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Abstract: Members of the aurora kinase family are Ser/Thr kinases involved in regulating mitosis.
Multiple promising clinical trials to target aurora kinases are in development. To discover flavones
showing growth inhibitory effects on cancer cells, 36 flavone derivatives were prepared, and their
cytotoxicity was measured using a long-term clonogenic survival assay. Their half-maximal growth
inhibitory effects against HCT116 human colon cancer cells were observed at the sub-micromolar
level. Pharmacophores were derived based on three-dimensional quantitative structure–activity
calculations. Because plant-derived flavones inhibit aurora kinase B, we selected 5-methoxy-2-(2-
methoxynaphthalen-1-yl)-4H-chromen-4-one (derivative 31), which showed the best half-maximal cell
growth inhibitory effect, and tested whether it can inhibit aurora kinases in HCT116 colon cancer cells.
We found that derivative 31 inhibited the phosphorylation of aurora kinases A, aurora kinases B and
aurora kinases C, suggesting that derivative 31 is a potential pan-aurora kinase inhibitor. The results
of our analysis of the binding modes between derivative 31 and aurora A and aurora B kinases using
in-silico docking were consistent with the pharmacophores proposed in this study.

Keywords: flavones; colon cancer; clonogenicity; apoptosis; aurora kinases; quantitative
structure–activity relationship; in-silico docking

1. Introduction

Flavones are a class of flavonoids having a backbone of 2-phenylchromen-4-one
(2-phenyl-1-benzopyran-4-one). They are common in fruits and many plant foods. Some natural
flavones show anticancer activity. For example, apigenin (4′,5,7-trihydroxyflavone), luteolin (3′,4′,5,7-
tetrahydroxyflavone), baicalein (5,6,7-trihydroxyflavone), nobiletin (3′,4′,5,6,7,8-hexamethoxyflavone)
and tangeretin (4′,5,6,7,8-pentamethoxyflavone) inhibit the proliferation of breast cancer cells [1–3].
Kaempferol (3,4′,5,7-tetrahydroxyflavone) suppresses the growth of bladder and cervical cancer
cells [4]. Chrysin (5,7-dihydroxyflavone) reduces the proliferation of prostate cancer cells [5].
Quercetagetin (3,3′,4′,5,6,7-hexahydroxyflavone) induces apoptosis in colon cancer cells [6]. However,
the structural features of flavones exhibiting inhibitory effects on cancer cell growth remain unclear.
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In order to identify the structural characteristics of flavones exhibiting growth inhibitory effects
on cancer cells, we prepared 36 synthetic flavone derivatives containing hydroxy, fluoro, bromo, nitro,
methoxy, methyl, styryl or naphthalenyl groups [7]. Colon cancer is the second most diagnosed
cancer in women and the third in men [8]. It is also the second most death-causing cancer [8].
Tumor penetration and metastasis can occur in stage II of colon cancer; thus, its survival rate
is approximately 70% after stage II. Even when the resection of colon cancer was achieved by
the first treatment of colon cancer owing to diagnosis at the early stage, chemotherapy is often
required simultaneously with other treatments [9]. Several drugs have been approved as colon cancer
chemotherapy. Drugs as adjuvant chemotherapy after surgery are being developed [10]. Here, we used
a long-term clonogenic assay to measure the growth inhibitory effects of synthetic flavones in HCT116
human colon cancer cells. The half-maximal cell growth inhibitory concentration (GI50) values of
36 flavone derivatives against HCT116 cells were determined. To derive structural features that
exhibit better cell growth inhibitory effects, relationships between the structural properties of the
synthetic flavones and their cell growth inhibitory effects were calculated using comparative molecular
field analysis and comparative molecular similarity index analysis. Among the 36 synthetic flavone
derivatives, we found that 5-methoxy-2-(2-methoxynaphthalen-1-yl)-4H-chromen-4-one (named
derivative 31) showed the best GI50 value (0.49 µM). Because we have shown in our previous study
that plant-derived flavones inhibit aurora kinase B (AURKB) [6], we further evaluated the effect of
derivative 31 on the inhibition of aurora kinases. The molecular binding modes between the derivative
31 compound and aurora kinases were elucidated using in-silico docking experiments. These results
can provide valuable information for designing novel anticancer drugs that target aurora kinases.

2. Results and Discussion

To investigate the structural features of flavones that influence the growth of cancer cells,
we synthesized 36 flavone derivatives and screened candidate compounds by monitoring their growth
inhibitory efficacy by a long-term clonogenic survival assay [11], which can efficiently distinguish
differences in cell growth rate induced by structurally similar compounds [12,13].

