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Microbes (bacteria, yeasts, molds), in addition to plants and animals, were domesticated
for their roles in food preservation, nutrition and flavor. Aspergillus oryzae is a
domesticated filamentous fungal species traditionally used during fermentation of Asian
foods and beverage, such as sake, soy sauce, and miso. To date, little is known about
the extent of genome and phenotypic variation of A. oryzae isolates from different
clades. Here, we used long-read Oxford Nanopore and short-read Illumina sequencing
to produce a highly accurate and contiguous genome assemble of A. oryzae 14160,
an industrial strain from China. To understand the relationship of this isolate, we
performed phylogenetic analysis with 90 A. oryzae isolates and 1 isolate of the A. oryzae
progenitor, Aspergillus flavus. This analysis showed that A. oryzae 14160 is a member
of clade A, in comparison to the RIB 40 type strain, which is a member of clade
F. To explore genome variation between isolates from distinct A. oryzae clades, we
compared the A. oryzae 14160 genome with the complete RIB 40 genome. Our results
provide evidence of independent evolution of the alpha-amylase gene duplication,
which is one of the major adaptive mutations resulting from domestication. Synteny
analysis revealed that both genomes have three copies of the alpha-amylase gene,
but only one copy on chromosome 2 was conserved. While the RIB 40 genome had
additional copies of the alpha-amylase gene on chromosomes III, and V, 14160 had
a second copy on chromosome II and an third copy on chromosome VI. Additionally,
we identified hundreds of lineage specific genes, and putative high impact mutations
in genes involved in secondary metabolism, including several of the core biosynthetic
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genes. Finally, to examine the functional effects of genome variation between strains,
we measured amylase activity, proteolytic activity, and growth rate on several different
substrates. RIB 40 produced significantly higher levels of amylase compared to 14160
when grown on rice and starch. Accordingly, RIB 40 grew faster on rice, while 14160
grew faster on soy. Taken together, our analyses reveal substantial genome and
phenotypic variation within A. oryzae.

Keywords: Aspergillus oryzae, comparative genomics, Oxford Nanopore sequencing, fermentation, amylase, Koji

INTRODUCTION

Domestication is an evolutionary process that involves the
genetic modification of a species by breeding it in isolation
from its ancestral population in an effort to enhance its utility
to humans (Larson et al., 2014). Early farmers used selective
breeding to continuously cross individuals with desired traits,
eventually yielding crops with more food (i.e., larger/more
seeds and fruits) that were easier to harvest (i.e., loss of seed
shattering in grains), and livestock that were less aggressive and
more fertile (Purugganan and Fuller, 2009; Abbo et al., 2014;
Larson and Fuller, 2014; Larson et al., 2014). Domestication
can also lead to sub specialization and genetic divergence of
lineages within a given domesticated species as observed in
chickens, which were independently bred for meat and for eggs
(Rubin et al., 2010).

In parallel with plants and animals, microbes (bacteria, yeasts,
and molds) were also domesticated, most likely because of
their role in food preservation (Gibbons and Rinker, 2015;
Steensels et al., 2019). Archeological chemistry evidence of
ruminant dairy fat from ∼8,000 year old pottery shards in
Northern Europe suggest that humans were employing microbial
fermentation to produce cheese (Salque et al., 2013). Similarly,
the chemical signatures of a “proto rice wine” were discovered
embedded in ∼9,000 year old pottery shards from China
(McGovern et al., 2004). Further, the long-term relationship
between humans and fungi used for food fermentation is evident
through the analysis of archeological remains using (i) ancient
DNA sequencing (Cavalieri et al., 2003), (ii) microscopy paired
with morphological characterization (Liu et al., 2019) and,
(iii) direct isolation of characterization of microbial specimens
(Aouizerat et al., 2019, 2020).

Saccharomyces yeasts are the most thoroughly studied
domesticated fungi. In particular, there are a number of
domesticated lineages of Saccharomyces cerevisiae that have
been shaped by artificial selection for particular fermentation
applications. For example, lineages of beer yeasts have an
increased capacity to metabolize maltotriose (a highly abundant
sugar in wort) while also producing fewer off-flavor compounds
like 4-vinyl guaiacol (Gallone et al., 2016). In addition to yeasts,
several filamentous fungi have been domesticated. For instance,
the white mold Penicillium camemberti was domesticated for
its role in the maturation of soft cheeses (Ropars et al.,
2020). Artificial selection in P. camemberti resulted in white
color, increased aerial growth, reduced toxin production, and
increased inhibition of fungal competitors compared to its

progenitor (Ropars et al., 2020). Additionally, Penicillium
roqueforti was domesticated for the production of blue cheeses
like Roquefort (Dumas et al., 2020). Two distinct lineages
of P. roqueforti exist that are associated with pre-industrial
and industrial cheese production, and possess beneficial traits
for these usages.

Aspergillus oryzae is a domesticated filamentous fungal species
used in the production of traditionally fermented Asian foods
and beverages, such as shoyu, miso, sake, and meju (Machida
et al., 2005, 2008; Gibbons et al., 2012; Alshannaq et al., 2018;
Watarai et al., 2019). A. oryzae was domesticated from Aspergillus
flavus (Geiser et al., 1998; Machida et al., 2005; Gibbons
et al., 2012), or perhaps the closely related species Aspergillus
aflatoxiformans or Aspergillus minisclerotigenes (Kjaerbolling
et al., 2020). As a result of domestication and specialization
to the fermented food environment, A. oryzae has reduced
capacity to produce many secondary metabolites like aflatoxin
and cyclopiazonic acid, and increased carbohydrate metabolism,
in part due to the duplication of the alpha-amylase encoding
gene (Machida et al., 2005; Hunter et al., 2011; Gibbons et al.,
2012; Nemoto et al., 2012). Recently, Watarai et al. (2019)
sequenced and analyzed the genomes of 82 A. oryzae strains,
and identified eight distinct clades. However, little is known
about the genome and functional divergence between these
A. oryzae groups.

