selected methods of computer modeling of the effects of
ionizing radiation on the body at the cellular level. The authors
present a stochastic model using the Monte Carlo technique
based on a Markov probability tree with memory approach,
which can be successfully used for computer simulation of
various types of radiation phenomena. A deterministic ap-
proach is also described, which focuses on specific processes,
such as tumor growth, or the phenomenon of radiation
adaptive response.

Monte Carlo Stochastic Modeling of
Irradiated Cells

The Monte Carlo modeling technique has been implemented
in various types of biophysical simulations for many years.
The development of the model discussed in this chapter started
10 years ago19 when the first simple Monte Carlo Markov
Chain (MCMC) with probability tree model of cellular ra-
diation response was published. Over the years, this model has
been refined, bringing its results closer to reality.20–25 Details
of the current version of the model are described below.

Cell Arrangement

The model can simulate the behavior of any number of cells
(N), limited only by computer capabilities. All cells are

organized into a three-dimensional matrix that simulates real
tissue (see Figure 1 and 2A and B). This matrix may undergo
changes (e.g., cells may die, multiply, and mutate) with
successive discrete time steps. Moving from one time step to
the next means that each cell has passed through the proba-
bility tree (described in detail later). At each time step, each
cell has one of the following states: (a) healthy, (b) damaged,
(c) mutated, (d) cancerous, and (e) dead cell/lack of cell
(empty). Of course, all those states are on the general level of
biological processes.

Damaged cells are those whose DNA has been suc-
cessfully hit by ionizing radiation: the act of ionization in
the space of DNA has occurred (irrespective of the type of
lesion or radiation). A mutant cell, on the other hand, is a
cell that has transformed from a damaged cell because of
damage that was not repaired or was repaired incorrectly
(via all potential ways). A cancerous cell is a neoplastically
transformed mutant cell, that is, that has undergone the
process of cytogenetic transformation due to the accumu-
lation of an appropriate number of oncogenic mutations in
its DNA.26 More details about cell statuses and their
transitions with time (number of time steps) will be de-
scribed later.

Dosimetry

In the simplest variant, all cells are pre-assigned with a
certain dose of ionizing radiation. This may be a single dose
value (D) at a specific fixed time step (k) or a fixed dose
value in all subsequent time steps which corresponds to a
constant dose-rate. The two scenarios mentioned are the
most commonly used, although it is possible to enter an
arbitrarily variable dose-rate (dose per step) as well as to
differentiate the dose depending on the cells’ matrix region.
In particular, by applying microdosimetric methods, it is
possible to simulate any dose distribution based on the
adopted external radiation field. For example, a dose dis-
tribution for tumor cells was simulated for the interaction of
alpha radiation (Bragg curve) in a specific direction of the
cell matrix.27 Another example is a possibility of cell ir-
radiation by a specific beam with its dedicated dimensions
and angle25 (see Figure 1C).

Probability Tree

At each successive time step, each cell is tested against a
probability tree (the so-called Bernoulli tree). The iterative
algorithm in three loops passes through each i-th cell in turn
and first checks its status (healthy/damaged/mutated/
cancerous), which determines further treatment. Then, the
algorithm uses Monte Carlo methods to check the appro-
priate probability functions, such as whether the cell was hit
by radiation, whether the cell died naturally, whether the cell
divided (creating a daughter cell), or if any further bio-
physical effects occurred. The diagram of the probability tree
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Table 1. Comparison of different computational stochastic models describing ionizing radiation interaction with the organism on the cellular
level.

Paper title/the scope of the model Reference Description Modeling technique Additional information

“Monte Carlo predictions of DNA
fragment-size distributions for
large sizes after HZE particle
irradiation”

3 DNA damage due to
space irradiation

DNA break algorithm
(Monte Carlo)

Damage model of large, double-
strand DNA due to space
radiation

“A biological-based model that links
genomic instability, bystander
effects, and adaptive response”

4 Genomic instability,
bystander effect, and
adaptive response

Biological-based
NEOTRANS3

For low dose, radiation-induced
stochastic effects. Unclear if
relates to cancer induction

“A review: Development of a
microdose model for analysis of
adaptive response and bystander
dose response behaviour”