Initially, we tested the inhibitory activity of the derivatives at high (0, 5, 10, 20 and 40 µM)
(Figure 1A) and low concentrations (0, 0.1, 0.5, 1 and 5 µM) (Figure 1B) on the clonogenicity of cancer
cells. Clonogenicity was quantitated by densitometry, GI50 values were computed using the SigmaPlot
software, and the results are shown in Table 1 and Figure 2.

Table 1. Names of synthetic flavone derivatives 1–36, and their half-maximal cell growth inhibitory
effect (GI50) and the negative logarithmic scales of GI50 values (pGI50).

Derivatives Chemical Names GI50 (µM) pGI50

1 2-(2-fluorophenyl)-3-hydroxy-4H-chromen-4-one/2′-fluoroflavone 41.19 1.39

2 2-(2-fluorophenyl)-3-hydroxy-6-nitro-4H-chromen-4-one/2′-fluoro-6-nitroflavone 33.52 1.47

3 2-(4-fluorophenyl)-3-hydroxy-6-nitro-4H-chromen-4-one/4′-fluoro-6-nitroflavone 4.49 2.35

4 3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one/4′-methoxyflavone 37.18 1.43

5 3-hydroxy-2-(2-methoxyphenyl)-4H-chromen-4-one/2′-methoxyflavone 16.44 1.78

6 2-(3,4-dimethoxyphenyl)-3-hydroxy-4H-chromen-4-one/3′,4′-dimethoxyflavone 3.59 2.44

7 3-hydroxy-2-(2,4,6-trimethoxyphenyl)-4H-chromen-4-one/2′,4′,6′-trimethoxyflavone 4.53 2.34

8 2-(2,4-dimethoxyphenyl)-3-hydroxy-4H-chromen-4-one/2′,4′-dimethoxyflavone 21.92 1.66

9 2-(6-(4-methoxystyryl)-2,4-dimethoxyphenyl)-3-hydroxy-4H-chromen-4-one/3-hydroxy-2′-
(4-methoxystyryl)-flavone 3.18 2.50

10 2-(6-(4-methoxystyryl)-2,4-dimethoxyphenyl)-3-hydroxy-6-nitro-4H-chromen-4-one/3-hydroxy-6-
nitro-2′-(4-methoxystyryl)-flavone 3.63 2.44

11 2-(6-(4-methoxystyryl)-2,4-dimethoxyphenyl)-6-bromo-3-hydroxy-4H-chromen-4-one/3-hydroxy-
6-bromo-2′-(4-methoxystyryl)-flavone 2.66 2.58

12 2-(6-(4-methoxystyryl)-2,4-dimethoxyphenyl)-7-fluoro-3-hydroxy-4H-chromen-4-one/7-fluoro-
3-hydroxy-2′-(4-methoxystyryl)-flavone 3.07 2.51

13 2-(6-(4-methoxystyryl)-2,4-dimethoxyphenyl)-6-chloro-3-hydroxy-4H-chromen-4-one/3-hydroxy-
6-chloro-2′-(4-methoxystyryl)-flavone 2.87 2.54
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Table 1. Cont.

Derivatives Chemical Names GI50 (µM) pGI50

14 2-(6-(4-methoxystyryl)-2,4-dimethoxyphenyl)-6-fluoro-3-hydroxy-4H-chromen-4-one/3-hydroxy-
6-fluoro-2′-(4-methoxystyryl)-flavone 2.41 2.62

15 3-hydroxy-2-(naphthalen-1-yl)-4H-chromen-4-one/3-hydroxy-2′,3′-naphthoflavone 4.14 2.38

16 3-hydroxy-6-methoxy-2-(naphthalen-1-yl)-4H-chromen-4-one/3-hydroxy-6-methoxy-
2′,3′-naphthoflavone 7.21 2.14

17 3-hydroxy-2-(2-methoxynaphthalen-1-yl)-4H-chromen-4-one/3-hydroxy-6′-methoxy-
2′,3′-naphthoflavone 5.28 2.28

18 2-(2,3-dimethoxynaphthalen-1-yl)-3-hydroxy-6-methoxy-4H-chromen-4-one/3-hydroxy-5′,6,6′-
trimethoxy-2′,3′-naphthoflavone 7.51 2.12