In this study, we used a combination of short-read and long-
read DNA sequencing to assemble a highly contiguous genome
of the clade A isolate A. oryzae 14160, originally isolated from
China. To gain insight into A. oryzae genome variation, we
compared the A. oryzae 14160 genome to the A. oryzae RIB
40 (clade F) reference genome. We also examined phenotypic
differences between the two isolates by measuring amylase
activity and growth rate on several culture medias. Our results
show that A. oryzae 14160 and RIB 40 differ substantially in terms
of their genomes and phenotypes.

MATERIALS AND METHODS

Isolates, Fungal Culturing, and DNA
Extraction
A. oryzae 14160 was originally isolated from Xinyang City, Henan
Province, China. Spores were cultured in potato dextrose agar
(PDA) at 30◦C for 48 h. DNA was extracted directly from
spores following the protocol from Lee et al. (2017). Qubit and
Nanodrop were used to quantify DNA.
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Illumina and Oxford Nanopore
Sequencing
PCR-free Illumina libraries were constructed and sequenced by
Novogene. Illumina sequencing was conducted in paired-end
150 bp format. Raw reads were deduplicated by Tally using “with-
quality” and “pair-by-offset” parameters to remove exact paired-
end duplicates (Davis et al., 2013). Deduplicated reads were then
trimmed with Trim Galore1 using “stringency 1,” “quality 30,”
and “length 50” parameters to remove any adaptor sequences and
low quality positions. Error correction was performed using the
default settings in SPAdes (Bankevich et al., 2012). Data quality
was assessed using FASTQC2.

Oxford Nanopore (ONT) libraries were prepared using 400
ng of gDNA following the manufacturer’s instructions with
the 1D Rapid Sequencing Kit (SQK-NSK007). ONT sequencing
was performed on a MinION following the manufacturer’s
instructions. The A. oryzae 14160 library was run for 12 h.
ONT reads were mapped against the A. oryzae 14160 genome
assembly to assess quality of reads using minimap2 (Li,
2018). Raw Illumina and ONT data for A. oryzae 14160 are
available through the NCBI SRA under BioProject accession
number PRJNA717291.

Phylogenetic Analysis of A. oryzae 14160
To reconstruct the evolutionary history of A. oryzae 14160 we
analyzed the phylogenetic relationship of 89 A. oryzae strains
from Gibbons et al. (2012) and Watarai et al. (2019) as well
as the A. oryzae RIB 40 and A. flavus 3357 reference genomes
(Machida et al., 2005; Nierman et al., 2015). BioProject accession
numbers for samples are as follows: PRJDB7763 for TK-10,
TK-11, TK-12, TK-13, TK-14, TK-15, TK-16, TK-17, TK-18,
TK-19, TK-1, TK-20, TK-21, TK-22, TK-23, TK-24, TK-25, TK-
26, TK-27, TK-28, TK-29, TK-2, TK-30, TK-31, TK-32, TK-33,
TK-34, TK-35, TK-36, TK-37, TK-38, TK-39, TK-3, TK-40, TK-
41, TK-42, TK-43, TK-44, TK-45, TK-46, TK-47, TK-48, TK-49,
TK-4, TK-50, TK-51, TK-52, TK-53, TK-54, TK-55, TK-56, TK-
57, TK-58, TK-59, TK-5, TK-60, TK-61, TK-62, TK-63, TK-64,
TK-65, TK-66, TK-67, TK-68, TK-69, TK-6, TK-70, TK-71, TK-
72, TK-73, TK-74, TK-75, TK-76, TK-77, TK-78, TK-79, TK-7,
TK-80, TK-81, TK-82, TK-8, and TK-9, and PRJNA164603 for
AO_302 (SRRC 302), AO_331 (RIB 331), AO_333 (RIB 333),
AO_537 (RIB 537), AO_632 (RIB 632), AO_642 (RIB 642),
and AO_949 (RIB 949). First, Illumina whole-genome data was
de-duplicated, and adapter and quality trimmed as described
above. Next, sequence reads from each isolate were mapped
to the A. oryzae RIB40 reference genome with BWA-MEM
v0.7.15 (Li and Durbin, 2009, 2010). SAM files were converted
into sorted BAM format using the samtools v1.4.1 “view” and
“sort” option (Li et al., 2009). Variant calling was performed
with GATK using the “Germline short variant discovery” best
practices pipeline (McKenna et al., 2010). The GATK “Haplotype
Caller” option was used to call SNPs. Genotype calls for the
92 samples were combined using the “GenotypeVCFs” option.
SNPs were extracted and filtered using the “SelectVariants”

1http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
2https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

and “VariantFiltration” options. SNP filtering was performed
using “hard filtering” with the parameters: “QD < 21.0 |
| FS > 0.5 | | MQ < 60.0 | | MQRankSum < −0.2 |
| ReadPosRankSum < −4.0 | | SOR > 1.0.” Phylogenetic
analysis was performed with RAxML (Stamatakis, 2014) with
the GTRGAMMA model and 100 bootstrap replicates. The
phylogenetic tree was visualized with ggtree (Yu, 2020) and
ggplot2 (Wickham, 2009). Phylogenetic analysis was conducted
independently with alignments of 243,486, 7,641, and 3,340
SNPs. Phylogenetic trees generated from reduced SNP marker
alignments were performed to investigate the impact of linkage
on the inferred phylogenetic relationship. SNPs were separated by
a minimum of 4 and 10 Kb for the 7,641, and 3,340 SNP marker
sets, respectively.

Genome Assembly and Annotation
The A. oryzae 14160 genome was assembled using a hybrid
approach that combined the short-read Illumina and long-read
ONT data. Error correction and genome assembly was performed
with the MaSuRCa assembler with the default parameters (Zimin
et al., 2013). The quality of the A. oryzae 14160 genome assembly
was assessed with QUAST (Gurevich et al., 2013) and genome
completeness was evaluated with BUSCO (Simao et al., 2015).

Gene prediction and annotation of A. oryzae 14160 strain
were performed using the Funannotate pipeline3. Gene model
prediction was evaluated with BUSCO (Simao et al., 2015).
Functional annotation was performed with Interproscan 5 (Jones
et al., 2014) using the default settings and complemented with
Phobius (Kall et al., 2004, 2007) for transmembrane topology
and signal peptide prediction. Finally, secondary metabolism
associated gene clusters were predicted using antiSMASH using
the “strict” detection strictness setting (Medema et al., 2011).
The A. oryzae 14160 genome assembly is available through the
BioProject accession number PRJNA717291.