5 Dose–response
behaviour of radio-
protective adaptive
response effect

Microdose model A complex but versatile model that
can be applied to many radiation
studies. Includes both targeted
and non-targeted effects

“Cellular automaton model of cell
response to targeted radiation”

6 Radiation effect on cell
colonies

Cellular automation
computing approach

Cell growth model showing the
effect of targeted radiation,
including both hyper
radiosensitivity and bystander
effect

“Modeling of radiation-induced
bystander effect using Monte Carlo
methods”

7 Bystander effect Monte Carlo The model describes the bystander
effect only

“A new view of radiation-induced
cancer”

8-10 Radiation-induced cancer Mixed deterministic–
stochastic formalism

Short-term processes are
determined stochastically, while
long-term processes
deterministically

“A computational model of cellular
response to modulated radiation
fields”

11 Response of cell
populations to spatially
modulated radiation
exposures

Monte Carlo Radiation damage is modeled
stochastically. The model
highlights the influence of
intercellular communication
(bystander effect). However, this
part of the model requires
development

“Overview of the PHITS code and its
application to medical physics”

12 Particle transport PHITS (Monte Carlo) General purpose 3D particle
transport code. Uses several
physical models. Can model all
particles over a wide energy
range. Does not model biological
reactions such as the generation
of DNA damage

“The FLUKA code: An accurate
simulation tool for particle
therapy”

13 Interaction of hadrons,
heavy ions, and
electromagnetic
particles

FLUKA code (Monte
Carlo)

General purpose code simulating the
interaction of hadrons, heavy ions,
and electromagnetic particles.
Fully integrated particle physics
simulation package, using many
physical models

“BIANCA, a biophysical model of cell
survival and chromosome damage
by protons, C-ions and He-ions at
energies and doses used in
hadrontherapy”

14 Radiation-induced
chromosomal
aberrations and
resulting in cell death

BIANCA II (Monte
Carlo)

Limited radiation types and cell lines.
Only one cell death form was
described. No mention of non-
targeted effects

“TOPAS-nBio: A Monte Carlo
simulation toolkit for cell-scale
radiation effects”

15,16 Best for dense track
structure and low-
fluence scenarios

Track-structure–based
Monte Carlo
simulations

Extension of the TOPAS Monte
Carlo toolkit

(continued)
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used in the model is presented in Figures 3-7. A description
of all probability functions is presented in Table 2. More
details are presented in References.20,24,25 However, one has
to note that all biophysical processes are implemented on a
rather general level, where many details (e.g., chromosomal
aberrations) are just a part of single phenomenon (e.g.,
mutation creation).

It should be emphasized that the passage of all cells in the
matrix through the probability tree (each cell individually)
equals one time step. In the following time step, the situation
repeats itself and again all cells go through the probability tree
according to the same pattern (see Figure 8). However, due to
the random nature of probability, the results will be different
each time. This approach allows for an evolutionary change of
the entire cell layout depending on time, dose, and other model
input parameters.

Probability Functions

The probability tree described in the previous section is based
on a number of probability functions that describe biophysical
processes in a cell. Some of them are simple functions, de-
scribed by constant values, but most of them are complex
functions of many variables, which include, among others,
time, age of the i-th cell, dose in a given time step, radiation
doses in previous time steps, number of lesions, or number of
mutations. These variables are accompanied by appropriate
constants, the so-called model parameters, the determination
of which is non-trivial. These parameters can be different for
various types of cells, different tissues, or organisms.
Therefore, one of the basic activities is to calibrate the model
based on the existing experimental data, allowing determi-
nation of the values of parameter inputs to the model for
specific conditions. Such calibration is difficult and of high
complexity but is also necessary for the correct quantitative
operation of the model. Of course, arbitrary values of the input
parameters could be assumed; however, the results of such
simulations would be only qualitative and would not relate to
any particular cell type or experimental case.

As mentioned earlier, the model contains many probability
functions that comprehensively, albeit on a general level,
describe the biophysics of irradiated cells. A detailed de-
scription of these functions, along with their mathematical
formulae, is given in Table 2. Some of them describe quite
obvious biological processes, such as death, multiplication, or
radiation damage repair, but some of them address less known
phenomena, called non-targeted effects, which include the
radiation adaptive response and the bystander effect. Some of
them are described below in a more precise way.