19 3-hydroxy-2-(4-methoxynaphthalen-1-yl)-4H-chromen-4-one/3-hydroxy-4′-methoxy-
2′,3′-naphthoflavone 4.28 2.37

20 3-hydroxy-2-(naphthalen-2-yl)-4H-chromen-4-one/3-hydroxy-3′,4′-naphthoflavone 2.41 2.62

21 3-hydroxy-6-methoxy-2-(naphthalen-2-yl)-4H-chromen-4-one/3-hydroxy-6-methoxy-
3′,4′-naphthoflavone 3.07 2.51

22 2-(naphthalen-1-yl)-4H-chromen-4-one/2′,3′-naphthoflavone 2.91 2.54

23 6-methoxy-2-(naphthalen-1-yl)-4H-chromen-4-one/6-methoxy-2′,3′-naphthoflavone 2.41 2.62

24 5-methoxy-2-(naphthalen-1-yl)-4H-chromen-4-one/5-methoxy-2′,3′-naphthoflavone 7.31 2.14

25 6,7-dimethoxy-2-(naphthalen-1-yl)-4H-chromen-4-one/6,7-dimethoxy-2′,3′-naphthoflavone 3.26 2.49

26 7-methoxy-2-(naphthalen-1-yl)-4H-chromen-4-one/7-methoxy-2′,3′-naphthoflavone 2.56 2.59

27 2-(naphthalen-2-yl)-4H-chromen-4-one/3′,4′-naphthoflavone 29.86 1.52

28 6-methoxy-2-(naphthalen-2-yl)-4H-chromen-4-one/6-methoxy-3′,4′-naphthoflavone 24.39 1.61

29 2-(2-methoxynaphthalen-1-yl)-4H-chromen-4-one/2′-methoxy-2′,3′-naphthoflavone 4.06 2.39

30 6-methoxy-2-(2-methoxynaphthalen-1-yl)-4H-chromen-4-one/2′,6-dimethoxy-2′,3′-naphthoflavone 2.78 2.56

31 5-methoxy-2-(2-methoxynaphthalen-1-yl)-4H-chromen-4-one/2′,5-dimethoxy-2′,3′-naphthoflavone 0.49 3.31

32 6,7-dimethoxy-2-(2-methoxynaphthalen-1-yl)-4H-chromen-4-one/2′,6,7-trimethoxy-
2′,3′-naphthoflavone 3.80 2.42

33 2-(4-methoxynaphthalen-1-yl)-4H-chromen-4-one/4′-methoxy-2′,3′-naphthoflavone 20.80 1.68

34 5,7-dimethoxy-2-(4-methoxynaphthalen-1-yl)-4H-chromen-4-one/4′,5,7-trimethoxy-
2′,3′-naphthoflavone 21.56 1.67

35 7-methoxy-2-(4-methoxynaphthalen-1-yl)-4H-chromen-4-one/4′,7-dimethoxy-2′,3′-naphthoflavone 18.18 1.74