Whole Genome Alignment
MUMer was used to align the A. oryzae 14160 assembly to the RIB
40 reference genome using the parameters “-mum,” “-b,” and “-c”
(Delcher et al., 1999). The Nucmer alignment tool was used to
identify conserved synteny between the A. oryzae 14160 and RIB
40 genomes using the “-maxmatch” and “-c 1000” parameters.
Nucmer output was filtered using the Delta-Filter tool from with
the parameter “-I 4000.” Alignment coordinates were extracted
by the “show-coords” function from MUMmer using the “-r”, “-
c,” and “−l” parameters. Whole genome synteny was visualized
using Circos (Krzywinski et al., 2009).

Alpha-Amylase Locus Synteny Analysis
A. oryzae isolates possess between 1 and 4 copies of the alpha-
amylase encoding gene (Watarai et al., 2019). We compared the
alpha-amylase encoding genes and their flanking regions between
A. oryzae RIB 40 and A. oryzae 14160 to determine whether
the duplication events shared an evolutionary history, or evolved
independently. To identify the alpha-amylase encoding genes in
A. oryzae 14160 we used BLASTN with the A. oryzae RIB 40

3https://github.com/nextgenusfs/funannotate
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amy1 gene (AO090023000944) as the query and A. oryzae 14160
predicted transcripts as the subject, with an e-value cutoff of
1e-30 (Altschul et al., 1997). We also conducted this BLASTN
search with the A. oryzae 14160 genome assembly. These searches
yielded three independent loci containing the alpha-amylase
encoding gene in the A. oryzae 14160 genome. Finally, the
Funannotate annotation was used for validation (each of the
three alpha-amylase copies in the A. oryzae 14160 genome were
annotated as “AMY1”).

Next, we used SimpleSynteny to visualize the synteny between
A. oryzae RIB40 and the A. oryzae 14160 alpha-amylase loci,
using the default settings (Veltri et al., 2016). To increase
confidence that our results were not the byproduct of assembly
errors, we also assembled the A. oryzae 14160 genome with
Canu (ONT data only) and SPAdes (ONT and Illumina data),
using the default settings (Bankevich et al., 2012; Koren et al.,
2017). We reasoned that independent misassembles of identical
loci would be exceedingly rare. Synteny analysis of each of
the three A. oryzae 14160 alpha-amylase loci (including five
genes upstream and five genes downstream of the alpha-amylase
encoding genes) were visualized between the MaSuRCA (primary
assembly), Canu, and SPAdes assemblies and the A. oryzae RIB 40
reference genome. Additionally, because some alpha-amylase loci
in A. oryzae contain the a transposable element likely responsible
for duplications, we used BLASTN to search for the presence
of the Tc1/Mariner class putative transposable element (NCBI
accession AB072434.1) in the A. oryzae 14160 genome using an
e-value cutoff of 1e-30. Finally, to provide further evidence for
accurate assembly of the alpha-amylase loci, we used BLASTN
searches to identify long ONT reads that spanned the alpha-
amylase gene and flanking genes that differentiated each A. oryzae
14160 alpha-amylase loci using an e-value cutoff of 1e-30 and a
query coverage cutoff of 80%.

Alpha-Amylase Upstream Sequence
Analysis
We aligned the 1 Kb upstream region of each of the six alpha-
amylase genes to explore whether divergence between gene copies
or strains correlated with amylase activity. Bedtools was used to
extract the 1 Kb upstream region from each alpha-amylase locus
(Quinlan and Hall, 2010). The alignment was performed with
MAFFT with the following parameters: “–kimura 1,” “–op 3.0,”
and “–ep 0.5” (Katoh and Standley, 2013).

Single Nucleotide Polymorphism
Analysis
We predicted single nucleotide polymorphisms (SNPs)
in A. oryzae 14160 vs. the A. oryzae RIB 40 reference
genome (Machida et al., 2005). A. oryzae 14160 quality and
adapter trimmed and error corrected Illumina reads were
mapped against the A. oryzae RIB 40 reference genome
using BWA-MEM v0.7.15 (Li and Durbin, 2009, 2010).
SNPs were called using freebayes v1.3.1 with the default
settings with the exception of setting ploidy to haploid
(–ploidy = 1) (Garrison and Marth, 2012). Next, we used
vcftools v0.1.14 to filter variants with the following parameters

“–remove-indels,” “–remove-filtered-all,” “–min-meanDP
25,” “–minQ 20,” “—recode,” and “–recode-INFO-all” (Danecek
et al., 2011). SNPs from this filtered VCF file were annotated
with SnpEff v4.3t using “Aspergillus_oryzae” as the genome
database (Cingolani et al., 2012). Using the SnpEff output, we
calculated missense variant rate for each gene to identify genes
with relatively elevated occurrences of missense variants. Per
gene missense variant rate was calculated as:

Missense Variant Rate =
number of missense variants

length of all exons
(1)

Gene Ontology Enrichment of gene sets with SNP profiles of
interest was conducted through the FungiFun2 server4, using the
default settings (Priebe et al., 2015).

Identification of Lineage Specific Genes
To identify gene absences specific to the A. oryzae 14160
and RIB40 genomes, we used control-FREEC to estimate the
copy number of each 1 kb window with a 200 bp step size
(Boeva et al., 2012). The following parameters were used:
window = 10, telocentromeric = 0, minExpectedGC = 0.33,
and maxExpectedGC = 0.63. To estimate CNV for each gene,
we used a custom perl script that takes gene coordinates and
the control-FREEC output as input (CNV_gene-overlap.pl script
is available here: https://github.com/DaRinker/PolarBearCNV)
(Rinker et al., 2019). Entire genes (a minimum of start codon
to stop codon) with copy numbers of zero when mapped
against the non-self genome assembly (i.e., A. oryzae RIB 40
vs. A. oryzae 14160 reference, or A. oryzae 14160 vs. A. oryzae
RIB 40 reference) were considered lineage specific genes in the
reference genome.

