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Nikita Harvey1, Beatriz Jiménez1, Kazuhiro Sonomura4,5,

Taka-Aki Sato4,5, Fumihiko Matsuda5, Pierre Zalloua6,

Dominique Gauguier5,7, Jeremy K. Nicholson1 and

Marc-Emmanuel Dumas 1,*

1Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer,
2Department of Epidemiology and Biostatistics School of Public Health, Imperial College London, London, UK,
3Section of Structural Biology, Department of Medicine, 4Life Science Research Center, Technology Research

Laboratory, Shimadzu Corporation, Kyoto, Japan, 5Center for Genomic Medicine, Kyoto University Graduate School

of Medicine, Kyoto, Japan, 6School of Medicine, Lebanese American University, Beirut, Lebanon and 7Cordeliers

Research Centre, INSERM UMR_S 1138, Paris, France

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on June 19, 2018; revised on August 24, 2018; editorial decision on September 19, 2018; accepted on October 22, 2018

Abstract

Motivation: Data processing is a key bottleneck for 1H NMR-based metabolic profiling of complex

biological mixtures, such as biofluids. These spectra typically contain several thousands of signals,

corresponding to possibly few hundreds of metabolites. A number of binning-based methods have

been proposed to reduce the dimensionality of 1 D 1H NMR datasets, including statistical recou-

pling of variables (SRV). Here, we introduce a new binning method, named JBA (“pJRES Binning

Algorithm”), which aims to extend the applicability of SRV to pJRES spectra.

Results: The performance of JBA is comprehensively evaluated using 617 plasma 1H NMR spectra

from the FGENTCARD cohort. The results presented here show that JBA exhibits higher sensitivity

than SRV to detect peaks from low-abundance metabolites. In addition, JBA allows a more efficient

removal of spectral variables corresponding to pure electronic noise, and this has a positive impact

on multivariate model building

Availability and implementation: The algorithm is implemented using the MWASTools R/

Bioconductor package.

Contact: martinez13@imperial.ac.uk or m.dumas@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proton nuclear magnetic resonance (1H NMR) spectroscopy is one

of the analytical techniques of choice for metabolic phenotyping.

Benefiting from very high reproducibility, high quantitative accur-

acy and minimal sample preparation 1H NMR spectroscopy has

been successfully applied in various fields including, molecular epi-

demiology, toxicology and drug discovery (Elliott et al., 2015;

Nicholson et al., 2002).

To date, most 1H NMR-based metabotyping studies have relied

on one-dimensional (1D) experiments, as they require relatively
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short acquisition time and therefore maximize the throughput.

However, a major limitation of 1 D NMR spectroscopy is the con-

siderable overlap of spectral resonances, which reduces the number

of metabolites that can be reliably identified and quantified

(Nicholson et al., 1995). J-resolved (JRES) spectroscopy efficiently

alleviates the problem of spectral congestion by spreading the over-

lapped resonances into a second dimension (Aue et al., 1976). The

projection of a JRES spectrum along the chemical shift axis yields a

virtual broadband decoupled spectrum (pJRES), which can be

treated as a typical 1 D spectrum for subsequent statistical analyses

(Rodriguez-Martinez et al., 2017a).
1H NMR spectroscopy of biofluids (e.g. plasma or urine) leads

to complex spectra composed of thousands of variables, correspond-

ing to probably few hundreds of metabolites, amongst which less

than one hundred can be typically assigned in a single NMR spec-

trum (Nicholson et al., 1995). The high dimensionality inherent to
1H NMR data makes it challenging to extract meaningful biological

information, and leads to a high burden of multiple-testing when

performing univariate statistical tests. In order to reduce data

dimensionality, binning (also known as bucketing) is commonly

used (Holmes et al., 1994; Spraul et al., 1994). In binning, the spec-

tra are divided into spaced chemical shift regions (i.e. “bins”) and

the area under each bin is used, instead of the individual intensities.

Although computationally simple and fast, this approach tends to

lack accuracy, particularly in crowded spectral regions where over-

lapped peaks are likely to fall within the same bin.