36 2-(2,3-dimethoxynaphthalen-1-yl)-7-methoxy-4H-chromen-4-one/2′,3′,7-trimethoxy-
2′,3′-naphthoflavone 3.95 2.40
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Cells were treated with derivative compounds at 0, 5, 10, 20 and 40 µM (A) or at 0, 0.1, 0.5, 1 and 5 µM
(B). The dashed lines show the enlarged images.
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Their GI50 values ranged between 0.49 and 41.19 µM. Among the derivatives, derivative 31,
5-methoxy-2-(2-methoxynaphthalen-1-yl)-4H-chromen-4-one, showed the most effective inhibition
of clonogenicity (GI50 value: 0.49 µM). Negative logarithmic scales of the GI50 values (pGI50)
were used as biological data for 3D-QSAR calculation. The 3D structures of the derivatives
required for 3D-QSAR calculations were modified using the Sybyl 7.3 program from the X-ray
crystallographic structures of derivatives 6 (2-(3,4-dimethoxyphenyl)-3-hydroxy-4H-chromen-4-one)
and 18 (2-(2,3-dimethoxynaphthalen-1-yl)-3-hydroxy-6-methoxy-4H-chromen-4-one), which were
determined by the authors’ previous works [14,15]. Three-dimensional quantitative structure–activity
relationship (3D-QSAR) was performed using comparative molecular field analysis (CoMFA) and
comparative molecular similarity indices analysis (CoMSIA). We divided the 36 derivatives into a
training set and a test set. The former was used to generate QSAR models and the latter was used
to validate the models generated by the training set. Seven derivatives, namely 7, 10, 14, 17, 22, 29
and 32, were arbitrarily chosen for the test set by one of the data analysis tools, hierarchical clustering
analysis [16], as shown in Figure S1. Twenty-nine derivatives in the training set were aligned using
the Sybyl DATABASE Alignment module. They were aligned well, which indicated interactions
between probe atoms and rest atoms (Figure S2). Linear correlations between structural properties of
the derivatives in the training set and their cancer cell growth inhibitory effects were determined using
partial least-squares regression. Among the many CoMFA models generated by iteration, until a good
cross-validation correlation coefficient (q2) was found, the model showing 0.772 of q2 was chosen,
where non-cross-validated correlation coefficient (r2), optimal number of components, standard error of
estimate, and F value were 0.980, 6, 0.078, and 175.833, respectively. pGI50 values were predicted based
on this model. A comparison of the pGI50 values obtained from the long-term clonogenic survival
assay with the values predicted using the CoMFA model is listed in Table S1, and its graph is shown in
Figure S3. The residuals between the experimental data and the predicted values ranged from 0.11% to
8.29%. Likewise, the pGI50 values of the derivatives contained in the test set were calculated using the
same CoMFA model (Table S1). The residuals between the experimental data and the predicted values
ranged from 6.79% to 24.96%. These results showed that this CoMFA model was reliable. In this model,
the steric and electrostatic field descriptors were 51.7% and 48.3%, respectively. To visualize the field
descriptors, we generated contour maps. The steric-bulk-favoring and -disfavoring regions occupied
92% and 8% of the maps, respectively (Figure S4A). In the steric field map of the CoMFA model, green
contours were shown at C2′ and C3′ positions, meaning that a bulky group was favored in the region.
Derivatives containing bulky naphthyl group at the region, such as derivatives 15–18, 22–26, 29–32
and 36, showed good GI50 values, which were 7.51 µM and less. Derivatives 9–14 have the bulky
resveratrol group at C2′ and showed good activities, with GI50 values ranging between 3.63 µM and
2.41 µM. On the contrary, a yellow contour was observed near C4′, meaning that a bulky group was
not favored in the region. It is explicable why some of the derivatives containing methoxy group at the
C4′ position, such as derivatives 4, 8, 33, 34 and 35, showed poor GI50 values. The electrostatic contour
map of the CoMFA model is shown in the Figure S4B. The electrostaticly favoring and disfavoring
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regions occupied 1% and 99% of the maps, respectively. In the electrostatic field map of the CoMFA
model, a small red contour was observed around C2′. This may be the reason derivatives with fluoride
or methoxy substitutes at C2′ showed low biological activities, as shown by derivatives 1, 2, 5 and 8.

