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Abstract: The role of endogenous hydrogen sulfide (H2S) as an antioxidant regulator has sparked
interest in its function within inflammatory diseases. Cigarette and alcohol use are major causes of
premature death, resulting from chronic oxidative stress and subsequent tissue damage. The activa-
tion of the Nrf2 antioxidant response by H2S suggests that this novel gasotransmitter may function
to prevent or potentially reverse disease progression caused by cigarette smoking or alcohol use.
The purpose of this study is to review the interrelationship between H2S signaling and cigarette smok-
ing or alcohol drinking. Based on the databases of cellular, animal, and clinical studies from Pubmed
using the keywords of H2S, smoking, and/or alcohol, this review article provides a comprehensive
insight into disrupted H2S signaling by alcohol drinking and cigarette smoking-caused disorders.
Major signaling and metabolic pathways involved in H2S-derived antioxidant and anti-inflammatory
responses are further reviewed. H2S supplementation may prove to be an invaluable asset in treating
or preventing diseases in those suffering from cigarette or alcohol addiction.
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1. Introduction

Cigarette smoking and alcohol consumption are the leading causes of the global bur-
den of disease and are major contributors to premature mortality in industrial countries.
Cigarette smoking and alcohol drinking can cause damage in nearly all body organs, espe-
cially cardiovascular, nervous, hepatic, gastrointestinal and pulmonary systems. Systemic
disease caused by cigarettes or alcohol use can be acute or chronic [1,2]. Chronic obstructive
pulmonary disease (COPD), alcoholic fatty liver disease, cardiomyopathy, neurodegenera-
tion, gastric ulceration, atherosclerosis, fetal alcohol spectrum disorder, low birth weight,
and many forms of cancer are all can be caused by cigarette smoking, alcohol drinking, or
both [3–6]. Concurrent consumption of alcohol and cigarette smoking further increase the
risk of developing these diseases [7]. Treatment of these diseases has been progressing,
with some focusing on ameliorating symptoms in late stage disease, but the most effective
treatment is abstinence from using cigarettes and alcohol [8,9].

The pathology of cigarette smoking and alcohol drinking-caused diseases is generally
attributed to excessive oxidative stress and chronic inflammation [10,11]. The primary effec-
tor of disease is oxidative imbalance caused by the rapid accumulation of reactive oxygen
species (ROS) within the cells. Cigarettes introduce ROS via a multitude of cytotoxic com-
pounds, including nicotine, aldehydes, heavy metals, polycyclic aromatic hydrocarbons,
and more, while alcohol introduces oxidative stress through the metabolism of ethanol
to acetaldehyde [12,13]. High level of oxidative stress triggers NFκB-mediated release of
proinflammatory cytokines, such as TNF-α and interleukins, which consequently recruit
the immune system to the affected tissues [14–16]. Recruited neutrophils induce further
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oxidative stress through the production of ROS, and the secretion of matrix metallopro-
teases for degradation of extracellular matrix [17,18]. Constitutive oxidative stress results
in cell death, and the repeated destruction and reconstruction of the extracellular matrix
eventually leading to fibrosis. These effects cumulatively induce organ dysfunction and
tissue death (Figure 1).
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Figure 1. Cigarette smoking and alcohol drinking induce the oxidative and inflammatory response.
Exposure to cigarette or alcohol leads to oxidative stress and stimulation of NFκB. NFκB promotes
secretion of proinflammatory cytokines TNFα, IL-6, and IL-1β, which then strengthen immune cell
recruitment. Recruited neutrophils produce additional ROS and release metalloproteases, which
induce cell damage and matrix degradation, respectively. The net result of constitutive activation of
inflammatory pathways is tissue destruction and disease progression. Abbreviations: NFκB, nuclear
factor kappa-light-chain-enhancer of activated B cells; TLR, toll-like receptor; TNFα, tumor necrosis
factor α; IL, interleukin; ROS, reactive oxygen species.

2. H2S as a Novel Gasotransmitter

Instantly recognizable by its distinct rotten-egg smell, hydrogen sulfide (H2S) has
traditionally been viewed as nothing more than an unpleasant smelling and toxic gas.
At high concentrations this certainly holds true, as H2S prevents cellular respiration by
binding with and inhibiting cytochrome C oxidase [19]. During the past decades, however,
a different story has emerged. First discovered as an endogenous molecule in the 1960s, the
gaseous compound was initially believed to be a metabolic waste product. It was not until
the mid-1990s that a physiological role for the so-called waste was uncovered, when it was
found that H2S activates long-term potentiation in the brain [20]. Since then, H2S has been
classed as the third gasotransmitter, alongside carbon monoxide and nitric oxide, and a
novel field of research has developed around the diverse biological effects of H2S [21,22].

The endogenous production of H2S is well regulated, and at least three distinct
enzymatic pathways contribute to endogenous production of H2S in various tissues. The
three pathways are denoted by the primary enzyme involved, those being cystathionine
γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptosulfur transferase (3MST)
(Figure 2A) [23,24]. CBS is the most prominent within the brain, while CSE plays the
largest role in the other major tissues and 3MST plays a secondary or tertiary role in most
tissues [23].

