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An approximately 24-h biological timekeeping mechanism called the circadian clock 
is present in virtually all light-sensitive organisms from cyanobacteria to humans. The 
clock system regulates our sleep–wake cycle, feeding–fasting, hormonal secretion, body 
temperature, and many other physiological functions. Signals from the master circadian 
oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even 
centrally controlled internal temperature fluctuations can entrain the peripheral circadian 
clocks. But, unlike other chemical reactions, the output of the clock system remains 
nearly constant with fluctuations in ambient temperature, a phenomenon known as tem-
perature compensation. In this brief review, we focus on recent advances in our under-
standing of the posttranslational modifications, especially a phosphoswitch mechanism 
controlling the stability of PER2 and its implications for the regulation of temperature 
compensation.

Keywords: circadian clock, temperature compensation, phosphorylation, phosphoswitch, period2

The main advantage of having an intact circadian clock system is to anticipate and alert our physi-
ological mechanisms to prepare for daily changes in the environment imposed by light–dark cycle 
of the earth. At the organism level, the circadian clock is a hierarchical multioscillator network, 
where in mammals, the suprachiasmatic nuclei (SCN) is the master oscillator. The SCN in the 
hypothalamus of brain is entrained by the light–dark cycle through the eye and neuronal retinal 
ganglion cells. Synchronized highly interconnected neurons in the SCN oscillate and transmit their 
rhythm to peripheral oscillators such as liver, lung, and kidney via systemic cues including neuronal, 
neuroendocrine, and behavioral pathways. This clock network entrains physiological processes 
including the sleep–wake cycle, liver metabolism, and body temperature (1–3). At the molecular 
level, the circadian clock is composed of transcriptional and translational feedback loops that oscil-
late in cycles of approximately 24-h to create the circadian rhythms we see at the organism level. 
In the core loop, the positive transcriptional activators Clock and Bmal1 bind to E-box motifs and 
activate the expression of many targets, including their own negative regulators, Period (Per1, 2, and 
3) and Cryptochromes (Cry1 and Cry2). As the negative feedback proteins Per and Cry increase in 
abundance, they multimerize, enter into the nucleus, and bind to the heterodimeric Clock and Bmal1 
complex to inhibit their transcriptional activity. This generates a 24-h cycle that is cell autonomous. 
This clock machinery is broadly functional in all mammalian tissues (1–3).

The three major hallmarks of circadian clocks are their ~24-h oscillation in the absence of any 
external stimuli, entrainment by external stimuli, and temperature compensation. Entrainment 
allows the master clock to synchronize with seasonally and geographically changing light–dark 
cycles. In mammals, light entrains the central clock via retinal ganglion cells that communicate 
with the SCN via the retinal–hypothalamic tract. Homeothermic animals such as mammals 
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maintain a nearly constant body temperature with a narrow 
range of fluctuations in most part of the body, whereas poikilo-
therms such as frogs have body temperature, which can vary in 
wide range (4, 5). However, even in mammals, peripheral clocks 
can be entrained by small daily oscillations in internal body 
temperature (1, 3, 6).

Although the circadian clock system can be entrained by 
fluctuations in temperature, it remains fairly resistant to ambi-
ent temperature-induced changes in circadian period (5, 7). 
According to the Arrhenius equation of temperature depend-
ence on reaction rate, in any (bio)chemical reaction, a rise in 
temperature increases the rate of the reaction (8), which eventu-
ally reduces the reaction time. But in the case of the circadian 
biochemical system, in spite of changes in ambient temperature, 
the period length remains essentially constant at approximately 
24-h. Thus, Pittendrigh demonstrated that the Drosophila rhythm 
of eclosion (emergence of the adult fly from the pupa) retained 
a 24-h rhythmicity in total darkness over a temperature range 
of 16–26°C (5). This phenomenon is referred to as temperature 
compensation (5, 9). The temperature compensation of circadian 
period is evolutionarily conserved from light-sensitive cyano-
bacteria to homeothermic mammals, and surprisingly, even an 
in  vitro circadian clock reconstituted with KaiABC proteins of 
cyanobacteria shows temperature compensation between 25 and 
35°C, suggesting that it is a core design feature of the molecular 
clock (5, 10–13). More recently, using tissue explants and cell cul-
ture, it has been demonstrated that temperature compensation is 
a tissue and cell autonomous property. For example, the circadian 
oscillators controlling melatonin synthesis in the retina of golden 
hamsters are temperature compensated between 27 and 33°C 
(14), and Per1Luc fibroblasts maintain ~24-h period length despite 
changes in temperature over the range of 28.5–36.5°C (12). These 
findings also confirm peripheral cells as bona fide model systems 
to study the temperature compensation mechanism of the circa-
dian clock (12).