Amylase Activity Assays
We used a quantitative method to measure amylase activity
via the Megazyme (Bray, Ireland) alpha-amylase Assay Kit
(Ceralpha Method). Short grain sushi rice was sterilized and
cooked in distilled water at a ratio of 1:1.7 at 121◦C for 15 min.
Fifteen grams of cooked rice was inoculated with ∼100,000
conidia suspended in 20 µL H2O and incubated for 48 h at
32◦C. The entire sample was transferred into a 50 ml centrifuge
tube, washed with 10 ml distilled H2O and vortexed for 1 min.
A 2 ml aliquot of wash water was transferred to a 5 ml tube
and centrifuged at 1,000 RPM for 10 min. A one mL aliquot of
the supernatant was diluted with 49 mL alpha-amylase buffer.
Buffered enzyme extract was preheated at 40◦C for 5 min
after which a 0.1 mL aliquot was added to an equal amount
of Megazyme Ceralpha Amylase HR Reagent in triplicate and
maintained at 40◦C for 10 min. Next, 1.5 mL 1% sodium
triphosphate solution was added to halt the reaction. Control
samples were prepared by immediately adding the sodium
triphosphate solution to the enzyme-substrate solution. The
samples and controls were transferred into a 24 well microplate
and absorbance was measured at 405 nm.

We also used an iodine-based qualitative assay to examine
amylase activity (Fuwa, 1954) while isolates grew on starch agar

4https://elbe.hki-jena.de/fungifun/
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(per 1 L: 3 g beef extract, 10 g soluble starch and 12 g agar at pH
7.5). In this assay, iodine forms a black/dark blue complex with
starch, but does not stain sugars, resulting in a yellowish zone
surrounding the colony where starches have been metabolized.
∼10,000 conidia suspended in 20 µL H2O were pipetted onto
the center of the starch plates. Plates were incubated at 32◦C for
39 h then flooded with iodine. This experiment was performed in
triplicate. Plates were imaged with the Interscience Scan1200.

Proteolytic Assay
To examine the proteolytic activity of isolates, we performed
an established zone of clearance assay (Rajamani and Hilda,
1987). Briefly, ∼100,000 conidia suspended in 20 µL H2O were
inoculated onto media consisting of 2.5 g agar, 2.5 g powdered
skim milk and 125 mL distilled H2O. Ten biological replicates
of each strain were grown at 32◦C for 72 h, at which time the
zone of clearance was measured at two independent locations
using digital calipers. The size of the zone is positively associated
with higher proteolytic activity (Rajamani and Hilda, 1987). A 2-
talied t-test was conducted to compare zone of clearance size
between isolates.

Growth Rate of A. oryzae 14160 and
A. oryzae RIB 40
We compared the growth rate of A. oryzae 14160 and RIB
40 on starch agar (as defined above), PDA, rice agar and soy
agar. PDA (Fisher Scientific DF0013) was prepared according to
manufacturer instructions. Rice agar was prepared using 75 g
of short grain sushi rice which was powered in a dry blender,
and 15 g agar in 1 L distilled H2O. For the soybean agar, dried
soybeans were soaked in H2O for 24 h, then 30 g soybean and
15 g agar were pureed together in 1 L distilled H2O. All media
was sterilized and cooked via autoclaving, and 30 mL of media
was plated into petri dishes. 20 µL of 500,000 conidia/mL spore
solutions were pipetted onto the center of each plate. All growth
rate experiments were performed in 10 replicates. Plates were
incubated at 32◦C for 39 h. Because colony morphology is not
always uniformly circular, colony diameter was measured at two
independent points for each colony using digital calipers. The
average colony diameter for each plate value was used for the
statistical analysis. One-way ANOVA was used to test the null
hypothesis that growth rate did not differ between culture media
for each isolate. T-tests were performed on each culture media to
test the null hypothesis that A. oryzae 14160 and RIB 40 growth
rates did not differ.

RESULTS

DNA Sequencing Data
We generate 830,485 ONT reads totaling ∼5 billion bp with
an average and median read length of 6,065 and 4,092 bp,
respectively, and an N50 value of 10,289 bp (Supplementary
Figure 1). 96.69% of ONT reads mapped to the A. oryzae 14160
assembly. For Illumina data, a total of 17,286,313 paired-end
reads were retained after adapter trimming, quality trimming,
and error correction.

Phylogenetic Analysis
We performed phylogenetic analysis to investigate the
relationship of A. oryzae 14160 in relation to the eight major
clades of A. oryzae (Watarai et al., 2019). Specifically, we
identified 243,486 SNPs from publicly available Illumina
whole-genome sequencing data from 91 A. oryzae isolates and
A. flavus NRRL 3357 (Gibbons et al., 2012; Nierman et al., 2015;
Watarai et al., 2019) (see Methods for NCBI BioProject accession
numbers). A phylogenetic tree was inferred from the alignment
of SNPs with RAxML (Stamatakis, 2014) and the tree was rooted
by A. flavus NRRL 3357. Our results were identical with Watarai
et al. (2019) in showing that A. oryzae isolates group into eight
major clades (A-H) (Figure 1). A. oryzae 14160 was nested
within clade A, which contained 26 other A. oryzae isolates from
Japan (Watarai et al., 2019), and A. oryzae RIB 40 was nested
within clade F (Figure 1). To explore the impact of SNP marker
linkage on inferred evolutionary relationship of isolates, we also
conducted phylogenetic analysis using smaller subsets of SNP
markers separated by a minimum physical distance of 4 and
10 Kb. For all analyses, the clade compositions were identical
(Figure 1 and Supplementary Figures 2, 3).

A. oryzae 14160 Genome Assembly and
Annotation
De novo hybrid genome assembly of A. oryzae 14160 was
performed with the MaSuRCA assembler (Zimin et al., 2013).
The A. oryzae 14160 genome was assembled into 24 scaffolds
with a cumulative length of 36.5 Mb, largest scaffold length of
4.15 Mb, an N50 of 2.21 Mb and an N90 of 937 Kb. Genome
assessment was performed with Quast (Gurevich et al., 2013)
and showed a 95% genome fraction compare to the reference
A. oryzae RIB40 genome. Genome completeness was evaluated
with BUSCO (Simao et al., 2015) and showed 99% recovery of
complete BUSCO genes with (0.1% fragmented BUSCO genes
and 0.9% missing BUSCO genes). Both analyses indicate that the
A. oryzae 14160 genome assembly is of high quality in terms of
contiguity and accuracy.