Unlike CoMFA, CoMSIA provides more field descriptors, including hydrogen bond donor and
acceptor descriptors and hydrophobic descriptors. To find the best CoMSIA model, many CoMSIA
models were generated by iteration. The CoMSIA model showing q2 of 0.515 was selected, where the
r2, optimal number of components, standard error of estimate, and F value were 0.952, 6, 0.119, and
73.084, respectively. This model consisted of steric, electrostatic and hydrophobic descriptors, and their
contributions were 18.3%, 53.3% and 28.4%, respectively. The pGI50 values calculated using this model
were compared with those obtained from the experimental values (Table S2), and they were graphed
as shown in Figure S5. The residuals between the experimental data and predicted values ranged from
0.18% to 10.62%. Likewise, the pGI50 values of derivatives contained in the test set were calculated
using the same CoMFA model (Table S2). The residuals between the experimental data and predicted
values ranged from 7.34% to 23.92%. These results showed that this CoMSIA model was reliable.
The steric and electrostatic field descriptors were generated to be similar to those obtained from the
CoMFA model. A hydrophobic field map (Figure S6) was additionally obtained from the CoMSIA
model. The hydrophobic region occupied 95% of the contour map area, whereas the nonhydrophobic
region occupied 5%. The orange-colored contour around C4′ suggested that a hydrophobic group was
favored at the position. The derivatives 33–35 had a methoxy substituent at the C4′ of thier naphthyl
moiety and showed lower activities compared to derivatives 22–26, which had naphthyl without a
hydrophilic substituent. The pharmacophores obtained based on the CoMFA and CoMSIA models
are summarized in Figure 3, which provides insights for rational design of compounds with good
inhibitory effects on cell growth. In summary, a bulky group was favored at C2′ and C3′ but was
not favored at C4′. A hydrophobic group was favored at C4′, and an electronegative group was not
favored at C2′. One of the criteria for the solubility is logP. The logP values of derivatives containing a
3-hydroxy group ranged between 1.53 and 3.02, those of derivatives with a styryl group, 3.72 and 5.45,
and logP values of naphthoflavones ranged from 3.69 to 4.07.
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Aurora kinases are Ser/Thr kinases that function as key regulators of chromosome alignment
and segregation during mitosis [17]. There are three classes of aurora kinases: aurora kinase A
(AURKA), aurora kinase B (AURKB) and aurora kinase C (AURKC). Previously, we showed that
plant-derived flavones inhibit AURKB [6]. To investigate whether synthetic flavone derivatives inhibit
aurora kinase activity, we selected one of the compounds, derivative 31, which exhibited the best
GI50 value, and examined its inhibitory activity against aurora kinases. aurora kinase activity was
assessed by its phosphorylation status, as reported previously [18]. Treatment with derivative 31
decreased the phosphorylation of AURKA on Thr-288, AURKB on Thr-232, and AURKC on Thr-198 in
a dose- (Figure 4A) and time-dependent (Figure 4B) manner, suggesting that derivative 31 exhibited
pan-aurora kinase inhibitory activity.
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Figure 4. Effect of derivative 31 on inhibition of aurora kinases. HCT116 cells were serum-starved for
24 h in media containing 0.5% FBS, and treated with different concentrations of derivative 31 (0, 0.1, 1,
5 or 10 µM) for 3 h (A) or 5 µM derivative 31 for different times (1. 0.5, 1, 3 or 6 h) (B). Total cell lysates
were immunoblotted with phospho-specific antibodies against AURKA (T288), AURKB (T232) and
AURKC (T198). Anti-GAPDH antibody was used as an internal control.