The physiological functions of H2S include regulation of cellular senescence, cell cycle,
metabolism, vasorelaxation, autophagy, and oxidative stress (Figure 2A) [25–27]. H2S
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post-translational modification of protein by S-sulfhydration mediates most of the cellular
functions [28,29]. S-sulfhydration consists of the formation of a persulfide group (-SSH) or
polysulfide chains on active cysteine residues within a protein [30,31]. These changes result
in structural and conformational alterations, eventually changing protein function and
catalytic ability [32]. The ubiquity of cysteine residues in proteins, ranging from structural
disulfide bridges to catalytic sites, ensures that H2S has wide ranging effects on many
proteins [28,33]. There is some doubt on the direct formation of S-sulfhydration in free
cysteine by H2S [28]. Sulfane sulfur, a group of sulfur-containing compounds, may interact
with oxidized cysteine in target protein resulting in formation of S-sulfhydration [29,34].
The generation of cysteine S-sulfhydration by sulfane sulfur depend on the location and
oxidative status of individual cysteine residues [28,34]. S-sulfhydration is not only a post-
translational modification of protein. Akaike et al. proved that cysteine S-sulfhydration
can also occur at the translational stage with the aid of cysteinyl tRNA synthetase [35].
In contrast, thioredoxin 1, an important reducing enzyme that cleaves disulfides in pro-
teins, facilitates protein S-desulfhydration [36]. Future studies need to explore the reg-
ulatory mechanisms of cysteine S-sulfhydration formation and map the global protein
S-sulfhydrome in both health and disease.

Antioxidants 2021, 10, x FOR PEER REVIEW 3 of 16 
 

2A) [23,24]. CBS is the most prominent within the brain, while CSE plays the largest role 
in the other major tissues and 3MST plays a secondary or tertiary role in most tissues [23]. 

The physiological functions of H2S include regulation of cellular senescence, cell cy-
cle, metabolism, vasorelaxation, autophagy, and oxidative stress (Figure 2A) [25–27]. H2S 
post-translational modification of protein by S-sulfhydration mediates most of the cellular 
functions [28,29]. S-sulfhydration consists of the formation of a persulfide group (-SSH) 
or polysulfide chains on active cysteine residues within a protein [30,31]. These changes 
result in structural and conformational alterations, eventually changing protein function 
and catalytic ability [32]. The ubiquity of cysteine residues in proteins, ranging from struc-
tural disulfide bridges to catalytic sites, ensures that H2S has wide ranging effects on many 
proteins [28,33]. There is some doubt on the direct formation of S-sulfhydration in free 
cysteine by H2S [28]. Sulfane sulfur, a group of sulfur-containing compounds, may interact 
with oxidized cysteine in target protein resulting in formation of S-sulfhydration [29,34]. 
The generation of cysteine S-sulfhydration by sulfane sulfur depend on the location and 
oxidative status of individual cysteine residues [28,34]. S-sulfhydration is not only a post-
translational modification of protein. Akaike et al. proved that cysteine S-sulfhydration 
can also occur at the translational stage with the aid of cysteinyl tRNA synthetase [35]. In 
contrast, thioredoxin 1, an important reducing enzyme that cleaves disulfides in proteins, 
facilitates protein S-desulfhydration [36]. Future studies need to explore the regulatory 
mechanisms of cysteine S-sulfhydration formation and map the global protein S-sulfhy-
drome in both health and disease.  

 
Figure 2. H2S is recognized as a novel gasotransmitter. (A) Enzymatic H2S production mediated by CSE, CBS, and 
3MST/CAT. Endogenously produced H2S regulates diverse cellular functions, including cell cycle, cell death, lipid metab-
olism, glucose metabolism, oxidative stress, and autophagy. (B) H2S mediates its antioxidant effects through activation of 
Keap1/Nrf2. S-sulfhydration of cysteine residues on Keap1 causes the release of Nrf2, which is then able to translocate into 
the nucleus and bind with ARE. Transcription of ARE leads to production of several AOEs, which collectively reduce 
oxidative stress. Abbreviations: 3-MST, 3-mercaptopyruvate sulfurtransferase; ARE, antioxidant response element; AOE, 
antioxidant enzyme; CAT, catalase; CBS, cystathionine β-synthase; CSE, cystathionine γ-lyase; CTA, cysteine transami-
nase; GPx, glutathione peroxidase; GR, glutathione reductase; H2S, hydrogen sulfide; Keap1, Kelch-like ECH associated 
protein 1; Nrf2, nuclear factor erythroid 2-related factor 2; SOD, superoxide dismutase; ROS, reactive oxygen species. 

The most notable target for S-sulfhydration is the regulation of the Nrf2/Keap1 sys-
tem. Nuclear factor (erythroid-derived 2)-like factor 2 (Nrf2) is a master regulator of the 
antioxidant response, which translocates to the nucleus and binds with the antioxidant 
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Figure 2. H2S is recognized as a novel gasotransmitter. (A) Enzymatic H2S production mediated by CSE, CBS, and
3MST/CAT. Endogenously produced H2S regulates diverse cellular functions, including cell cycle, cell death, lipid
metabolism, glucose metabolism, oxidative stress, and autophagy. (B) H2S mediates its antioxidant effects through
activation of Keap1/Nrf2. S-sulfhydration of cysteine residues on Keap1 causes the release of Nrf2, which is then able
to translocate into the nucleus and bind with ARE. Transcription of ARE leads to production of several AOEs, which
collectively reduce oxidative stress. Abbreviations: 3-MST, 3-mercaptopyruvate sulfurtransferase; ARE, antioxidant response
element; AOE, antioxidant enzyme; CAT, catalase; CBS, cystathionine β-synthase; CSE, cystathionine γ-lyase; CTA, cysteine
transaminase; GPx, glutathione peroxidase; GR, glutathione reductase; H2S, hydrogen sulfide; Keap1, Kelch-like ECH
associated protein 1; Nrf2, nuclear factor erythroid 2-related factor 2; SOD, superoxide dismutase; ROS, reactive oxygen
species.