MODeLS OF TeMPeRATURe 
COMPenSATiOn

How the active process of temperature compensation is 
achieved by organisms is an area of intense research interest to 
both chronobiologists and mathematical modelers. Hastings 
and Sweeney almost 60  years ago proposed that temperature 
compensation could be achieved if two temperature-dependent 
reactions oppose each other, although at the time there was no 
inkling of what those reactions might be (9). This conceptual 
model was extended by Ruoff with the notion that positive 
and negative feedback loops of the oscillators might act as the 
opposing reactions and lead to temperature compensation in any 
kinetic oscillator model (15). As specific molecular members of 
the clock were identified, Hong et  al. first proposed that PER 
protein dimerization might regulate temperature compensation 
(16). Ten years later, as the complexity of the clock mechanism 
became clearer, many of the newly described regulatory steps 
have been tested in mathematical models of the clock to assess 
their potential contribution to temperature compensation. For 
example, Hong et  al. suggested that switch-like mechanisms 

acting on sensitive parameters such as phosphorylation, ubiq-
uitination, or complex formation controlling PER protein might 
regulate temperature compensation (17). Others have suggested 
using modeling that the concentration of a rate-limiting enzyme 
involved in processes like phosphorylation can determine tem-
perature compensation (18).

In Neurospora, the core clock gene frequency (frq) undergoes 
alternative splicing that is temperature sensitive. The resulting 
two isoforms have opposing effects on clock speed and was 
once proposed to underlie temperature compensation (19–21). 
More recently, casein kinase 2 in Neurospora was implicated in 
temperature compensation. Decreased CK2 activity, or muta-
tion of a specific CK2 phosphorylation site, leads to altered 
temperature compensation, probably due to an altered balance 
of phosphorylation at distinct sites. Interestingly, CK2 itself 
had a normal Q10, i.e., its activity changed twofold with a 10°C 
increase in temperature (22). In this system, casein kinase 1 
(CK1) was important for clock speed but not temperature com-
pensation. Although these studies have provided some insights 
for understanding the mechanisms of temperature compensa-
tion, either they lack good experimental evidence to support 
their mathematical model or these models are not tested in 
mammalian system.

PHOSPHORYLATiOn OF PeR2 
COnTROLS CLOCK SPeeD

Many of the mathematical models suggested that temperature 
compensation could be due to two opposing reactions acting 
on a rate-limiting step of the circadian clock machinery (9, 18). 
The reversible multisite phosphorylation of PER2 is a potential 
target in this regard due to its rate-limiting role in regulating 
clock speed (Figure 1) (23, 24). The importance of phosphoryla-
tion in the control of circadian rhythms was demonstrated first 
by the finding of short- and long-period mutations in Drosophila 
that both mapped to the Dbt kinase gene, the ortholog of mam-
malian CK1δ and CK1ε (25, 26). CK1 is a family of serine/
threonine kinases with seven different isoforms in mammals 
that are encoded by distinct genes (α, β, γ1, γ2, γ3, δ, and ε), 
which are involved in diverse biological functions including 
circadian rhythms, Wnt signaling, membrane trafficking, 
cytoskeleton maintenance, DNA replication, DNA damage 
response, RNA metabolism, and parasitic infections (23, 27–30). 
The first circadian clock phenotype in mammals was found in 
tau hamsters with 20-h short period (31). Later, it was identified 
that a missense mutation in hamster CK1εtau(Arg178Cys) is to 
underlie the short-period phenotype of the tau hamster (32). 
Subsequently, point mutation of a CK1δ/ε-regulated motif in 
human PER2 [S662G, familial advanced sleep phase (FASP) 
site] (33) and a point mutation of CK1δ were found in families 
with FASP syndrome (34). A body of evidence suggests that 
CK1δ is the major driver of clock timing, but that CK1ε plays 
an important role as well.