Genome prediction and annotation of A. oryzae 14160
was performed using the Funannotate pipeline which relies
on Augustus for gene prediction (Stanke and Waack, 2003).
Using this pipeline, we predicted 11,852 protein-coding genes
in A. oryzae 14160, which is similar to the RIB 40 genome
(12,074 protein-coding genes). The gene set was assessed for
completeness using BUSCO, resulting in 93% completeness with
only 5% fragmented genes and 1.7% missing genes.

A. oryzae 14160 and RIB40
Chromosomal Alignment
We used Mummer to investigate the synteny between the
24 A. oryzae 14160 scaffolds and the eight A. oryzae RIB
40 chromosomes. contig_8, contig_10, contig_20, contig_15,
contig_16, and contig_7 mapped to chromosome 1, contig_14
and part of contig_5 mapped to chromosome 2, contig_1
and contig_13 mapped to chromosome 3, contig_2, contig_22,
contig_23, and contig_24 mapped to chromosome 4, contig_12,
contig_11, contig_19, and contig_25 mapped to chromosome
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FIGURE 1 | Phylogenetic relationship of A. oryzae 14160 and RIB 40. Maximum-likelihood phylogeny of 91 A. oryzae isolates and A. flavus NRRL 3357. Clades are
labeled with respect to the nomenclature used by Watarai et al. (2019). A. oryzae 14160 and A. oryzae RIB 40 are outlined with a black back and belong to clades F
and A, respectively.

5, contig_7 mapped to chromosome 6, contig_6 and contig_18
mapped to chromosome 7, and contig_4 and contig_3 mapped
to chromosome 8 (Figure 2). Nearly all contigs from A. oryzae
14160 mapped uniquely to their respective RIB40 chromosome
with exception of contig_5 and contig_9, which aligned to
multiple chromosomes (Figure 2).

Alpha-Amylase Synteny
We identified three distinct loci containing the alpha-amylase
encoding gene in the A. oryzae 14160 genome (Figure 3)
(alpha-amylase gene IDs = contig_14: FUN_004371, contig_5:
FUN_008670, and contig_7 = FUN_010081). The alpha-
amylase locus on A. oryzae 14160 contig_14 displayed
conserved synteny with the A. oryzae RIB 40 chromosome
2 alpha-amylase locus (Figure 3A). In addition to the
chromosome 2 locus, A. oryzae RIB 40 harbors alpha-
amylase loci on chromosomes 3 and 5, however, we did
not observe shared synteny between these loci in A. oryzae
14160 (Figures 3B,C).

The A. oryzae 14160 genome contained alpha-amylase loci
on contig_5 and contig_7, which map to A. oryzae RIB40

chromosomes 2 and 6, respectively (Figure 2). The contig_5
locus contains 9 predicted genes not present on the A. oryzae
RIB 40 genome nested within two syntenic genes (FUN_008665
and FUN_008675) (Figure 3B). Importantly, this locus was
assembled identically in the A. oryzae 14160 MaSuRCA and
Canu assemblies, while the SPAdes assembly was also identical
with the exception of an assembly break that did not include
an additional copy of the genes FUN_008673 and FUN_008668
(Figure 3B). Additionally, we identified several long ONT
reads (>30 Kb) that spanned the alpha-amylase gene as well
as up-stream and/or down-stream flanking region genes.
Specifically, one ONT read (ONT read ID 07fba920-71fc-
460e-ba46-46ebda40194a) spanned FUN_008668–FUN_008672
(contig_5:1,224,311–1,258,020) while another (ONT read ID
a63546c6-6767-4fcf-9051-9393777f6572) spanned FUN_008669–
FUN_008673 (contig_5: 1,231,983–1,265,735). We also identified
a ∼9 Kb region nearly identical to the Tc1/mariner class
transposable element directly upstream of FUN_008671
(contig_5: 1,240,697–1,245,364), which has been previously
observed in the some alpha-amylase loci in A. oryzae strains
(Hunter et al., 2011).
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FIGURE 2 | Genome architecture between A. oryzae 14160 and RIB 40. Circos plot displaying similarity between the A. oryzae 14160 (left half of circle) and RIB 40
(right half of circle) genomes. The innermost ring represents A. oryzae 14160 scaffold ID or A. oryzae RIB 40 chromosome ID, and colored regions connecting the
two represent regions with high sequence similarity (≥95%, length ≥ 10 Kb). The outer circles represent lineage specific genes and genes located within putative
secondary metabolite encoding gene clusters (SecMet). The three small contigs to the left of A. oryzae RIB 40 chromosome 8 are AP007160, AP007177, and
AP007156 (from left to right).

The A. oryzae 14160 alpha-amylase locus on contig_7
mapped to A. oryzae RIB 40 chromosome 6, and displayed
conserved synteny for the majority of the locus albeit without
the alpha-amylase encoding gene (FUN_010081) and the
upstream flanking gene (FUN_010082) in A. oryzae RIB 40
(Figure 3C). We identified two long ONT reads that spanned
the genomic regions harboring FUN_010076–FUN_010082
and FUN_010076–FUN_010083, respectively (ONT read
ID 05e9d1bc-f5c1-4a64-85a2-6d5df71f58db = contig_7:
977,243–1,011,315 and ONT read ID f5434ebf-bbda-48dd-
8f74-28ed565a5c6b = contig_7: 977,137–1,018,308). Again, we
identified the Tc1/mariner class transposable element directly
upstream of FUN_010082 (contig_7: 1,013,761–1,018,433).
These results suggest convergent evolution of alpha-amylase
duplication in the A. oryzae 14160 and RIB 40 genomes.