The most notable target for S-sulfhydration is the regulation of the Nrf2/Keap1
system. Nuclear factor (erythroid-derived 2)-like factor 2 (Nrf2) is a master regulator of
the antioxidant response, which translocates to the nucleus and binds with the antioxidant
response element (ARE) [37]. Increased ARE transcription stimulates several antioxidant
enzymes (AOEs), including superoxide dismutase, glutathione peroxidase, catalase, and
heme oxygenase-1 [38]. These enzymes collectively act to maintain oxidative homeostasis
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and reduce ROS-mediated damage within the cells. In the cytoplasm, Nrf2 is bound
by Kelch-like ECH-associated protein 1 (Keap1), which promotes the ubiquitination and
degradation of Nrf2 by the proteasome [37]. S-sulfhydation of Keap1 prevents binding to
Nrf2, allowing for Nrf2 nuclear localization and AOE transcription, thus making H2S as an
activator of the Nrf2 antioxidant master switch (Figure 2B) [27]. In addition to increasing
transcription of AOE, H2S can directly reduce ROS levels by restoring glutathione levels
and/or through chemical reduction of offending molecules [39,40].

Endogenous H2S likely play a major role in the innate defense against oxidative stress
and inflammation-mediated disease (Figure 3) [41]. Endogenous H2S is influenced by
many factors, including genetic, dietary, and environmental components. Major dietary
sources of sulphur include cruciferous vegetables, such as broccoli or kale, and garlic.
These foods contain many organosulphur compounds, which are readily metabolized
by the body to yield H2S, and are often considered H2S donors as a result [42]. Regular
exercise boosts endogenous H2S production [43], while ”unhealthy” habits such as high-fat
diets and sedentary lifestyle decrease H2S level due to lower expressions of H2S-generating
genes [44].
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Figure 3. The signaling pathways underlying H2S regulation of inflammation, apoptosis, fibrosis, and autophagy. Abbrevi-
ations: Bcl2, B-cell lymphoma 2; CHOP, C/EBP homologous protein; CBS, cystathionine β-synthase; CSE, cystathionine
γ-lyase; ERK, extracellular signal-regulated kinase; HIF-1α, hypoxia-inducible factor 1-alpha; JNK, c-Jun N-terminal kinase;
MAPK, mitogen-activated protein kinase; MMP, matrix metallopeptidase; mTOR, mammalian target of rapamycin; TGFβ1,
transforming growth factor beta 1.

Despite a large amount of H2S research in both health and disease having been
published, a comprehensive review on the relationship between H2S signaling and smoking
or drinking is lacking. Given the importance of H2S in biology and medicine, this review
article summarizes the recent research progress on the involvement of H2S signaling in
cell damage and organ dysfunction related to cigarette smoking and alcohol drinking.
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Based on the databases from Pubmed, “H2S and smoking”, “H2S and cigarettes”, “H2S
and tobacco”, “H2S and alcohol”, and “H2S and ethanol” were used as phrases to search
literature related to H2S signaling in biology and medicine. The publications related to
environmental pollution or H2S toxicology were excluded from this review.

3. H2S and Cigarette Smoking
3.1. Clinical Observations

Definitive links between smoking and the changes in H2S levels in human have been
uncovered. Serum H2S level was significantly lower in smokers than nonsmokers [45].
The expression of CSE was decreased in smokers’ lung tissue as detected by immunohis-
tochemistry and Western blotting [46]. Chronic obstructive pulmonary disease (COPD)
is a chronic inflammatory disease and can be caused by long-term exposure to cigarette
smoking. Serum H2S is elevated in the patients with stable COPD, yet is lower in control
smokers and those suffering from acute exacerbation of COPD (AE-COPD) [46]. In contrast,
sputum H2S levels in AE-COPD patients were higher than those with stable COPD [47]. It
was further found that exhaled H2S levels were similar in patients with AE-COPD, stable
COPD, and healthy controls, while COPD patients without eosinophilia had significantly
higher levels of exhaled H2S compared with subjects with eosinophilia [48,49]. These
findings point that disrupted H2S signaling might be valuable marker to examine the
different status of COPD. More excitingly, after undergoing a 10-day cycle of sulphurous
thermal water inhalation, a reduction of the inflammatory activity was observed in a large
number of heavy current and former smokers, suggesting the potential benefits of H2S for
smokers [50]. Moreover, Bates et al. provided some epidemiologic evidence that ambient
H2S exposures may benefit lung function, possibly through airway smooth muscle relax-
ation [51]. Maternal smoking during pregnancy increases the risk of asthma and borderline
personality disorder-like symptoms in the progeny. A recent study further found that the
expressions of three H2S-generating genes, including CSE, CBS, and 3MST, were all lower
in the placentas from mothers who smoked during pregnancy in comparison with the
mothers who never smoked. Quitting smoking during the first trimester of pregnancy
could partially improve the expressions of these H2S-generating genes in the placentas [52].
More studies need to be conducted to validate if the downregulated expressions of these
H2S-generatiang enzymes might be a biomarker for asthma susceptibility in children.