A number of computational algorithms have been proposed to

overcome this drawback, such as Gaussian binning (Anderson et al.,

2008), adaptive binning (Davis et al., 2007) and adaptive intelligent

binning (De Meyer et al., 2008). Although these methods clearly

outperform standard binning, they are computationally demanding

(i.e. unsuited for datasets with a large number of samples) and/or

are not implemented in open-source software programs. Another al-

ternative method is statistical recoupling of variables (SRV) (Blaise

et al., 2009). SRV takes advantage of the collinearity of NMR varia-

bles across a set of spectra (Cloarec et al., 2005) to form clusters

(i.e. bins) of adjacent variables following the direction of the highest

covariance to correlation ratio. Since both covariance and

correlation can be easily computed, SRV is a fast method. This

“clever-binning” algorithm has been proved to be a valuable tool in

numerous 1 D 1H NMR based metabotyping studies (Cazier et al.,

2012; Dao et al., 2016; Dumas et al., 2017; Gu et al., 2016).

Here, we propose a new binning method, named JBA (“pJRES

Binning Algorithm”), which aims to extend the applicability of the

SRV algorithm to the 1 D projections of JRES spectra. We evaluate

the performance of the JBA algorithm in comparison with the use of

SRV and standard binning (SB). On the basis of the assessment of

several objective criteria, the results presented here demonstrate

that, compared to SRV and SB, JBA exhibits: (i) increased selectivity

to discriminate between metabolic signals and electronic noise; (ii)

enhanced sensitivity to detect peaks from low-abundance metabo-

lites that typically overlap with the tails of high intensity pJRES

peaks.

2 Materials and methods

2.1 Metabonomic data
We used a subset of plasma samples from the FGENTCARD cohort

profiled by 1H NMR spectroscopy (n¼617) and by gas-

chromatography coupled to mass spectrometry (GC-MS, n¼35) as

described in (Rodriguez-Martinez et al., 2017a)

Briefly, plasma samples (n¼617) were analyzed using a Bruker

Avance III 600 MHz spectrometer (Bruker Biospin Ltd, Germany)

operating at 310 K. The pulse sequence used to acquire the JRES

spectra takes the form: -RD-90�-t1-180�-t1-acquire FID, where RD

is the relaxation delay and t1 is the increment delay. JRES spectra

were acquired using 4 scans per increment over 40 increments,

which were collected in 8000 data points using spectral windows of

16.6 ppm in F2 and 78 Hz in F1. Following spectral acquisition, the

data were automatically processed using TopSpin 3.2 with Icon

(Bruker Biospin Ltd, Germany). Zero-filling by a factor of 2 was

included in F2 and the digital resolution was increased to 256 in F1

by zero-filling. Apodization of JRES spectra using a sine-bell func-

tion was applied in both F1 and F2 dimensions prior to Fourier

transformation. The JRES spectra were then tilted, symmetrized and

skyline projected to obtain the pJRES spectra. The spectra were cali-

brated to the a-glucose anomeric signal at d 5.23 (Pearce et al.,

2008) and spectral regions exhibiting considerable peak shifts were

manually aligned (Veselkov et al., 2009). Metabolite assignment

was performed using an in-house database (Nicholson et al., 1995),

correlation-based analysis (Cloarec et al., 2005; Crockford et al.,

2006; Posma et al., 2012), a range of 2 D NMR experiments and

spiking experiments with authentic commercial standards. The raw
1H NMR files are available from MetaboLights (Haug et al., 2013)

under accession number MTBLS540. The pre-processed 1H NMR

spectra are available from (https://github.com/AndreaRMICL/

NMR_Metabonomics_data).

A subset of plasma samples (n¼35) was also profiled by GC-MS

using a GCMS-QP2010 spectrometer (Shimadzu, Kyoto, Japan), as

previously described (Rodriguez-Martinez et al., 2017a). GC-MS

data processing was carried out using GCMSsolution 2.71

(Shimadzu, Kyoto, Japan). Assignment of chromatographic peaks

was performed using the NIST library or Shimadzu GC/MS data-

base, and further confirmed with authentic commercial standards.