The mechanism by which CK1 regulates phosphorylation of 
PER2 is complex and is slowly being teased apart. Phosphorylation 
of PER2 by CK1ε leads to recruitment of the ubiquitin ligase, 
β-TrCP, and proteasomal-mediated degradation of PER2 (35). But 
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FigURe 1 | Regulation of PeR2 phosphorylation, degradation, and its role in temperature compensation by the phosphoswitch mechanism. Lower 
temperature increases relative phosphorylation at the β-TrCP site of PER2, leading to faster degradation and shorter period. Higher temperature increases relative 
familial advanced sleep phase (FASP) site phosphorylation, enhancing PER2 stability and lengthening the period. The degradation pattern of PER2 at 30°C is largely 
exponential, while at 37°C, three-phase degradation is seen. This has important implications for temperature compensation (see text for details). Domain 
architectures are shown in colors. PAS1, PAS domain 1 (orange); PAS 2, PAS domain 2 (grey); CK1, Casein kinase 1-binding domain (green); CRY, Cry binding site 
(blue).
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the impact of CK1ε activity on the clock speed has been puzzling, 
due to opposing observations that reduced CK1 activity shorten 
(32, 34) and lengthen the circadian period (35). To solve this puz-
zle, mathematical modeling was applied and then experimentally 
confirmed the non-intuitive prediction that the short-period 
tau mutation of CK1ε is in fact functionally a gain of function, 
not a loss of function mutation. It was further reported that the 
CK1εtau is a highly specific gain of function for its substrate PER2, 
which gets phosphorylated and degraded much faster, resulting 
in a faster clock and shorter circadian period (36). These studies 
emphasized the value of combining experimental studies with 
predictive mathematical models to advance our understanding 
of the clock and how changes in kinase activity can alter the clock.

A PHOSPHOSwiTCH RegULATeS PeR2 
DegRADATiOn

We and others have shown that there are two phosphorylation 
sites, the FASP and the β-TrCP site, regulating stability of mam-
malian PER2 (Figure  1) (35, 37). The FASP site is a missense 
mutation at S662G (S659 in mouse) associated with FASPS, which 
prevents priming phosphorylation by an unknown priming 
kinase. Priming phosphorylation of S659 (FASP site) is required 
for the phosphorylation of four immediate downstream serines of 
PER2 (659-SVVSLTSQCSYSS-671) by CK1ε/δ (33, 37). The sec-
ond functional phosphorylation site is β-TrCP site that is also a 
CK1ε-dependent phosphorylation site (S478 in mPER2), but that 
seems to be independent of priming phosphorylation (35). It has 
been identified that surprisingly PER2 undergoes three distinct 

stages of degradation upon addition of the protein synthesis 
inhibitor cycloheximide during the PER2 accumulation phase 
(CT 14–26) of the circadian cycle. Mathematical modeling pre-
dicts that a phosphoswitch generates the three-stage degradation 
of PER2 (38). Accordingly, the first rapid decay phase is β-TrCP 
site phosphorylation dependent, the second slow plateau phase 
is dependent on FASP site phosphorylation, and in the third and 
falling phase, PER2 protein is degraded in a CK1δ/ε-independent 
manner that is not well understood. Importantly, the model was 
experimentally confirmed (38). Further experiments showed 
that CK1εtau has decreased activity on the FASP site, leading to 
an increased activity on the β-TrCP (S478) site. This explains 
how CK1εtau is a gain of function on phosphorylation at S478 and 
further supports the phosphoswitch between the two sites (the 
FASP and the β-TrCP site) (38).