3.2. Animal Studies

Exposure of laboratory animals to cigarette smoking can reproduce some morphologic
and physiologic manifestations of diseases as happened in humans. Several rodent models
have been employed in the study of H2S signaling and cigarette smoking-induced organ
damage. The results obtained in these preclinical animal studies demonstrated that H2S
signaling was often disrupted by cigarette smoking exposure, while exogenously applied
H2S was able to provide beneficial effects against cigarette smoking exposure-caused
pulmonary and vascular damage, as well as abnormal development of natal offspring
(Table 1).

3.2.1. H2S Protects from Maternal/Prenatal Cigarette Smoking Exposure-Induced Damage

Maternal cigarette smoking exposure has been found to increase oxidative stress,
mitochondrial dysfunction, and cell apoptosis in offspring. Zhang et al. first observed
that cigarette smoking exposure to rats during pregnancy blunted hypercapnic respiratory
responses in the neonates, which could be relieved by H2S pretreatment [53]. The same
group further reported that H2S protected the offspring from apoptosis and helped the
recovery of central chemoreception via the activation of mitoKATP channels [54]. It was
proposed that H2S may have potential therapeutic value for maternal cigarette smoking
exposure-induced central chemoreception deficit-related diseases, such as sudden infant
death syndrome.
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Prenatal cigarette smoking exposure is known to induce respiratory problems in
infants. The mRNA and protein expression of 3MST was upregulated in the neurons of
medullary respiratory nuclei of neonatal rats by intrauterine cigarette smoking exposure,
indicating that endogenous H2S derived from 3MST may protect medullary respiratory
centers against cigarette smoking-caused injury [55]. Wang et al. found that cigarette
smoking exposure caused a more slowly and deeply breathing in rat neonates under
sevoflurane anesthesia, while pretreatment with H2S via intraperitoneal injection NaHS
alleviated sevoflurane-induced respiratory suppression [56]. Mechanistically, H2S was also
able to prevent the increase in the malondialdehyde level, upregulation of inflammatory
response, and suppression of antioxidase activity in the neonatal rats induced by prenatal
cigarette smoking exposure [57,58]. H2S was also able to improve cigarette smoking-caused
fetal and placental development. In an animal model of cigarette smoking exposure in
pregnant rats, the administration of NaHS normalized the reduced fetal and placental
weights by cigarette smoking [59]. Further studies demonstrated that H2S relieved cigarette
smoking-induced abnormalities of junctional and labyrinthine zones, and ultrastructural
alterations in rat placenta [60].

In another study, mice were exposed to secondhand cigarette smoking throughout
the gestational period, and then H2S biogenesis in lungs from the pups of the F1 and
F2 generation were analyzed. It was found that mouse lung exposed gestationally to
cigarette smoking had significantly lower levels of CSE, CBS, and 3MST in both the F1 and
F2 generation. Moreover, the lungs from F1 and F2 progenies displayed with impaired
angiogenesis and alveolarization, suggesting that a lower level of H2S is correlated with
the increased risk of lung disorders [52].

3.2.2. H2S Attenuates Cigarette Smoking-Induced Lung Damage

Long-term cigarette smoking exposure can induce airway remodeling, thus damaging
the respiratory function. By using a mouse model of cigarette smoking exposure, Guan
et al. found that treatment with NaHS significantly attenuated airway thickening and
collagen deposition, as characterized by decreased expressions of α-SMA and collagens
and myofibroblast accumulation [61]. The protective role of H2S against airway remodeling
was attributed to its inhibition of SIRT1-mediated TGF-β1/Smad3 activation and epithelial–
mesenchymal transition. Han et al. also reported that NaHS ameliorated cigarette smoking-
induced thickness of bronchial walls and emphysema development in mice via AKT/Nrf2
pathways [62]. With a rat model of cigarette smoking exposure, Wang et al. demonstrated
that H2S inhibited cigarette smoking-caused oxidative stress, inflammation, and airway
remodeling through inhibition of the TGF-β1/Smad pathway [63].

CSE deficiency abolished endogenous H2S generation in mouse lung and promoted
the secretion of cytokines and chemokines in bronchoalveolar lavage fluid following
cigarette smoking exposure and respiratory syncytial virus infection [64]. These data
suggest that the lower level of endogenous H2S due to immature H2S-genarating enzymes
could cause more severe manifestations of virus infection under cigarette smoking exposure
or other stress conditions. In one study, blockage of endogenous H2S generation by
propargylglycine (PPG), a CSE inhibitor, however, did not worsen the detrimental effect
of cigarette smoking exposure on pulmonary remodeling, excluding the involvement
of CSE-derived H2S in lung protection [65]. In contrast, other studies demonstrated
that PPG aggravated lung pathology score and increased airway reactivity in cigarette
smoking-exposed rats, suggesting that endogenous H2S may have a protective role of
anti-inflammation and bronchodilation in chronic cigarette smoking-induced pulmonary
injury [66–68]. The discrepancy may be due to the dose and time of cigarette smoking
exposure and PPG administration, as well as the age of rats used in these studies.