Radiation Adaptive Response. The phenomenon of radiation
adaptive response includes stimulating the body with low
doses of radiation in order to stimulate its repair
mechanisms.31-35 This phenomenon is very subtle and does
not always occur;33 hence, there is a strong necessity to de-
scribe it using stochastic methods. If it does occur, it plays an

Figure 1. Cell’s numerical organization in the three-dimensional
matrix which geometry is presented in Figure 2.

Table 1. (continued)

Paper title/the scope of the model Reference Description Modeling technique Additional information

“Quantitative modeling of
carcinogenesis induced by single
beams or mixtures of space
radiations using targeted and non-
targeted effects”

17 Space radiation
carcinogenesis

Sequential quadratic
programming
algorithm (Maple-
2020 software)

Best-fit dose responses for different
radiation types. Focuses on the
influence of space radiation. Data
based on carcinogenesis of mice.
The Monte Carlo procedure is
used to estimate uncertainties

“A mathematical radiobiological
model (MRM) to predict complex
DNA damage and cell survival for
ionizing particle radiations of
varying quality”

18 Cell survival after ion
irradiation

Deterministic multi-
scale approach
(MSA)

The radiobiologically based model
describes complex DNA damages
and cell survival for ion irradiation
using three input parameters
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Figure 3. Initial part of the Monte Carlo stochastic tree of probabilities. See Figures 4-7 for details in each eight scenarios. The exemplary
scheme of iteration is presented in Figure 8. The probability tree was based on its previous published version.19,20

Figure 2. Two possibilities of geometrical cell arrangements in the 3D matrix: (a) the cube or (b) sphere, where 3 axes represent geometric
coordinates. The plot (c) shows the schematic possibility of radiation beam implementation.25
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Figure 4. Part of a probability tree from Figure 3 concerning healthy cell which was (a) hit and (b) not hit by ionizing radiation.

Figure 5. Part of a probability tree from Figure 3 concerning damaged cell which was (a) hit and (b) not hit by ionizing radiation.

Figure 6. Part of a probability tree from Figure 3 concerning mutated cell which was (a) hit and (b) not hit by ionizing radiation.

6 Dose-Response: An International Journal



Figure 7. Part of a probability tree from Figure 3 concerning cancerous cell which was (a) hit and (b) not hit by ionizing radiation.

Table 2. List of probability functions used in the Monte Carlo model (Figures 3–7), with their descriptions and parameters.

Equation Description

Phit ¼ 1� e�a D The probability that a cell is hit by radiation, where D is the dose per time step
(for a type of radiation) and a is an input constant (analogically in next
items)

PD,DD,MD ¼ 1� τð Þ 1� e�a Kn� �þ τ The probability of a natural death of a healthy (D), damaged (DD), or mutated
(MD) cell, where K, n, and τ are the cell’s age, shape constant, and scaling
constant, respectively

PCD ¼ const The probability of natural death of a cancerous cell
PRD ¼ 1� e�aD The probability that a cell dies due to irradiation
PS,DS,MS,CS ¼ const The probability that a healthy (S), damaged (DS), mutated (MS), or cancerous

(CS) cell multiplies; please note, that the new cell (daughter cell) can be
located within some r=4 radius around the mother cell

PM ¼ 1� τð Þ 1� e�a Kn� �þ τ The probability of spontaneous damage occurrence in a cell; for simplicity,
this relation can be approximated by a linear function, PM = τ + a K

PRDEM ¼ 1� e�aD The probability that a cell gets damaged due to irradiation
PR ¼ q e�a Kn

The probability of natural repair of one of the lesions in a cell (each type),
where q corresponds to the experimental constant

PDM ¼ 1� e�a U The probability of a cell mutation, where U is the number of damages
PRMM ¼ 1� e�a U2 The probability of a new (next) mutation in a mutated cell where U2 is the

number of lesions accumulated after the previous mutation
PRC ¼ 1� e�aMn

The probability that a mutated cell transforms into a cancerous cell, whereM
is the number of mutations, a is an empirical constant, and n is a critical
index28