2.2 JBA algorithm
2.2.1 Parameters

The JBA algorithm is implemented using the MWASTools R/

Bioconductor package (Rodriguez-Martinez et al., 2018). There are

four main user-defined parameters: st, ct, cm, int. The st value estab-

lishes the minimum cluster size (i.e. minimum number of NMR vari-

ables that define a cluster). This parameter depends on the

resolution (i.e. number of data points covering the peak width) of

the raw NMR data. The ct value indicates the minimum average

correlation between the st variables of a given cluster to be consid-

ered a metabolic cluster. This parameter allows discrimination be-

tween NMR signals corresponding to metabolic resonances and

NMR signals corresponding to electronic noise. The value given to

ct can be established by comparing the correlations of st adjacent

variables in a spectral region dominated by metabolic resonances

(e.g. d 3.50–3.97) and in a spectral region dominated by electronic

noise (e.g. d 9.72–9.99), and selecting the correlation coefficient

where the cumulative proportion of noise clusters is cdf ¼1

(Fig. 1A). The value of cm indicates the correlation method (i.e.

Spearman or Pearson) and int indicates whether the intensity of a

given cluster is calculated as the sum, maximum, mean, or median

of all the intensities within that cluster.

2.2.2 Steps

First, the algorithm scans the NMR spectra (from low to high fre-

quencies) and calculates the average correlation of st adjacent varia-

bles, using a sliding window of size one. This means that a given
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cluster i starts at the NMR variable i and finishes at NMR variable

with i þ (st � 1).

Second, the vector of average correlations can be represented as

a pseudo-NMR spectrum, displaying the average correlation values

in the y-axis and the chemical shifts in the x-axis (Fig. 1D). This

correlation-based spectrum is then scanned to identify local maxima

passing the ct threshold. Each of these local maxima is considered as

the optimal correlation-based cluster of size st of the corresponding

NMR peak. These optimal clusters are used as seeds that are

expanded by progressively aggregating upfield and downfield NMR

variables, as long as the following criteria are met: (i) the average

correlation of the cluster remains equal or above ct; and (ii) for a

given upfield variable (vi), correlation (vi, viþ1) needs to be equal or

higher than correlation (vi, vi-1); or (iii) for a given downfield

variable (vi), correlation (vi, viþ1) needs to be equal or lower than

correlation (vi, vi-1).

Finally, the intensity of each cluster is calculated as the sum, me-

dian, mean or maximum intensity of all variables within the cluster.

Notice that due to misalignments/signal overlap, it is possible that a

single peak is split into several clusters. These clusters can be

detected based on a given correlation threshold and integrated as a

single cluster.

2.3 SRV algorithm
The SRV algorithm was implemented using the mQTL.NMR R/

Bioconductor package (Hedjazi et al., 2015). The main user-defined

parameter in SRV is minsize, which establishes the minimum num-

ber of variables that define a metabolic cluster. This parameter

Fig. 1. Overview of the JBA algorithm using pJRES spectra of plasma samples from the FGENTCARD cohort (n¼617). (A) Comparison of correlations between st

(st ¼ 4) adjacent variables in a spectral region dominated by metabolic signals (d 3.50–3.97, coral) and in a noise region (d 9.72–9.99, green). (B) Cumulative sum

of clusters detected along the chemical shift axis in JBA, SRV and SB spectra. (C) 2D JRES 1H NMR spectrum of a pooled sample displayed as a contour plot

underneath the corresponding skyline 1D projection. (D) Pseudo-NMR spectrum showing the correlation between st (st ¼ 4) adjacent NMR variables along the

chemical shift axis, where clusters with correlation above ct (ct ¼ 0.834) are represented in coral. The purple line represents the SRV clusters formed in this spec-

tral region
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represents the number of variables required to sample a well-defined

singlet in an NMR spectrum, which depends on the resolution of the

raw spectra.

Briefly, the SRV algorithm involves calculating the spectral de-

pendency landscape as the covariance/correlation ratio between ad-

jacent variables along the chemical shift axis (moving from low to

high frequencies). The spectral dependency landscape is then

scanned to identify local minima of covariance/correlation ratio,

which correspond to the cluster edges. Clusters are retained if they

contain at least minsize variables; otherwise they are neglected. The

intensity of each cluster can be calculated as the sum, mean, median

or maximum intensity of all the variables within the cluster. Finally,

neighbouring clusters with a sufficient level of correlation (Pearson

correlation > 0.90) are aggregated into “superclusters”, represent-

ing NMR signals.