3.2.3. H2S Ameliorates Cigarette Smoking Exposure-Induced Cardiac Damage

Smoking is a risk factor causing cardiovascular disease, and about a third of smoking-
related deaths result from heart complications. Animal models of cigarette smoking
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exposure all demonstrated the potential protection of H2S against abnormal heart func-
tions. In a rat model of cigarette smoking exposure, CSE expression was downregulated
in heart tissues and H2S levels in plasma were also lower, and the left ventricular systolic
function was remarkably lower. Supplementation of exogenous H2S would improve the
heart functions. The protective role of H2S against cigarette smoking -induced cardiac dys-
function was associated with PI3K/Akt-mediated Nrf2 nuclear translocation and increased
expression of antioxidant genes followed by reduced cell apoptosis and autophagy [69,70].
Consistent with these studies, Wiliński et al. also proved that administration of nicotine
to mice caused a marked decrease in H2S level in heart tissues [71]. In the presence of
vitamin D3, nicotine-induced structural disorder in the aortic and carotid arterial wall could
be ameliorated by exogenous applied H2S [72]. In addition, cigarette smoking exposure
lowered CSE.

Table 1. Animal models used for analyzing H2S signaling and cigarette smoking-induced damage.

Animal Species
Cigarette

Smoking (CS)
Administration

H2S Supplement Organ Damage Target Signaling
Pathway Reference

BALB/c mice
6 h/day, 1.52

mg/m3 during
gestation

N/A
Asthma, bron-
chopulmonary

dysplasia

CSE/CBS,
TGFβ1, SOX2

Singh et al.
[52]

Sprague–Dawley
rats

10 cigarettes/h,
twice daily,

gestation day 7–20

56 µmole/kg NaHS,
daily, 30 min before

CS, i.p.

Brainstem,
respiratory
dysfunction

N/A Zhang et al.
[53]

Sprague–Dawley
rats

10 cigarettes/h,
twice daily,

gestation day 1–20

56 µmole/kg NaHS,
daily, 30 min before

CS, i.p.

Hypoglossal
nerve damage,

chemoreception
impairment

Caspase/Bax Lei et al.
[54]

Sprague–Dawley
rats

10 cigarettes/h,
twice daily,

gestation day 7–20

56 µmole/kg NaHS,
daily, 30 min before

CS, i.p.

Decreased
respiratory

function
N/A Wang et al.

[56]

Sprague–Dawley
rats

10 cigarettes/h,
twice daily,

gestation day 7–20

56 µmole/kg NaHS,
daily, 30 min before

CS, i.p.

Excitatory
synapse disorder,

respiratory
misregulation

Phox2b,
AOE/ROS

Yan et al.
[57]

Sprague–Dawley
rats

10 cigarettes/h,
twice daily,

gestation day 7–20

56 µmole/kg NaHS,
daily, 30 min before

CS, i.p.

Medulla
oblongata and

hypoglossal
nerve damage

AOE,
TNFα,

IL-6/1β

Yan et al.
[58]

C57BL/6J mice

9 filter-tipped
cigarettes for 2 h

twice daily, 6
days/week

40 mg/kg NaHS via
atomization

inhalation for 30 min,
twice daily

COPD S1RT/ TGFβ1,
AOE/ROS

Guan et al.
[61]

C57BL/6 mice

1 puff/min and 10
puffs/cigarette for

1 h daily, 5 days
per week for 12 or

24 weeks

50 µmole/kg NaHS,
daily, 30 min before

CS, i.p.

Emphysema,
bronchial

remodeling,
pulmonary

vascular
remodeling

TNFα, Nrf2,
p-AKT,

Caspase

Han et al.
[62]
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Table 1. Cont.

Animal Species
Cigarette

Smoking (CS)
Administration

H2S Supplement Organ Damage Target Signaling
Pathway Reference

Sprague–Dawley
rats

20 cigarettes for 2
h, twice daily, 6
days per week

40 ppm H2S
exposure, 8 h daily

for seven days
COPD ROS, TNFα/IL6,

TGFβ1/Smad
Wang et al.

[63]

Sprague–Dawley
rats

20 cigarettes for 4
h, 7 days per week

14 µmole/kg NaHS,
daily, 30 min before

CS, i.p.

COPD, reduced
pulmonary

response

CSE,
TNFα/IL6

Chen et al.
[68]

Sprague–Dawley
rats

10 cigarettes for 30
min, 4 times daily

14 µmole/kg NaHS,
daily, 30 min before

CS, i.p.

Left ventricle
structure and

function damage

CSE/Nrf2,
AOE/ROS, PI3K/GS3Kβ

Zhou et al.
[69]

Sprague–Dawley
rats

10 cigarettes for 30
min, 4 times daily

8 µmole/kg NaHS,
daily,
i.g.

Left ventricle
structure and

function damage

Caspase/Bax,
JNK/p38,

PI3K,
Beclin-1, AMPK/mTOR

Zhou et al.
[70]

CBA mice 1.5 mg/kg nicotine,
daily, i.p. N/A

Reduced H2S
production in
heart/kidney

N/A Wiliński
et al. [71]

Sprague–Dawley
rats

25 mg/kg nicotine,
daily, i.g.

56 µmole/kg NaHS,
daily, i.p.

Calcification of
carotid and aorta

CHOP/CAS,
Calponin/SM22α Li et al. [72]

Sprague–Dawley
rats

20 cigarettes, daily,
for 30 days N/A Vascular

constriction

CSE,
SUR-2,
KATP

Zhang et al.
[73]

Expression in rat thoracic aorta and inhibited aortic vascular relaxation, which could in
part explain the association between cigarette smoking and disrupted heart functions [73].
Given this evidence, it could be feasible for targeting H2S signaling for the prevention and
therapy of cigarette smoking-induced vascular disorders.