AURKA and AURKB are overexpressed in colon cancer [19], and inhibition of aurora kinases
triggers mitotic cell-cycle arrest and apoptotic cell death [18]. Therefore, we investigated by flow
cytometry whether derivative 31 affects cell cycle progression. After treatment with derivative 31,
population of G2/M phase cells increased from 26.2% (0 h) to 43.3% (12 h) and 46.3% (24 h) (Figure 5A).
Notably, the number of sub-G1 phase cells remarkably increased from 3% (0 h) to 31.5% (48 h) as the
number of G1 phase cells concomitantly decreased from 59.9% (0 h) to 8.0% (48 h) (Figure 5B). Because
the presence of sub-G1 cell population is indicative of the progression of apoptotic cells, we suggest
that derivative 31 induced cell-cycle arrest at the G2/M phase at the early stage but triggered apoptotic
cell death in HCT116 colon cancer cells after continued exposure. We thus evaluated the capability of
derivative 31 to induce apoptosis.
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Because the phosphatidylserine localized in the inner surface of the cell membrane translocates to
the outer membrane during apoptosis [20], we analyzed the population of apoptotic cells by staining
the outer layer of the cell membrane with phosphatidylserine by using annexin V [21]. Propidium
iodide was used as a counterstain to label dead cells. Flow cytometry results showed that treatment
with derivative 31 at 5 and 10 µM increased the population of annexin V-positive cells from 8% to
25% and 73%, respectively (Figure 6A). These data suggested that derivative 31 caused apoptotic cell
death in HCT116 cells. Caspases regulate the cleavage of many cellular proteins, including the DNA
repair enzyme poly(ADP-ribose) polymerase (PARP), to induce apoptosis [22]. Caspases are activated
by proteolytic cleavages [23]. To determine whether derivative 31-induced apoptosis is mediated by
caspases, we examined the status of caspase 7 cleavage by Western blotting analysis. We found that
the cleavages of caspase 7 and its substrate, PARP, were increased by treatment with derivative 31 in a
time-dependent manner (Figure 6B). Taken together, derivative 31 triggered apoptosis by inhibiting
aurora kinases through G2/M cell-cycle arrest and a caspase-dependent mechanism.Int. J. Mol. Sci. 2018, 19, x 8 of 14 
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Figure 6. Effect of derivative 31 on apoptosis induction. (A) HCT116 cells were treated with derivative
31 at 0, 5 and 10 µM for 48 h, and co-stained with fluorescein isothiocyanate (FITC)–annexin V and
PI. Fluorescence intensity was analyzed by a NucleoCounter NC-3000 image cytometer. Scatter plots
represent FITC–annexin V versus PI intensities (upper panels). Lower graphs represent populations
of annexin V-positive cells. M1, annexin V-negative; M2, annexin V-positive. (B) HCT116 cells were
treated with 5 µM derivative 31 for 0, 6, 12 and 48 h, and total cell lysates were immunoblotted
with antibodies against cleaved-caspase-7 and poly(ADP-ribose) polymerase (PARP). Anti-GAPDH
antibody was used as an internal control.
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To elucidate the binding modes between derivative 31 and aurora kinases at the molecular
level, in-silico docking experiments were conducted. Among the many X-ray crystallographic
structures of AURKA deposited in the protein data bank, 3uod.pdb was selected because its
ligand, 4-[(4-[2-(trifluoromethyl)phenyl]amino]pyrimidin-2-yl)amino]benzoic acid (named as TPB)
(Figure S7), is more similar to the synthetic flavones used here than the ligands contained in other
crystallographic structures deposited in the protein data bank [24]. Its organism, expression system
and resolution were Homo sapiens, Escherichia coli BL21(DE3) and 2.5 Å, respectively. AURKA
consists of 403 residues and 3uod.pdb contains residues between Ser123–Lys401, including a kinase
domain. This structure contains its ligand as well as 1,2-ethanediol and di(hydroxyethyl)ether.
To prepare the apoprotein of 3uod.pdb, its ligand was extracted using the Sybyl/Biopolymer
module (Tripos), but 1,2-ethanediol and di(hydroxyethyl)ether were not deleted. The solution
structure of the apoprotein was obtained through energy minimization using the Conjugate Gradient
algorithm where Tripos force field and Gasteiger-Hückell charges were used. Because comparing
this apoprotein with 3uod.pdb resulted in a root-mean-squared deviation value of 0.7 Å, this
apoprotein was used for in-silico docking experiments. As mentioned above, the 3D structure of
the title compound was determined based on the X-ray crystallographic structure of derivative
18 (2-(2,3-dimethoxynaphthalen-1-yl)-3-hydroxy-6-methoxy-4H-chromen-4-one) [15]. The results
obtained from AutoDock Vina were visualized using PyMol (The PyMOL Molecular Graphics System,
Version 1.0r1; Schrödinger, LLC), and analyzed using LigPlot [25]. The binding pocket of AURKA was
analyzed using the Ligplot software, and 14 residues were obtained: Arg137, Leu139, Gly140, Val147,
Ala160, Leu194, Glu211, Tyr212, Ala213, Thr217, Arg220, Glu260, Leu263 and Ala213 (Figure S8).
The dimensions of the docking box were 16, 8 and 16 for x, y and z, respectively, whereas the centers
of x, y and z were 21.494, –21.987 and –10.808, respectively. Because the flexible docking procedure
was iterated 30 times, 30 AURKA apoprotein–ligand complexes were generated. Because the original
ligand, TPB, was docked into the apoprotein well, in-silico docking of derivative 31 was performed in
the same manner as that of the original ligand. Because its binding energies ranged from –9.1 to –7.2
kcal/mol, the thermodynamic stability of the docking process of derivative 31 was considered good
for further analysis. The complex with the lowest binding energy was selected. The residues residing
in its binding pocket were analyzed using LigPlot: Arg137, Leu139, Val147, Ala160, Leu194, Leu210,
Glu211, Tyr212, Ala213, Gly216, Thr217, Arg220, Glu260, Leu263 and Asp274 (Figure S9). The binding
pocket was visualized using the PyMol program as shown in Figure 7. Even the AURKA–derivative 31
complex included one more residue in its binding site than the AURKA–TPB complex, and it does not
contain hydrogen bonds, unlike the AURKA–TPB complex where two residues, Arg137 and Ala213,
participated in hydrogen bonds. The binding pocket around the naphthalene ring of derivative 31
consisted of mainly hydrophobic residues, Val147, Leu210 and Leu263, and the binding pocket was
deep and wide enough to hold a naphthyl or resveratrol group. It is also well explained that a bulky
group is not favored at the C4′ position because the side chain of Tyr212 could induce steric hindrance
with substrates. The results of our analysis of the binding mode of derivative 31 are consistent with
the pharmacophores that we proposed.