PCRD ¼ 1� e�aD
The probability that a cancerous cell dies because of its radiosensitivity

PA ¼
PK
k¼0

α0D2
k K � kð Þ2 e�α1Dk�α2 K�kð Þ The cumulative probability of an adaptive response, where k, Dk, and K are

past time step, dose in k step, and cell’s age, respectively; parameters {α}
represent experimental constants

PB t þ Δtð Þ ¼ PB tð Þ þ λMDP MΔt þ λGJP G Δt or

PB ¼ β1 1� e�β2 D
� �

and P’B rð Þ ¼ β3
r!

The probability of a bystander effect in two different approaches: First one
based on the Japanese model29,30 (see equation (4) and its description), and
the second one is a two-step approach, where r represents the distance
between the bystander and irradiated cell and {β} are empirical constants

See equations no. 32 and 33 in Reference 30 for the first approach

Fornalski et al. 7



essential role in the cell response to ionizing radiation in the
low-dose area and is one of the factors that generate the so-
called non-linear response.21,36

In the presented model, an equation derived from other
studies is used, describing the probability of an adaptive re-
sponse for the dose D received k time steps ago:20,21,37

pA ¼ α0D
2k2e�α1D�α2k (1)

where {α} are input parameters (described later). The above
equation de facto describes the probability of repairing any
damage to the cell’s DNA, not necessarily related to radiation,
some time (k) after the doseD. The exemplary time-dependent
shape of equation (1) is presented in Figure 9 (after constant
single D). As a cell may be irradiated with different doses at
different time steps, in practice the sum of the independent
equations (1) is used for each dose separately20 (see Table 2).

A special case of the radiation adaptive response is the so-
called priming dose effect, also known as the Raper–
Yonezawa effect.38 It describes the response to a situation
where a given organism is first irradiated with a low priming
dose and after some time with a high challenging dose. Due to
this effect, the negative health effects on the body are smaller
than if it was exposed to only a high dose. More about the
Raper–Yonezawa effect will be provided later.

Bystander Effect. The bystander effect is a classic example of
the non-targeted effect of the interaction of ionizing radiation.
It describes the phenomenon where the non-irradiated cell

adjacent to the one irradiated behaves as if it were irradiated
itself. This is due to the transmission (via diffusion) of mo-
lecular signals from a cell hit by radiation to a neighboring
cell. Firstly, the probability of the bystander effect occurring
depends on the dose-related function, which is saturated for
medium and high doses:20,30,39

PB ¼ β1 1� e�β2 D
� �

(2)

and secondly, after fulfilling the probability given by
equation (2), the empirical distribution is given by the
Poisson distribution:21

Figure 8. Simplified exemplary scheme of the algorithm application to a cell colony. The colony is composed in the first step of healthy cells
only (top line), which moves through the probability tree (Figures 3-8) to create the next step colony.

Figure 9. Exemplary hunchbacked shape of equation (1)
representing the radiation adaptive response probability function,
after single constant dose irradiation.
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P’
B rð Þ ¼ β3

r!
(3)

where r represents the distance between bystander and irra-
diated cell and {β} are empirical constants. As a result, the
bystander cell receives a pulse analogous to a hit by radiation,
which is assumed to be detrimental.30

The presented description is not the only approach to the
bystander effect. A good alternative is based on the diffusion
equation with 2 ways of the signal transmission, analogically
as in Japanese model,29 which can be directly implemented in
the presented model30 using the simplified equation:

PB t þ Δtð Þ ¼ PB tð Þ þ λMDP M Δt þ λGJP GΔt (4)

where Δt is the time interval of bystander signal dispersion
(usually — a time step) and λMDP and λGJP are experimental
coefficients related to two intercellular signaling pathways —
the medium-mediated pathway (MDP) and the gap junctional
pathway (GJP), respectively. The most important parameters
are dose- and time-related factors M and G (which are pre-
cisely described in equations no. 32 and 33 in Reference 30).
Because of their length and additional parameters, the details
of those functions will be omitted here.

To conclude, equation (4) was finally used in the presented
model with parameters from Table 3.