3 Results

3.1 Application of JBA
The current full resolution (FR) pJRES spectra were composed of

12 273 NMR variables in the spectral window d 0.40–10.00

(excluding water and EDTA signals). These NMR variables are like-

ly to correspond to less than 100 assignable plasma metabolites,

that is, two orders of magnitude less than the input variables. JBA

was applied to reduce the dimensionality of pJRES spectra and fa-

cilitate the recovery of relevant metabolic information.

The JBA parameters were set to enable the detection of metabol-

ic clusters composed of at least four adjacent NMR variables (st ¼
4), with average correlation equal or above 0.834 (ct ¼ 0.834). The

ct threshold is a crucial parameter to discriminate between metabol-

ic signals and noise signals. Using a too lenient ct value might lead

to the inclusion of clusters corresponding to pure electronic noise;

while a too stringent ct value might result in loss of metabolic infor-

mation. Here, the ct value was established by comparing the degree

of collinearity of adjacent NMR variables in a spectral region

enriched by metabolic signals (d 3.50–3.97) and in a spectral region

dominated by electronic noise (e.g. d 9.72–9.99) (Fig. 1A,

Supplementary Fig. S1). The intensity of each cluster was calculated

as the sum of the intensities of all the variables within the cluster.

Neighbouring clusters with correlation above 0.90 were integrated

into a single cluster. In total, 287 JBA clusters were detected, mostly

in the spectral window d 0.82–5.30, where the vast majority of en-

dogenous plasma metabolites resonate (Nicholson et al., 1995)

(Fig. 1B). A few clusters were also detected in higher frequency

regions, including those corresponding to tyrosine (d 6.88, 7.18) and

formate (d 8.45). SRV applied to the same pJRES dataset, using the

default cluster size (i.e. minsize) of 10 variables, resulted in 411 clus-

ters. Similarly to SB spectra, more than half of SRV clusters were

detected in noise regions, with the proportion of noise-based clusters

increasing with lower minsize values (e.g. minsize ¼ 8) (Fig. 1B).

This is due to the fact that SRV does not take into account that a

certain degree of collinearity also exists in noise “peaks”, especially

in pJRES spectra where the noise is not truly random (Fig. 1A,

Supplementary Fig. S3).

The principle behind the JBA approach is exemplified in

Figure 1C and D. Each of the local maxima in the correlation-based

spectrum is considered as the most representative cluster of the cor-

responding NMR peak, which can be further expanded by aggregat-

ing highly correlated neighbouring NMR variables (Supplementary

Fig. S2). While SRV focuses on high intensity NMR peaks, JBA also

detects low intensity metabolic signals, which might be of consider-

able clinical interest (e.g. 2-aminobutyrate).

3.2 Assignment of JBA spectra
Many of the 1H NMR peaks detected in biofluid spectra are un-

known, and metabolite assignment is a complex and time-consuming

task (Dona et al., 2016; Nagana Gowda et al., 2015; Posma et al.,

2017). We previously introduced a strategy for semi-automated anno-

tation of 1H NMR peaks, based on cross-correlations with GC-MS

metabolites (Rodriguez-Martinez et al., 2017a). By using this strategy,

in combination with other statistical tools (Cloarec et al., 2005;

Posma et al., 2012) and additional 2 D NMR experiments, 31 metab-

olites were identified in JBA spectra (Supplementary Table S1). These

metabolites are involved in a wide range of biochemical pathways,

from carbohydrate, amino acid and lipid metabolism; and some of

them are products of microbial metabolism (Rodriguez-Martinez

et al., 2017b). Since the composition of plasma is under homeostatic

control and metabolite concentrations are relatively stable, the anno-

tated JBA clusters are expected to be reproducible across datasets.

3.3 Evaluation of JBA performance via cross-

correlations with GC-MS metabolites
Next, the performance of the JBA algorithm was assessed through

cross-correlations (Crockford et al., 2006) with GC-MS metabolites.

Spearman correlations were computed between 1H NMR variables

and 25 GC-MS metabolites, whose identities in the 1H NMR spec-

trum were confirmed by additional 2 D and spike-in experiments.