Alpha-Amylase Upstream Region
Conservation
To investigate if differences in the regulatory region of the alpha-
amylase genes corresponded to differences in amylase activity

or starch metabolism, we aligned the 1 Kb upstream region of
the six alpha-amylase genes. We observed only two polymorphic
sites (Supplementary Figure 4). Specifically, we observed a
transversion from A to C at one position in the A. oryzae 14160
alpha-amylase gene on chromosome 6 (contig_7). In another
position, we observed a transversion from T to A in the A. oryzae
RIB 40 chromosome 2 copy. These results suggest that it is
unlikely that differences in the regulatory regions of the alpha-
amylase genes contribute to differences in amylase activity or
starch metabolism.

Single Nucleotide Polymorphism
Analysis
We used freebayes and vcftools to identify high quality
SNPs in A. oryzae 14160 relative to the A. oryzae RIB 40
reference genome. We identified 130,311 SNPs in A. oryzae
14160 (∼1 SNPs per 290 bp) and used SnpEff to annotate
and predict the putative impact of these SNPs (Cingolani
et al., 2012). ∼35% of SNPs were located within the coding
region of genes. Of this subset, 55.64% were silent variants,
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FIGURE 3 | Independent evolution of alpha-amylase duplication in A. oryzae 14160. Synteny analysis of the conserved A. oryzae 14160 alpha-amylase locus on
chromosome 2 (A), the non-syntenic alpha-amylase locus on chromosome 2 (B), and the non-syntenic alpha-amylase locus on chromosome 6 (C) from three
independent genome assemblies of A. oryzae 14160 (MaSuRCA, Canu, and SPAdes) and the reference RIB 40 genome. For each locus, gene direction is indicated
by pointed ends, jagged edges indicate a genomic region without protein-coding genes that is skipped for figure clarity. Gene names are with respect to the primary
A. oryzae 14160 annotation [generated from the MaSuRCA assembly (Zimin et al., 2013) and annotated with the Funannotate pipeline]. Scaffold ID or chromosome
number and coordinates are labeled. “*” represents the alpha-amylase encoding genes. Lines connecting genes indicated conservation, and flip arrows represent a
change in gene direction (B). Locus schematics were generated with SimpleSynteny (Veltri et al., 2016).

43.78% were missense variants, and 0.58% were nonsense
variants. We quantified the missense variant rate in each
gene which ranged from 0 (no missense variants) to 0.039
(mean = 0.0014, median = 0.00047). We considered the upper
0.05% of per-gene missense variant rates as significant (≥0.0152),
which included 60 genes (Supplementary Figure 5). This
subset of genes showed no significant enrichment for GO

terms. A variety of PFAM protein domains were identified
in this subset of genes including transporter, protein kinase,
glycosyl hydrolase, endonuclease, transposase, and transcription
factor domains (Supplementary Table 1). Additionally,
five genes with elevated missense variant rates were part of
secondary metabolite encoding gene clusters (AO090026000589,
AO090102000459, AO090103000221, AO090103000351,
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FIGURE 4 | Examples of lineage specific genes in secondary metabolite encoding gene clusters. Lineage specific genes with functional involvement in secondary
metabolite production, regulation, and transport in A. oryzae 14160 (A,B), and RIB 40 (C,D). For each example, a schematic of the secondary metabolite encoding
gene cluster is shown where black boxes represent genes. The first and last gene, scaffold/chromosome ID and scaffold/chromosome coordinates are labeled for
each example. Graphs below the gene cluster schematic display the log10 read depth across the gene cluster for each isolate.

and AO090701000565), although we did not observe an
overrepresentation of genes in secondary metabolite encoding
gene clusters compared to the background (Fisher’s Exact
Test, p = 0.60). Two of the genes with elevated missense
variant rates neighbored one another (AO090003001358
and AO090003001359) and both genes encode proteins with
predicted glycosyl hydrolases family 18 PFAM domains.
Interestingly, the set of genes with elevated missense variant
rates had significantly shorter coding sequences compared with
the background genes (meanelevatedmissensevariantrategenes = 785 bp,
meanbackgroundgenes = 1,352 bp; Wilcoxon Signed-Rank
Test, p = 1.1e-9).

Additionally, we examined gene enrichment analysis for
the 480 genes that had one or more predicted HIGH impact
mutations, as defined by SnpEff (i.e., loss of stop codon,
gain of stop codon, loss of start codon, splice donor variant,
and splice acceptor variant) (Supplementary Table 2). We
identified 10 biological process GO terms that were enriched
in the genes containing HIGH impact mutations [GO:1900557
(emericellamide biosynthetic process), p = 0.0003; GO:0050763
(depsipeptide biosynthetic process), p = 0.0006; GO:1900555
(emericellamide metabolic process), p = 0.0006; GO:0032774
(RNA biosynthetic process), p = 0.0013; GO:1901336 (lactone
biosynthetic process), p = 0.0013; GO:1900560 (austinol
biosynthetic process), p = 0.0028; GO:1900558 (austinol
metabolic process), p = 0.0028; GO:1900561 (dehydroaustinol

metabolic process), p = 0.0036; GO:1900563 (dehydroaustinol
biosynthetic process), p = 0.0036; GO:0008610 (lipid biosynthetic
process), p = 0.0062]. In support of the functional enrichment
results, we identified HIGH impact mutations in 9 of the
75 secondary metabolite biosynthetic “backbone” genes
[i.e., polyketide synthase (PKS), non-ribosomal peptide
synthetase (NRPS), polyketide synthase/non-ribosomal peptide
synthetase hybrid (PKS-NRPS), dimethylallyl tryptophan
synthase (DMATS), and diterpene synthase (DTS)]. Of these
genes, eight contained nonsense variants (AO090009000052,
AO090009000131, AO090010000404, AO090011000328,
AO090038000098, AO090038000543, AO090103000224, and
AO090103000355) and one gene contained a nonstop variant
(AO090001000009). AO090009000131 and AO090010000404
contained two nonsense variants, and AO090011000328
contained a nonsense variant and a splice acceptor variant. Gene
length (combined exon length) was not significantly different
between genes with HIGH impact mutations and genes lacking
HIGH impact mutations (meanhighimpactvariantgenes = 1,418 bp,
meanbackgroundgenes = 1,346 bp; Wilcoxon Signed-Rank Test,
p = 0.46).