Neoplastic transformation. The neoplastic transformation
(cancer transformation) is a key element of the presented
model, as it was its original purpose. Due to this, it is possible
to evaluate the so-called radiation risk, that is, the overall
probability of cancer formation for a specific radiation dose.37

The described model uses the sigmoid function (the same
as for the phase transition dynamics) to describe the proba-
bility of neoplastic transformation depending on the number of
M mutations with critical index n:

PRC ¼ 1� e�aMn
(5)

The above formula is known as the Avrami equation and
shows that only a certain accumulated number ofMmutations
determines the highly non-linear probability that a mutated
cell changes its status to a cancerous one. The derivation of
this equation is based on the theory of nucleation and growth
of crystals, as an analogue to cancer.28

Applicability

The presented model has wide applications in simulating
various cellular processes, but its main goal is to simulate the
processes of radiation carcinogenesis. This means that the
model can be used to support radiation risk analyses and can
be used, for example, for strictly radiobiological purposes, as
well as auxiliary in radiological protection or probabilistic
safety analyses (PSA) of the Level 3 in a nuclear power plant
and its emergency planning.

Within the presented model, any initial conditions can be
set (e.g., all damaged or healthy cells, a specific number of
cells and their spatial distribution, and specific dose frac-
tionation). Therefore, it is possible to simulate, for example,
radiotherapeutic processes, where cells with a set status of
“cancer” are exposed to high doses of radiation, and neigh-
boring healthy cells may be affected by, for example, the
bystander effect. This is one of many examples of how the
model can be used.

In this context, an interesting example of the results that can
be achieved with the model is the simulation of the cell
survival curve for a group of cells with “cancer” status. Based
on data from the in vitro experiment for the U251 human
glioblastoma and D384 medulloblastoma cell lines,52 the
model allows for a quantitative assessment of the effect of
cancer cell killing.25 Additionally, the application of the
ionizing radiation beam (Figure 2C) enables the simulation of
a radiotherapy treatment process by directing the beam to a
specified location in the simulation space with an appropri-
ately entered angle as an additional input parameter of the
simulation.

What’s more, additional work is ongoing to develop the
model’s capabilities and thus increase its applicability for
potential users.

Exemplary Calibration

Calibration of the model requires determining the values of
parameters used in the probability functions, so that the
simulation results match experimental data for exact cell type.
In particular, this chapter focuses on the exemplary calibration
process on human lymphocytes as the most frequently used
type of cells. Parameters from each function were determined
individually, without including other mechanisms in the
model, unless otherwise stated. Subsequent cellular effects
were then included in the simulation to determine values more
accurately.24

There were different ways in which the calibration was
done depending on the function type. In most cases, the
calculated parameter was a mean value that characterizes the
entire population, for example, mutation rate, division rate, or
a number of lesions per cell. In some cases, two functions were
related. For example, the number of damages in a cell depends
on the probability that spontaneous damage occurs in a cell
and on the probability of natural repair of one of the lesions in
a cell. In those cases, parameter values were initially estimated
for each individual function and then changed with each
subsequent simulation. This allowed the observation of how
parameter alterations influenced the obtained results and to
identify which changes obtained results similar to those
presented in experimental studies.50

To determine the parameters describing the probability of
cell multiplication and cell death, the mean frequency of cell
division in a stable colony (where all the elements of the array

Fornalski et al. 9



are occupied by cells) was used, which was determined as an
average for different types of lymphocytes.45

The probability of cell death from radiation depends on
whether it was hit or not. That is why the parameter used for
calculation of the probability of death directly from radiation
(aRD) was determined simultaneously with the parameter used
for finding the probability of a cell being hit (ahit). Survival
curves were generated for subsequent values of the parameter
ahit and aRD, and a chi-square test was performed to see which
curve was the best fit to the curve presented in the experi-
mental study.44

Parameters associated with the occurrence of mutations in a
cell were determined for non-irradiated cells.43 The constants for
determining the probability of radiation damage were then ad-
justed to generate a correspondingly higher number of mutations
after irradiation.41 Then, because the frequency of occurrence of
mutated cells is low, parameters for determining the probability
of subsequent mutation43 and malignant transformation48 were
determined using only the mutated cell population.