PeRiOD2 PHOSPHOSwiTCH UnRAveLS 
THe MeCHAniSM OF TeMPeRATURe 
COMPenSATiOn

Before CK1ε was even identified as a clock component, its role 
in temperature compensation was suggested by the observation 
that retinas from tau mutant hamsters have significantly impaired 
temperature compensation (14). Isojima et  al. subsequently 
reported that unlike virtually all other kinases, CK1ε/δ are tem-
perature insensitive (39). Therefore, they proposed that CK1ε/δ-
dependent phosphorylation process might play a central role in 
temperature compensation of the circadian clock (39). Indeed, in 
further study, the CK1ε/δ phosphorylation of a β-TrCP peptide 
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was temperature insensitive (39). The mathematical model of Kim 
and Forger, building on the pioneering work of Forger and Peskin 
in understanding the mammalian clock system using mathemati-
cal tools (40–42), predicted a potential role for the phosphoswitch 
mechanism in temperature compensation. A key feature of the 
model requires that there are two sites involved in the phosphos-
witch, the FASP and the β-TrCP sites (Figure 1) (38). Since CK1 
is relatively temperature insensitive (39), the model assume that 
priming of the FASP site has normal temperature sensitivity, i.e., 
its activity increases with increasing temperature, while CK1ε/δ 
phosphorylation of the β-TrCP site is temperature insensitive, i.e., 
the rate of phosphorylation is constant regardless of temperature. 
Incorporating this differential kinase temperature sensitivity into 
the mathematical model indeed predicted that this could underlie 
temperature compensation. This model was then experimentally 
tested in immortalized Per2Luc mouse embryonic fibroblasts 
(MEFs). It was found that at higher temperatures, increased FASP 
site phosphorylation by the priming kinase leads to slow second-
phase degradation and more accumulation of PER2, eventually 
lengthening and compensating period length. Similarly, Per2Luc 
MEFs at 30°C showed a marked decrease in second-phase 
degradation, whereas first-stage degradation remained intact. 
These findings underscore the importance of the relative rates of 
phosphorylation of the two phosphoswitch sites in temperature 
compensation (38). Additional experiments indirectly tested if 
an intact phosphoswitch mechanism is necessary for temperature 
overcompensation. An abnormal temperature compensation 
was observed in CK1εtau; Per2Luc MEFs, and also in Per2Luc MEFs 
treated with a CK1ε/δ inhibitor, further supporting a role for 
CK1ε/δ and an intact phosphoswitch mechanism as a prerequisite 
for temperature compensation. The studies also support the value 
of a robust mathematical model that makes testable predictions 
about complex systems when biological intuition has reached its 
limits (38).

Recently, it has been reported that cells with knockouts 
of specific circadian clock components retain temperature 
compensation (43). The authors concluded that temperature 
compensation is likely determined by a rate-limiting process(es) 
that are temperature sensitive, consistent with the phosphoswitch 
mechanism (43). Another mathematical model for temperature 
compensation has recently proposed a temperature insulation 
mechanism where oscillation period is determined by very 
few temperature-independent or only slightly temperature-
dependent parameters, but where other parameters remain 

strongly temperature dependent (44). This model is analogous 
to the proposed phosphoswitch mechanism in which the CK1ε/δ 
is temperature independent or slightly dependent, whereas the 
priming kinase is temperature dependent (38).

There are a number of unresolved issues. The priming kinase 
has not been identified yet. It also remains unclear what happens 
to PER2 phosphorylation over the full 24-h day, in part because 
the methods to study this in mammalian systems are not suitably 
sensitive. This is relevant to another unsolved question: how PER2 
is degraded in the third phase of three phase decay, when neither 
CK1 nor proteasome inhibitors impact PER2 loss? Moreover, 
further study is necessary to understand whether fluctuations in 
body temperature, which can entrain the clock, do so in part via 
the phosphoswitch mechanism in addition to the proposed heat 
shock factor 1 (HSF1) mechanism (7, 45). Finally, it is also impor-
tant to address whether the mechanisms regulating temperature 
compensation in peripheral cells and the central pacemaker 
(SCN) cells are the same and whether temperature-induced 
changes in peripheral clocks can feed back to the central clock.

THe OUTLOOK

It is remarkable that the complex yet robust phenomenon of 
temperature compensation is regulated by subtle differences in 
phosphorylation of the same protein at different sites. Notably, 
this finding is in general agreement with predictions of earlier 
mathematical models that suggested that opposing outputs with 
switch-like mechanisms might control temperature compensation 
(9, 17). In the future, it will be important to identify the priming 
kinase that plays a central role in the phosphoswitch model. This 
phosphoswitch mechanism of temperature compensation may be 
a core feature of clocks in many species, as a similar interaction of 
phosphorylation sites is operative in Drosophila and Neurospora 
as well (46–48).
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