Lineage Specific Genes
We used control-FREEC to predict gene deletions each gene in
the A. oryzae RIB 40 and A. oryzae 14160 reference genomes.
Genes that were absent (copy number = 0) in the mapped genome
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FIGURE 5 | Alpha-amylase activity in A. oryzae 14160 and RIB 40. (A) Quantitative analysis of amylase activity during solid state rice fermentation. Amylase activity
was measured in triplicate using the Megazyme alpha-amylase Assay Kit. Black and Gray box plots and text represent the A. oryzae 14160 and RIB 40 isolates,
respectively. (B) Qualitative iodine based amylase activity assay. Isolates were grown on starch agar and media was stained with iodine. Yellow zones surrounding
the fungal colonies (white arrows) indicate amylase activity.

were considered lineage specific genes in the reference genome.
Using this approach, we identified 447 and 251 genes in the
A. oryzae RIB 40 and A. oryzae 14160 genomes, respectively
(Figure 2 and Supplementary Tables 3, 4). Lineage specific
genes were often found in clusters of neighboring genes, likely
because of deletion, duplication or insertion events spanning
multiple genes. For instance, A. oryzae RIB 40 lineage specific
genes were found in 87 loci, with only 18 loci containing
one gene (average = 5.1, median = 3, max = 34). The largest
cluster of lineage specific genes in A. oryzae RIB 40 contained
34 genes and overlapped the aflatoxin and cyclopiazonic acid
encoding gene clusters (Figure 4C). A. oryzae 14160 lineage
specific genes were found in 101 loci, with 41 loci containing
one gene (average = 2.5, median = 2, max = 14). The largest

lineage specific gene cluster in A. oryzae 14160 contained 14 genes
(FUN_008412–FUN_008425).

A. oryzae RIB 40 lineage specific genes were functionally
enriched for the biological process GO terms “secondary
metabolite biosynthetic process” (p = 7.87e-10), and
“sterigmatocystin biosynthetic process” (p = 1.35e-5), and
the molecular function GO terms “oxidoreductase activity,
acting on paired donors, with incorporation or reduction of
molecular oxygen” (p = 1e-6), “heme binding” (p = 1.24e-5),
“iron ion binding” (p = 1.91e-5), and “electron carrier activity”
(p = 2.21e-5). Because we observed an overrepresentation of
lineage specific genes involved in secondary metabolism in
A. oryzae RIB 40, we also tested whether this trend was present
in A. oryzae 14160 lineage specific genes. For this analysis, we
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tested whether genes annotated within secondary metabolite
encoding gene clusters (as annotated by antiSMASH; Medema
et al., 2011) were overrepresented in the lineage specific genes
vs. the non-lineage specific genes. Indeed, we observed an
overrepresentation of genes involved in secondary metabolism
in the A. oryzae 14160 lineage specific genes (Fisher’s exact test,
p = 0.0013). Specifically, 11.5% of A. oryzae 14160 lineage specific
genes were annotated within secondary metabolite encoding
gene clusters compared to 5.6% in the background, and these
genes fell within 11 independent secondary metabolite encoding
gene clusters. Using the same approach, we again identified an
enrichment of genes in secondary metabolite encoding gene
clusters in A. oryzae RIB 40 (Fisher’s exact test, p = 2e-11).

A. oryzae 14160 and A. oryzae RIB 40
Amylase Activity, Proteolytic Activity, and
Growth Rate
Because we observed widespread genomic variation between
A. oryzae 14160 and RIB 40, we were interested in how
this variation may affect phenotype. Thus, we measured and
compared amylase activity and growth rate of both strains.
We hypothesized that alpha-amylase activity would be similar
between A. oryzae 14160 and RIB 40 because both strains possess
three copies of the alpha-amylase encoding gene (Figure 3).
Interestingly, quantitative analysis of amylase activity during
solid-state rice fermentation, and qualitative amylase activity
on starch agar showed that A. oryzae RIB 40 produces higher
levels of amylase (Figure 5). However, A. oryzae 14160 and
RIB 40 did not significantly differ in their proteolytic activity
(Supplementary Figure 6).

Both strains showed significantly different growth rates
between media types (A. oryzae 14160: Oneway Anova, d.f. = 3,
F-ratio = 31.4, p = 1.73e-10 and A. oryzae RIB 40: Oneway Anova,
d.f. = 3, F-ratio = 22.8, p = 1.07e-8) (Supplementary Figure 7).
A. oryzae 14160 grew fastest on PDA and starch, while growing
significantly slower on soy, followed by rice (Supplementary
Figure 7A). A. oryzae RIB 40 grew fastest on PDA, while growth
on starch, rice and soy were not significantly different from
one another (Supplementary Figure 7B). We also compared
the growth rate of A. oryzae 14160 vs. RIB 40 for each media
type. A. oryzae 14160 grew significantly faster on soy (t-test,
t-ratio = −2.3, p = 0.03) and starch (t-test, t-ratio = −5.1,
p = 0.00003) while A. oryzae RIB 40 grew significantly faster on
PDA (t-test, t-ratio = 2.3, p = 0.017) and rice (t-test, t-ratio = 2.8,
p = 0.006) (Figure 6).

DISCUSSION

Here, we used long-read ONT and short-read Illumina
sequencing data to assemble an accurate and highly contiguous
genome of A. oryzae 14160. To date, only four A. oryzae isolates
have genome assemblies comprised of fewer than 30 scaffolds
(RIB40, BP2-1, BCC7051, and TK-29) (Thammarongtham et al.,
2018; Watarai et al., 2019; Jeon et al., 2020). These isolates belong
to clade F (RIB 40), clade E (BCC7051), clade BP2-1 (BP2-1), and
a smaller clade closely related the BP2-1 clade (TK-29) (Watarai

FIGURE 6 | Growth characteristics of A. oryzae 14160 and RIB 40 in various
media. The Y-axis represents colony growth, while the X-axis represents
culture media. Points outside of the boxplots represent outliers. Black and
gray boxes represent A. oryzae 14160 and RIB 40, respectively. T-test
p-values are provided for each culture media.

et al., 2019). Our phylogenetic analysis revealed that A. oryzae
14160 is part of clade A, and thus represents the first highly
contiguous genome assembly from this group. Importantly, high
quality genome assemblies from representative isolates across
clades will enable comparative genomic analysis of structural
variants, as we have demonstrated here with our synteny analysis
of the alpha-amylase loci (Figure 3).