In the determination of parameters describing tumor
growth,49 a higher density of cancerous tumors was included by
reducing the radius (r) around the mother cell (where a new cell

Table 3. Estimated values of input parameters for probability functions (see Table 2) of Monte Carlo stochastic model, dedicated for human
lymphocytes and their response to ionizing radiation (X-rays). The parameter estimation was obtained by partial model calibration on
experimental data for dedicated processes.3,29,39–51

Effect from Table 2 Value of Parameter

Cell is hit by radiation ahit ¼ 1:3Gy�1

Natural death of a healthy cell τD ¼ 0:00035 aD ¼ 2 � 10�12 h�3

nD ¼ 3
Natural death of a damaged cell τDD ¼ 0:00045 aDD ¼ 5 � 10�12 h�3

nDD ¼ 3
Natural death of a mutated cell τMD ¼ 0:001 aMD ¼ 1 � 10�10 h�3

nMD ¼ 3
Natural death of a cancerous cell PCD ¼ 0:0004
Death due to irradiation aRD ¼ 0:5Gy�1

Multiplication of a healthy cell PS ¼ 0:0027
Multiplication of a damaged cell PDS ¼ 0:002
Multiplication of a mutated cell PMS ¼ 0:002
Multiplication of a cancerous cell PCS ¼ 0:009
Spontaneous damage τM ¼ 0:001 aM ¼ 6:8 � 10�12 h�3

nM ¼ 3
Damage due to irradiation aRDEM ¼ 2:4Gy�1

Natural repair of one lesion qR ¼ 0:04
aR ¼ 2:5 � 10�12 h�4

nR ¼ 4
Mutation creation in a damaged cell aDM ¼ 1 � 10�6

Subsequent mutation in a mutated or cancerous cell aRMM ¼ 2 � 10�4

Neoplastic transformation aRC ¼ 2 � 10�9

nRC ¼ 9
Death of a cancerous cell due to radiosensitivity aCRD ¼ 0:32Gy�1

Adaptive response α0 ¼ 22:9Gy�2 h�3

α1 ¼ 79:4Gy�1

α2 ¼ 0:0832 h�1

Bystander effect—Japanese approach (in Reference 30) d ¼ 1 � 10�5 m
MW ¼ 1 � 10�10 m2 h�1

Mα ¼ 1Gy�1

Mβ ¼ 4:6 � 10�6 h�1
G
W ¼ 5 � 10�11 m2 h�1

Gα ¼ 1Gy�1
G
β ¼ 1:18 � 10�3 h�1

λMDP ¼ 0:01
λGJP ¼ 0:01
Δt ¼ 0:1 h

Bystander effect—own approacha β1 ¼ 0:08
β2 ¼ 50Gy�1

β3 ¼ 0:2

aParameters {β} for bystander effects were calculated for human-hamster hybrid fibroblasts irradiated by α radiation39 (see equations (2) and (3)).
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can be located) by a value of 1. The value of the parameter used
to determine the probability of death of a cancer cell due to its
radiosensitivity was determined by finding the best fit of the
survival curve—obtained in the model—to the experimental
curve40while considering cancer cells that died due to irradiation.

Due to limitations in the available experimental data,
calibration of {β} parameters (equations (2) and (3)) related to
the bystander effect was carried out for fibroblasts irradiated
with alpha particles. The number of damages induced by the
bystander effect dominates for doses <0.2 Gy; therefore, the
maximum value of the bystander effect probability was de-
termined as the intersection point with the function describing
the probability of radiation damage for a dose equal to 0.2 Gy.
The parameter determining the reach of the bystander effect
was chosen so that for a colony of 100 cells approximately
10% of them were damaged.39

Parallelly, the values of the parameters used to describe the
bystander effect according to the Japanese model (equation
(4)) were taken directly from a paper describing the original
model29 (see Table 2). Analogically, parameters {α} de-
scribing the adaptive response (see equation (1) and Table 2)
were taken directly from Reference 38.