Because Western blotting analysis showed that treatment with derivative 31 decreased the
phosphorylation of AURKB, the binding mode between derivative 31 and AURKB was elucidated
using in-silico docking in the same manner as that of AURKA. Because 4af3.pdb contained the most
residues, it was used for in-silico docking [26]. It originated from H. sapiens and was expressed in an
E. coli BL21 (DE3) system. Its ligand was cyclopropanecarboxylic acid 4-[4-(4-methyl-piperazin-
1-yl)-6-(5-methyl-2h-pyrazol-3-ylamino)-pyrimidin-2-ylsulfanyl]-phenyl]-amide (named as VX6).
The binding pocket of AURKB was analyzed using Ligplot: Leu83, Phe88, Val91, Ala104, Lys106,
Leu138, Glu155, Tyr156, Ala157, Gly160, Glu161, Leu207, Ala217, Asp218 and Phe219 (Figure S10).
The dimensions and centers of the docking box were the same as those in the AURKA docking
condition. Because the original ligand, VX6, was docked into the apoprotein well, in-silico docking of
derivative 31 was performed in the same manner as that of the original ligand. The binding energies
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of 30 AURKB–derivative 31 complexes ranged from –9.6 to –7.8 kcal/mol, which showed that the
complexes were thermodynamically stable. The complex with the lowest binding energy was selected.
The residues residing in the binding pocket of the complex were analyzed using LigPlot: Leu83, Phe88,
Val91, Ala104, Lys106, Glu155, Tyr156, Ala157, Glu161, Glu204, Asn205, Leu207, Ala217 and Phe219
(Figure S11). The binding pocket was visualized using the PyMol program as shown in Figure 8.
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The AURKB–derivative 31 complex contained fewer residues in its binding pocket than the
AURKB–VX6 complex. In addition, the AURK–VX6 complex included two hydrogen bonds at Lys106
and Glu155, whereas the AURKB–derivative 31 complex consisted of only hydrophobic interactions.
Like the AURKA–derivative 31 complex, the naphthalenyl group is surrounded by hydrophobic
residues, Leu83, Phe88, Ala157 and Leu207, and the side chain of Tyr156 resides in the pocket near
the naphthalenyl group. However, the hydrophilic residue Glu161 was near the same pocket; thus,
the docking of derivative 31 was not favored compared to that of AURKA. The results of Western
blotting analysis showed that even though derivative 31 decreased the phosphorylation of both
AURKA and AURKB in a dose- and time-dependent manner, the binding modes of derivative 31 to
AURKA and AURKB at the molecular level were different from each other.

In conclusion, 36 synthetic flavone derivatives at micromolar concentrations showed half-maximal
cell growth inhibitory effects against HCT116 human colon cancer cells. The structural conditions that
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showed good inhibitory effects on the growth of colon cancer cells were derived based on 3D-QSAR
calculations, including the CoMFA and CoMSIA methods, where a bulky group was favored at C2′ and
C3′ but was not favored at C4”, a hydrophobic group was favored at C4′, and an electronegative group
was not favored at C2′. In our previous study, a flavone derivative inhibited AURKB; thus, Western
blotting analysis was performed on derivative 31, which showed the best half-maximal inhibitory
effect on cell growth. Because treatment with derivative 31 decreased the phosphorylation of AURKA,
AURKB and AURKC in a dose- and time-dependent manner, this derivative was considered to exhibit
pan-aurora kinase inhibitory activity. In addition, flow cytometry results showed that derivative 31
induced apoptosis, and annexin V staining results showed that it triggered apoptosis by inhibiting
aurora kinases through G2/M cell-cycle arrest and a caspase-dependent mechanism. The results of
binding mode analysis between derivative 31 and AURKA and AURKB at the molecular level using
in-silico docking were consistent with the pharmacophores that we proposed. As a result, the synthetic
flavone studied here can be developed as a pan-aurora kinase inhibitor and a chemotherapeutic agent.

3. Materials and Methods

3.1. Preparation of 36 Synthetic Flavone Derivatives

The synthesis and identification of flavone derivatives containing hydroxy, fluoro, bromo, nitro,
methoxy, methyl, styryl, and/or naphthalenyl groups were reported previously [7]. The synthetic
scheme is provided as Scheme S1 [7]. The names of the derivatives are listed in Table 1. Infrared
(IR) spectra were collected using an FT–IR 4200 spectrophotometer (JASCO, Easton, MD, USA) with
attenuated total reflection (ATR PR0450-S). IR data as well as the melting points, yields, and purities are
provided in the Supplementary Materials. The structures of the derivatives are provided as Table S3.
IR spectra are provided in the Supplementary Materials.