The correlations in JBA spectra were significantly higher than in

SRV spectra (Wilcoxon-signed rank P-value ¼ 2.19 � 10�2)

(Fig. 2A), with remarkable differences for a number of metabolites,

including 2-aminobutyrate (undetected in SRV) and threonine

(Fig. 2B). These results further demonstrate the enhanced metabolic

Fig. 2. Evaluation of specificity of JBA clusters via cross-correlations with GC-

MS metabolites (n¼35). (A) Kernel density curves of coefficients of correl-

ation between 25 GC-MS metabolites and matched NMR signals in FR (yel-

low), JBA (coral), SRV (purple) and SB (grey) spectra. (B) Heat-map showing

the coefficients of correlation between 25 GC-MS metabolites and matched

NMR signals in FR, JBA, SRV and SB spectra. Abbreviations: ND indicates not

detected
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specificity and sensitivity of the JBA approach, compared to SRV.

However, it should be noted that few metabolites (e.g. glutamate)

exhibited considerably higher correlations in the full resolution spec-

tra than after applying JBA (Fig. 2B), reflecting the difficulty of col-

lapsing NMR variables in extensively overlapped spectral regions.

3.4 Assessment of the recovery of metabolic

information in JBA spectra via PCA
The unsupervised method of principal component analysis (PCA) was

used to evaluate the effect of applying JBA on the overall biological

variation within the dataset. PCA models were built using mean-

centred spectra from the biological samples and 10 quality control

(QC) samples, prepared from a representative pool of the clinical sam-

ples and analysed regularly through the run. In the score plots from

both FR and JBA models, the QC samples appeared tightly clustered in

the centre of the Hotelling’s ellipse (Fig. 3A and B), demonstrating that

JBA does not affect the overall reproducibility of the dataset. Visual in-

spection of the both score plots revealed a very similar structure and

common patterns. Consistently, the most discriminant metabolites

identified in the loading plots from both JBA and FR models were es-

sentially the same: glucose, lactate and alanine (Fig. 3C–F).

It is also noteworthy that the variance captured by the first PCs

was higher in the JBA spectra than in the SRV, SB or FR datasets,

particularly when using unit-variance scaled (UV) spectra (Fig. 4).

This is most likely due to the fact that the JBA spectra are mostly

composed by metabolic variables, eliminating the negative effect of

noise variables on model building.

4 Conclusions
1H NMR spectra of biofluids are highly complex, typically consist-

ing of tens of thousands of variables. Thus, dimensionality reduction

is a critical step in 1H NMR data processing. Here, we introduce the

binning method JBA, which aims to extend the applicability of the

SRV algorithm for pJRES datasets. We showed that JBA performs

adequate dimensionality reduction of pJRES spectra and outper-

forms both SRV and standard equidistant binning, in terms of vari-

ance explained by first PCs and cross-correlations with GC-MS

Fig. 3. Effect of JBA pretreatment on the overall metabolic variation of the original dataset. (A, B) PCA score plots of mean-centred FR (A) and JBA (B) spectra

with the QC samples (n¼10) coloured in dark blue. (C–F) PCA loading plots corresponding to the first two principal components
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data. JBA is more sensitive to detect low intensity metabolic peaks,

which are often neglected or integrated with larger peaks in SRV.

Another major advantage is that in JBA spectra each cluster usu-

ally corresponds with a metabolic peak, eliminating to a large extent

noise signals and their negative influence on subsequent statistical

analysis. In addition, JBA spectra can be more efficiently combined

with unit-variance scaling, which makes uncovering 1H NMR sig-

nals from low-concentration metabolites more straightforward.

However, similar to other binning methods, JBA may select subopti-

mal bin edges in extensively misaligned or overlapped spectral

regions.

JBA is computationally simple and fast (�10 s for 1000 samples)

and therefore it is suitable for implementation in large-scale data-

sets. Furthermore, JBA allows using different resolution parameters

and correlations methods (i.e. Pearson or Spearman correlations)

and therefore it is flexible and adaptable to different datasets in an

objective manner. Overall, the results presented here show that JBA

offers sought properties for pre-processing of large-scale pJRES

datasets.
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