Estimated values of all parameters (related to human
lymphocytes) are presented in Table 3. These are calculated
values based on the experimental data from specific papers
and, due to large discrepancies in available experimental data,
do not guarantee the consistency of simulation results with
data from other articles, especially for different types of cells.

Deterministic Modeling of Irradiated Cells

Monte Carlo modeling uses stochastic formalism as it is the
only possible mathematical description of a complex process
such as the response to the irradiation of group of cells. It is not
possible to present an equivalent single analytical description
of this entire process, only of a selected process; this can be
extracted from the probability tree and described with one
analytical deterministic mathematical formula. Selected ex-
amples of such deterministic approaches, which can be
considered as separate models describing specific biophysical
phenomena, are presented and discussed below.

“Lesion to Cancer” Model

Based on the previously presented Monte Carlo model, it is
possible to analytically present a narrow path from a broad
probability tree, starting from the factor inducing a single
damage to the neoplastic transformation.37 This approach is
called the “Lesion to Cancer”model53—it covers all processes
from initial lesion (damage), through repair (or lack thereof),
the generation and accumulation of mutations and, conse-
quently, neoplastic transformation. This model focuses on the
biophysical impact of a DNA region that is being hit. Based on
general knowledge, it was assumed that in order to initiate the
carcinogenic process, it is crucial to cause a mutation in the

DNA coding region, preferably either in the oncogene or
tumor suppressor gene. This is, however, a simplification of
this complex mechanism, but it allowed us to make the model
more biologically accurate. Thanks to the applied approaches,
it was possible to develop one mathematical formula de-
scribing the number of cells that underwent neoplastic
transformation:37

Nðt,MÞ ¼ N0

�
1� e�BPM t

�M �
1� e�cMk �

(6)

where t denotes the time after initial irradiation, M is the
number of mutations created, N0 is the initial number of
healthy cells, B is the number of critical DNA bases in critical
codons of all tumor-associated genes per cell, c is an empirical
constant approximately equal to 0.028, k is a critical index for
1 dimensional growth (k = 2), and PM is a probability of
mutation given by formula no. (13) presented in the paper by
Dobrzyński et al.37 One can assume, for simplicity, that BPM ≈
0.01 year�1. Note that the last term in equation (6) corresponds
to the Avrami formula, see equation (5).

Tumor Growth Model

For longer periods of time (t→∞), equation (6) presented in
the previous subchapter can be summed over all values ofM to
obtain the tumor growth function.37 This has been discussed in
a recent paper by Fornalski et al,54 where the Gompertz
function for the dynamics of tumor growth was precisely
described based on biophysical grounds. Additionally, the
herein presented calculations have been independently sup-
ported by the Monte Carlo simulations23,25 demonstrating that
the Gompertz curve does describe cancer cells dynamics
adequately, except at the very early phase where a parabolic
function is more appropriate. These results are consistent with
the previous reports by other authors.55,56

Tumor growth modeling is a topic which can be discussed
in the context of the dose, time, or even dose-rate relation-
ships. In this regard, the Gompertz curve is not the only model
that can be considered: other sigmoidal functions can, to a
certain extent, also properly describe the tumor dynamics.36

The Priming Dose Effect Model

The recent example of the deterministic solution related to the
adaptive response description only is the one dedicated to the
priming dose effect (also called the Raper–Yonezawa effect,
which wasmentioned earlier). In this case, the radiation adaptive
response was taken as a theoretical background to calculate the
percentage decrease (δ) of post-radiation mutations after the
irradiation scheme of priming + challenging doses (D1+D2) in
relation to the isolated challenging dose (D2) case:

38

δ ¼ 1� e�ξD1e
�α2Δt ½α2Δtðα2Δtþ2Þþ2� � D1

D2
e�2ξD1 (7)
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where

ξD1
¼ α0

α32
D2

1e
�α1D1 (8)

and {α} are mentioned earlier model’s free parameters
(obtained via its calibration), while Δt corresponds to the time
interval between small priming dose (D1) and the large
challenging dose (D2). The diagram of the Raper–Yonezawa
effect is presented in Figure 10.