3.2. Cell Culture

HCT116 human colon cancer cells were obtained from the American Type Culture Collection
(Rockville, MD, USA). The cells were maintained in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal bovine serum (CellGro/Corning, Manassas, VA, USA) at 37 ◦C in
a 5% CO2 atmosphere [27].

3.3. Clonogenic Long-Term Survival Assay

A long-term clonogenic assay was conducted as described previously [11]. Cells were treated
with flavone derivatives (0, 5, 10, 20, and 40 µM) for six days. At seven days after treatment, the cells
were stained with 0.1% crystal violet. Among the 36 derivatives, 24 derivatives inhibited the growth of
the cancer cells almost completely; thus their clonogenicities were measured at lower concentrations (0,
0.1, 0.5, 1, and 5 µM). The inhibitory activities of flavone derivatives on clonogenicity were measured
using densitometry (MultiGuage, Fujifilm, Japan), and GI50 values were computed using the SigmaPlot
software (version 12, SYSTAT, Chicago, IL, USA) [28].

3.4. Quantitative Structure–Activity Relationship (QSAR)

Three-dimensional quantitative structure–activity relationship (3D-QSAR) analysis was
performed on an Intel Core 2 Quad Q6600 (2.4 GHz) Linux PC with the Sybyl 7.3 software (Tripos,
St. Louis, MO, USA) using comparative molecular field analysis (CoMFA) and comparative molecular
similarity indices analysis (CoMSIA). The experiment followed previously reported methods [12].

3.5. Cell-Cycle Analysis by Flow Cytometry

Cell-cycle status was examined by flow cytometry using propidium iodide [29]. Briefly, HCT116
cells were treated with 5 µM derivative 31 for 0, 12, and 24 h, and fixed in 70% (v/v) ethanol. Next,
the cells were stained with 50 µg/mL propidium iodide solution containing 0.1% (v/v) Triton X-100,



Int. J. Mol. Sci. 2018, 19, 4086 11 of 13

0.1 mM EDTA, and 50 µg/mL RNase A. Cellular DNA contents were detected by a NucleoCounter
NC-3000 cytometer (ChemoMetec, Allerød, Denmark). Diploid (2N) and tetraploid (4N) cells represented
cells at the G1 and G2/M phases, respectively. 2N and 4N cells corresponded to those at the S phase.
Cells containing DNA lower than 2N DNA were considered as cells at the sub-G1 phase [30].

3.6. Apoptosis Assay by Annexin V Staining

Apoptosis assay was performed using a fluorescein isothiocyanate (FITC)-conjugated annexin V
kit (BD Pharmingen, San Diego, CA, USA) according to the manufacturer’s instructions. Fluorescence
was counted using a NucleoCounter NC-3000 image cytometer (ChemoMetec, Allerød, Denmark) [31].

3.7. Western Blotting Analysis

HCT116 cells were treated with derivative 31 for the indicated times. Cell lysates were prepared
and immunoblotted according to standard procedures. Antibody-reactive protein bands were
visualized using an enhanced chemiluminescence detection system (GE Healthcare, Piscataway, NJ,
USA). Antibodies against phospho-aurora kinase A (T288)/aurora kinase B (T232)/aurora kinase C
(T198), cleaved caspase-7 (Asp198), and poly(ADP-ribose) polymerase (PARP) were obtained from
Cell Signaling Technology (Beverly, MA, USA). Antibodies specific to GAPDH were obtained from
Santa Cruz Biotechnology (Santa Cruz, CA, USA) [6].

3.8. In-Silico Docking

To elucidate the molecular binding modes between the title compound and aurora kinases,
in-silico docking was conducted using AutoDock Vina. In addition, preparation of holoproteins and
apoproteins, as well as determination of binding site were performed using the Sybyl program
(Tripos) [32]. The 3D structures of aurora kinases were obtained from the protein databank.
The experiments followed previously reported methods [27].

3.9. Statistical Analysis

Statistical significance was analyzed using Student′s t-test [6]. A p-value of less than 0.05 was
considered statistically significant. All experiments were performed in triplicate.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/12/
4086/s1.
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3D-QSAR Three-dimensional quantitative structure–activity relationship
PARP poly(ADP-ribose) polymerase
TPB 4-[(4-[2-(trifluoromethyl)phenyl]amino]pyrimidin-2-yl)amino]benzoic acid
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