3.3. Cellular Studies

Alveolar epithelial cells in lung are the direct targets for damage by smoking. Exposure
to cigarette smoking in human alveolar basal epithelial cells (A549) leads to lower cell viabil-
ity, higher oxidative stress and cell apoptosis, and increased levels of inflammatory factors,
all of which could be attenuated by the addition of NaHS. It was further demonstrated that
H2S upregulated SIRT1 and protected cigarette smoking-induced mitochondrial dysfunc-
tions in epithelial cells [74]. The following study from the same group showed that H2S was
also able to inhibit cigarette smoking-induced activation of PHD2/HIF-1α signaling and
ERK/JNK/p38 MAPK pathways in alveolar epithelial cells [75]. With bronchial epithelia
cells, Lin et al. proved that H2S inhibited nicotine-induced morphological changes of
apoptosis via inhibition of endoplasmic reticulum stress [76]. These findings suggest that
H2S has potential therapeutic value in the treatment of cigarette smoking-caused lung
damage by directly protecting against epithelial cell death.

The animal studies showed that H2S was able to reduce cigarette smoking-induced
pulmonary hypertension and vascular remodeling in mice [62]. By using pulmonary artery
endothelial cells, Han et al. observed that H2S protected against cigarette smoking-induced
apoptosis and downregulation of Akt and Nrf2 [62]. The airway smooth muscle cells
(ASMCs) are important for controlling airway structure and dilation. The loss of contractile
phenotype of ASMCs by cigarette smoking leads to airway hyperresponsiveness and
remodeling followed by the development of COPD. Perry et al. reported that H2S inhibited
proliferation and cytokine release in ASMCs isolated from nonsmokers and smokers, but
had less effect on the cells from COPD patients [77]. This points to the role of H2S in the
stabilization of ASMC phenotype for a novel therapeutic avenue against COPD.
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Many studies have reported that cigarette smoking is also a driving factor for peri-
odontitis and bone loss [78,79]. Nicotine, one of the major constitutes in cigarettes, was
reported to inhibit osteoblastic differentiation [78]. In contrast, H2S was able to promote
osteoblastic differentiation in a nicotine-incubated human periodontal ligament cell model
via the MAPK/PKC/NF-κB pathways, suggesting the potential of H2S against cigarette
smoking-induced bone loss [78].

4. H2S and Alcohol Consumption
4.1. Clinical Observations

Clinical evidence about the interaction of H2S signaling and alcohol drinking in
humans is lacking. One paper reported that H2S levels were increased in the breath
of chronic alcohol users, suggesting that circulating H2S may be elevated by alcohol
drinking [80]. More studies need to be investigated to explore whether H2S signaling is
altered in alcohol users.

4.2. Animal Studies

Animal models are often used in the laboratory to mimic different aspects of human
alcohol consumption, including chronic ad libitum ethanol feeding through liquid diet
and chronic/acute intragastric ethanol administration. The advances from these animal
studies help for understanding the molecular and behavioral changes associated with
human alcoholism. The accumulated evidence suggests that H2S signaling often involves
alcohol-caused organ damage (Table 2).

4.2.1. H2S Protects from Alcohol-Induced Liver Damage

Many H2S-releasing donors have been shown to inhibit alcohol-induced liver damage.
In both mouse and rat models of alcohol exposure, the administration of diallyl trisulfide,
diallyl disulfide, garlic oil, or garlic polysaccharide significantly limited lipid accumulation
and reduced tissue damage [81–86]. These H2S donors were also able to decrease circulating
liver-damage markers, such as alanine aminotranferease and aspartate transaminase [83–
85,87]. Aldehyde dehydrogenase is a rate-limiting enzyme for ethanol metabolism by
changing highly toxic acetaldehyde to nontoxic acetate. Recent evidence suggests the
enzymatic activity of aldehyde dehydrogenase could be inhibited in the rat liver by some
sulfane sulfur species, such as garlic-derived allyl sulfides, which act as sources for releasing
H2S slowly in the body [88]. Similar to disulfiram, H2S may be used for the treatment of
alcohol abuse and alcohol dependence by promoting the accumulation of acetaldehyde in
the body.

Table 2. Animal models used for analyzing H2S signaling and alcohol-induced damage.

Animal Species Alcohol
Administration H2S Supplement Organ Damage Target Signaling

Pathway Reference

Kun–Ming mice
50% (v/v) ethanol, 12
mL/kg, 16 h before

sacrifice

30 mg/kg diallyl
trisulfide (DATS),
orally, for 7 days
prior to ethanol

Liver damage AOE/ROS Zeng et al. [82]

Sprague–Dawley
rats

56% (v/v) ethanol, 10
mL/kg daily for 8

weeks, gavage

25–100 mg/kg
DATS, daily, weeks

5–8

Alcohol fatty liver,
steatosis

PPAR-α/SREBP-
1c, AOE/ROS,

Cas/Bcl2
Chen et al. [83]

Kun–Ming mice
5 g/kg ethanol at 12 h
intervals, sacrificed 4 h

after third dose, i.g.

25–100 mg/kg
diallyl disulfide

(DADS), daily, for
7days by gavage

Liver injury,
hydropic

degeneration

Nrf2/HO-1, ROS,
Cas,

MAPKs
Zeng et al. [84]



Antioxidants 2021, 10, 49 10 of 17

Table 2. Cont.