The presented model works well to describe the practical
application of the phenomenon of radiation adaptive response.
It was calibrated on various experimental data, such as lesions
in human lymphocytes and chromosomal inversions in
mice.38

Constant High Background Radiation Model

Another popular aspect of the implementation of radiation
adaptive response is the case of high background radiation
areas (HBRAs), where some epidemiological studies show
significant radioadaptation.57,58 However, the presented the-
oretical approach given by equation (1) is related to the single-
dose pulse (D) while HBRA corresponds to the constant dose-
rate ( _D) irradiation with continuous (not discrete) time (k→t).
The only way to modify this approach is to sum all individual
adaptive response signals given by equation (1) which results
in sigmoidal (namely, saturated for long time) probability
function of59

PC ¼
Z ∞

t¼0

PA
_D, t

� �
dt ¼ μ0 _D

2
e�μ1 _D (9)

where {µ} are empirical constants analogical to {α} but
related to the dose-rate. For practical purposes, it is easier to
use the repair effectiveness, R = 1 – exp(-PC),

59 which can
be directly related to epidemiological studies of individuals
exposed to elevated values of constant dose-rates.

Discussion and Conclusions

This review article describes our proposed stochastic model
of a cell group response to ionizing radiation using the Monte
Carlo technique with a probability tree. This universal but
simplified approach allows for modification and the creation
of virtually any model: depending on the needs, the ap-
propriate branches of the tree can be expanded; thus, en-
abling a more detailed simulation of the selected
phenomenon. This model can be calibrated (i.e., its input
parameters estimated) based on existing or dedicated ex-
perimental data describing a specific cell type, both human
and animal.

Thanks to the applied stochastic approach, it is possible to
treat a set of cells as a complex physical system, the precise
analytical description of which seems to be currently

impossible. However, using computer simulations, basically
any simplified behavior of such cells can be modeled. An
interesting case in particular is the determination of the
probability of neoplastic transformation for a given dose,
which can be used to determine the radiation risk (the risk of
stochastic effects), especially cancer risk. For such an estimate
to be reliable, the model takes into account many different
types of biophysical phenomena, such as repair mechanisms,
as well as the non-targeted effects, namely, the bystander
effect and the adaptive response.

The presented model can be simplified and narrowed in
certain ranges and, for example, only a selected phenomenon
can be described, which can be demonstrated in the form of
one narrow branch in a broad probability tree. Such a narrow
branch, with the probability functions included within it, can
therefore be written in an analytical form, creating de facto a
new (secondary) deterministic model, which is, in fact, an
independent fragment of the main model. So far, five such
secondary deterministic models have been
developed,36–38,54,59 but more are in preparation. This means
that the presented approach is broad and universal which
enables a relatively accurate biophysical description of various
aspects of irradiated cells within natural model limits. Al-
though each model is just an approximation of the reality, its
proper implementation with validated input data allows for
irradiated cellular studies, including cancer treatment, prog-
nosis, or even prevention.

Figure 10. Diagram of the Raper–Yonezawa effect (also known as
the priming dose effect): the single priming (small) dose (D1)
generates much fewer negative effects than the single detrimental
(high) dose (D2). However, when D2 follows D1 with some time
distance between them (Δt), the overall biological effect for that
D1+D2 total dose is lower than for single D2. The parameter δ is
therefore showing the percentage difference between the effect (e.g.,
mutations or lesions) generated by the single dose D2 (without the
priming dose) and the combination of D1+D2.
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zawa, Poland: Engineer Thesis, Faculty of Physics, Warsaw
University of Technology; 2022. (supervisor: K.W.
Fornalski).

26. Anandakrishnan R, Varghese RT, Kinney NA, Garner HR.
Estimating the number of genetic mutations (hits) required for
carcinogenesis based on the distribution of somatic mutations.
PLoS Comput Biol. 2019;15(3):e1006881.

27. Ponikowska J.Model Mikrodozymetryczny Komórki. Warszawa,
Poland: Master Thesis, Faculty of Physics, Warsaw University
of Technology; 2019. (supervisor: K.W. Fornalski).
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57. Dobrzyński L, Fornalski KW, Feinendegen LE. Cancer mor-
tality among people living in areas with various levels of
natural background radiation. Dose-Response. 2015a;13(3):
1-10.
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