The assembly and annotation of the A. oryzae 14160 genome
enabled in depth comparative genomic analysis with the complete
chromosome assembly of the A. oryzae RIB 40 reference genome.
We conducted several analyses to identify genes with divergent
patterns (i.e., relative abundance of missense variants, putative
impact of variants, and gene presence/absence) in the A. oryzae
14160 and RIB 40 genomes. Collectively, these analyses revealed
that genes with involvement in secondary metabolism were
highly variable (Figures 2, 4). For instance, we observed a large-
scale deletion event of the aflatoxin biosynthetic gene cluster
that includes more than half of the cluster and the neighboring
cyclopiazonic acid encoding gene cluster (Figure 4C). Large-scale
chromosomal deletions of the aflatoxin encoding gene cluster
have been previously characterized in A. oryzae isolates (Lee et al.,
2006; Tominaga et al., 2006; Chang and Ehrlich, 2010; Alshannaq
et al., 2018). Interestingly, a number of independent loss of
function variants have also been observed in A. oryzae strains
resulting in their inability to produce aflatoxin. This observation
indicates the loss of aflatoxin has independently evolved in
different A. oryzae clades, perhaps to reallocate the high energy
demands required to produce this secondary metabolite into
primary metabolism (Gibbons, 2019).

In addition we observed a number of high impact variants
and gene presence polymorphisms in several putative secondary
metabolite backbone encoding genes whose products are not as
well-characterized as aflatoxin and cyclopiazonic acid (Figure 4).
For example, FUN_002043 encodes a type I iterative polyketide
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synthetase and is absent in the A. oryzae RIB 40 genome,
and a large secondary metabolite encoding gene cluster on
A. oryzae chromosome 7 is entirely absent from the A. oryzae
14160 genome (Figure 4A). These results are consistent
with observations in Aspergillus species that show secondary
metabolite encoding gene clusters are highly variable both
between and within species (Gibbons et al., 2012; Ehrlich and
Mack, 2014; Lind et al., 2017; Alshannaq et al., 2018; Zhao
and Gibbons, 2018; Drott et al., 2020; Kjaerbolling et al., 2020;
Steenwyk et al., 2020). For example, genomic analysis of three
Aspergillus nidulans genomes revealed more than 70 secondary
metabolite encoding gene clusters in each genome while nine of
these clusters displayed presence/absence polymorphisms (Drott
et al., 2020). Similarly, we previously observed a polymorphic
locus with two distinct secondary metabolite gene clusters in
A. oryzae and A. flavus (Gibbons et al., 2012).

Alpha-amylase is an enzyme that hydrolyzes the alpha-D-
glyosidic bond in starch to produce dextrin, and the high
production of this carbohydrate metabolizing enzyme is, perhaps,
A. oryzae’s most important industrial characteristic. Alpha-
amylase copy number varies from one to four in A. oryzae
isolates and these gene duplication events likely derive from
the Tc1/mariner like transposable element that flanks this locus
(Hunter et al., 2011; Watarai et al., 2019). Hunter et al. (2011)
provided evidence for at least three independent duplication
events of the alpha-amylase locus from the ancestral chromosome
2 copy. Interestingly, we also observed conservation of the alpha-
amylase locus on chromosome 2 in A. oryzae 14160 (Figure 3),
which is also conserved in the A. flavus NRRL 3357 genome
(Nierman et al., 2015). However, we did not observe alpha-
amylase copies on chromosomes 3 and 5 as in the A. oryzae
RIB 40 genome. Instead, we identified an additional copy of
the alpha-amylase locus on chromosome 2 and chromosome 6,
providing further evidence for convergent evolution of alpha-
amylase duplication in A. oryzae. The independent duplication
of alpha-amylase indicates that artificial selection for increased
amylase production was very strong during the domestication
of A. oryzae.

Because we observed extensive genome variation between
A. oryzae 14160 and RIB 40 we investigated how these strains
differed phenotypically. First, we measure amylase activity using
two independent assays. Both assays showed that A. oryzae
RIB 40 produces greater levels of alpha-amylase (Figure 5).
This observation was somewhat surprising considering the
genomes of both strains contain three copies of the alpha-
amylase encoding gene, and the upstream regions of these
genes are nearly identical (Supplementary Figure 4). However,
a study that generated single, double, and triple disruptant
mutants of the three alpha-amylase encoding genes in RIB 40
revealed that the contribution of amylase gene and protein
expression was not equal between the three copies (Nemoto
et al., 2012). More specifically, amyA (the conserved alpha-
amylase copy on chromosome 2) contributed least to amylase
production. Consequently, the newly duplicated copies of alpha-
amylase may also dominate amylase expression in other A. oryzae
isolates, and chromosomal location of alpha-amylase paralogs
may influence their gene expression. For instance, position effect

variegation was observed in A. nidulans where a translocation
of the developmental regulator brlA resulted a conidiophore
that remained as a stiff hyphae and did not develop a vesicle,
sterigmata, and conidia (Clutterbuck, 1970). Similarly, the
chromosomal position of the alpha-amylase loci in A. oryzae
could potentially influence expression.

Finally, we observed differential growth preferences between
A. oryzae 14160 and RIB 40. Interestingly, A. oryzae 14160 grew
significantly faster on soy and starch agar, while RIB 40 grew
significantly faster on PDA and rice agar. Though A. oryzae
RIB 40 did not grow faster on starch agar, amylase activity was
visibly greater, suggesting that growth rate may have increased
during a longer incubation period. Additionally, the starch agar
contained beef extract which provides a source of proteins and
peptides. Thus, A. oryzae 14160 grew faster where protein content
was higher (soy and starch), and RIB 40 grew faster when
carbohydrates were the major available energy source (potato
dextrose and rice). This observation suggests that A. oryzae 14160
is better suited for soy fermentation, while RIB 40 is better suited
for rice fermentation.
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