Animal Species Alcohol
Administration H2S Supplement Organ Damage Target Signaling

Pathway Reference

Kun–Ming mice

50% (v/v) ethanol, 12
mL/kg, sacrificed at 4,

8, and 16 h after
exposure

50, 100, 200 mg/kg
garlic oil, 2 h

before ethanol
exposure

Liver injury,
steatosis

AOE/ROS,
PPAR-α/SREBP-1,

FAS,
CYP2E1

Zeng et al. [85]

Kun–Ming mice 56% ethanol, 6 mL/kg,
orally, for 30 days

150–250 mg/kg
garlic power, daily

5 h after ethanol
exposure

Liver fibrosis,
steatosis

AOE/ROS,
TNFα/TGFβ1 Wang et al. [86]

Sprague–Dawley
rats

10–12 g/kg ethanol,
daily, for 45 days

i.g.

200 mg/kg DATS,
daily,
i.g.

Alcoholic
steatohepatitis

CYP2E1,
TNFα/Il-4,

TGFβ1/Smad
Ronis et al. [87]

Kun–Ming mice

4% ethanol solution as
sole source of drinking

water freely for 12
weeks

50 µmole/kg
NaHS, daily, i.p.

Alcoholic
cardiomyopathy

PI3K/AKT,
Beclin,

TGFβ1/MMP
Liang et al. [89]

Wistar rats 10–30% alcohol per
day by i.g for 18 weeks

30 µmole/l NaHS
in drinking water

Left ventricular
structure and

function damage

AOE/ROS,
Bax/Bcl2 Zhou et al. [90]

Sprague–Dawley
rats

5 mL/kg ethanol,
orally

25–50 mg/kg Tert-
butylhydroquinone
(tBHQ) for 10 days,

orally

Gastric ulcers

ROS,
COX2,
NFkB,

Nrf2/HO-1

Rahman et al.
[91]

Swiss mice

50% ethanol, 0.5
mL/25 g, gavage,
sacrificed 1 h after

ethanol

Cysteine (25–100
mg/kg), NaHS

(75–300 µmole), or
propargylglycine
(15–150 mg/kg),
gavage, 30 min
prior to ethanol

Gastric ulcers

KATP channels and
afferent

neurons/TRPV1
receptors

Medeiros et al.
[92]

C57BL/6 mice

50% ethanol, 2.5
mL/kg, gavage,

sacrificed 1 h after
ethanol

l-cysteine or
d-cysteine (100

mg/kg) or
propargylglycine

(100 mg/kg),
gavage, 30 min
prior to ethanol

Gastric ulcers d-amino acid
oxidase

Souza et al.
[93]

Swiss mice

50% ethanol, 0.5
mL/25 g, gavage,
sacrificed 1 h after

ethanol

150 µmole/kg
NaHS; 27
µmole/kg

Lawesson’s
reagent; 100

mg/kg
cysteine; orally, 30

min prior to
ethanol

Gastric ulcers AMPK de Araújo et al.
[94]

Wistar rats
100% ethanol, 1 mL, by

gavage, sacrificed at
2 h

15, 50 or 150 µM
Na2S 30 min prior

to ethanol
Gastric ulcers N/A

Velázquez-
Moyado et al.

[95]
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Table 2. Cont.

Animal Species Alcohol
Administration H2S Supplement Organ Damage Target Signaling

Pathway Reference

Wistar rats
100% ethanol, 0.2 mL,
by gavage, sacrificed

after 30 min

50 mg/kg cysteine,
orally Gastric ulcers N/A

Velázquez-
Moyado et al.

[96]

Wistar rats
100% ethanol, 1 mL, by
gavage, sacrificed 2 h

later

10 mg/kg cysteine;
8.4 mg/kg NaHS;

by gavage 2 h prior
to ethanol

Gastric ulcers N/A Chávez-Piña
et al. [97]

Wistar rats

5.25 g/kg ethanol in
27.8 mL/kg milk, by

gavage, postnatal day
2–10

1 mg/kg NaHS
concurrent with
ethanol in milk

Hippocampal
apoptosis,

impaired spatial
memory

BDNF,
Brdu,

Apoptosis

Mohseni et al.
[98]

Wistar rats

5.25 g/kg ethanol in
27.8 mL/kg milk, by

gavage, postnatal day
2–10

1 mg/kg NaHS
concurrent with
ethanol in milk

Reactive gliosis,
necrosis and

apoptosis of the
hippocampus

AOE/ROS,
TNF/Il,
GFAP,
Cas

Mohseni et al.
[99]

Sprague–Dawley
rats

56% (v/v) ethanol, 10
mL/kg daily for 8

weeks, gavage

25–100 mg/kg
DATS, daily,

gavage
Liver damage AOE/ROS,

Cas/Bcl2, CSE
Chen et al.

[100]

4.2.2. H2S Improves Alcoholic Cardiomyopathy

Alcohol abuse is a major risk factor for the incidence of alcoholic cardiomyopathy and
heart disorders. H2S is widely reported to provide a significant cardioprotection through its
anti-apoptotic, anti-inflammatory, and antioxidant effects [21–23]. Accumulated evidence
shows that H2S improved alcoholic cardiomyopathy. Long-term feeding of the mice with
ethanol diet induced irregular arrangement of myocardial fibers and myocardial fibrosis,
which could be significantly improved by the administration of H2S but deteriorated
by PPG treatment. By targeting at miR-21 and miR-221-mediated TGF-β/PI3K/AKT
signaling pathways, H2S inhibited autophagy-associated proteins (Beclin 1, Atg3, and
Atg7) and fibrosis-associated proteins, thus relieving myocardial fibrosis in mice with
alcoholic cardiomyopathy [89]. H2S has also been shown to protect against chronic alcohol
intake-induced left ventricular remodeling in rats via attenuating oxidative stress and
apoptosis [90].

4.2.3. H2S Attenuates Alcohol-Induced Gastric Ulcers

Gastric ulcer is the most common disease caused by alcohol consumption [91]. Accu-
mulated evidence indicated that gastric ulcers by excessive consumption of alcohol can
be prevented by many H2S donors or activators. Either NaHS or cysteine treatment dose-
dependently prevented ethanol-induced macroscopic and microscopic gastric damage in
mice by activating KATP channels and afferent neurons/TRPV1 receptors [92]. Consistent
with these findings, Souza et al. also reported that pretreatment with d-cysteine increases
the synthesis of H2S and protects from ethanol-induced oxidative stress and gastric lesions
in mice [93]. AICAR as an AMPK activator prevented ethanol-induced gastric injury in
mice by stimulating H2S generation [94]. Diligustilide, a dimeric phthalide isolated from
Ligusticum porteri, is a traditional medicine for treating many diseases including gastric
aches. Velázquez-Moyado et al. reported that diligustilide increased gastric H2S production
and prevented ethanol-induced gastric injury [95]. Carbenoxolone, an anti-ulcer drug,
protected from ethanol-induced lesions in rat stomachs via boosting endogenous H2S gen-
eration [96]. In contrast, Chávez-Piña et al. demonstrated that injection of a CSE inhibitor
PPG suppressed H2S generation and reversed gastric injury caused by ethanol [97]. The
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possible explanation may be due to the difference of animal types and doses of ethanol and
H2S used in each individual study.

4.2.4. H2S Blocks Postnatal Alcohol Exposure-Induced Brain Damage

Maternal alcohol consumption during pregnancy often causes problems in fetal brain
development and leads to fetal alcohol spectrum disorder. Mohseni et al. proved that
supplementation of H2S to rat pups with postnatal ethanol exposure protected from
ethanol-induced neurotoxicity and memory loss, mostly due to the proneurogenesis and
anti-apoptotic activity of H2S [98]. The same group also reported that H2S attenuated
oxidative–inflammatory cascade and neuronal cell death by ethanol exposure in rat pups
during the postnatal period [99]. This evidence suggests that H2S is able to improve
behavioral and cognitive deficits caused by postnatal alcohol exposure in rat pups. The
protective role of H2S against brain damage and dysfunction in adult animals with long-
term consumption of alcohol need to be further studied.

4.3. Cellular Studies

Alcohol that is mostly metabolized in liver and alcohol consumption often causes liver
damage. After incubation with ethanol, human hepatocyte cells exhibited increased apopto-
sis. It was further found that ethanol inhibited the protein expressions of CSE and CBS, and
reduced endogenous H2S generation in hepatocyte cells, while diallyl trisulfide boosted
H2S level and protected against ethanol-induced oxidative stress and apoptosis [100]. After
depletion of intracellular cysteine by buthionine sulfoximine, ethanol induced more cell
death in human hepatocyte cells, while exogenous glutathione supplementation led to
increased cysteine level and cell viability [101]. In another study with rat liver cells, ethanol
incubation activated the caspase 3-dependent apoptosis, and the presence of S-allyl-l-
cysteine was sufficient to prevent cell death induced by ethanol [102]. Consumption of
alcohol also leads to adipose tissue inflammation, hyperlipolysis, and apoptosis. Kema
et al. reported that diallyl sulfide attenuated ethanol-induced oxidative stress, endoplasmic
reticulum stress, and inflammation in 3T3L1 adipocyte cells, and promoted synthesis of M2
phenotype-specific genes in ethanol-exposed RAW 264.7 macrophage cells [103,104]. One
study reported that ethanol exposure increased DNA damage of human bronchial epithe-
lial cells, which could be attenuated by diallyl trisulfide pretreatment [105]. These results
suggest that H2S signaling may be a target for preventing and/or treating ethanol-induced
injury of liver and adipose tissues, and possibly lung tissue.

5. Prospective

Increasing research has been performed in the discovery of new molecules and mech-
anisms for assisting in the diagnosis and treatment of diseases associated with cigarette
smoking and alcohol abuse. H2S is a novel gasotransmitter with great significance in
human health. The disrupted H2S signaling by cigarette smoking and alcohol drinking
has recently come to light. The evidence from cellular and animal studies and also clinical
observations identify H2S as a regulator of oxidative stress and inflammatory response
in the pathogenesis of various diseases associated with cigarette smoking and alcohol
drinking. The mechanisms mediating the potential interactions among H2S signaling,
cigarette smoking, and alcohol abuse in different organs are still incompletely understood.
A greater understanding of altered H2S signaling can definitely help for developing novel
diagnostic approaches. Moreover, the mechanisms underlying the altered expressions and
activities of H2S-generating enzymes have not been fully clarified. The notion of using
fast H2S-releasing donors to alter organ dysfunction should be treated with caution. Much
work remains to be performed to develop slow H2S-releasing donors. Furthermore, more
clinical studies with a larger sample size and control subjects can help better characterize
the disrupted H2S signaling by cigarette smoking and alcohol drinking. There is also a
need for accurate measurement of H2S level and the activities of H2S-generating enzymes
in the affected organs by cigarette smoking and/or alcohol usage. Consequently, more
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research needs to be undertaken to fully determine the potential of targeting H2S signaling
for prevention and treatment of cigarette smoking- and alcohol-associated diseases.
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