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ABSTRACT: Recently, there has been an increase in the incidence of malignant tumors among the older 

population. Moreover, there is an association between aging and cancer. During the process of senescence, the 

human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger 

tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and 

searching for novel methods to restore the junctions is of great importance to intervene against aging-related 

cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by 

comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that 

the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota 

disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive 

immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered 

genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have 

common means of intervention, including novel uses of common medicine (metformin, resveratrol, and 

rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce 

metabolites. In addition, we have summarized the research progress of each intervention and revealed their 

bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study 

findings provide vital information for advanced research studies on age-related cancers. However, there is a need 

for further optimization of the described methods and more suitable methods for complicated clinical practices. 

In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers. 
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Aging of the human population is gradually becoming an 

important global issue. According to the United Nations, 

the global human population aged >60 years will increase 

by two-fold by 2050 compared to that in 2000 [1]. Aging 

of the human population is gradually becoming an 

important global issue. According to the United Nations, 

the global human population aged >60 years will increase 

by two-fold by 2050 compared to that in 2000 [2]. 

Therefore, aging causes severe stress on the human health 

system. Therefore, there is an urgent need to improve the 

health of this population. To explore the mechanism of 

aging, several studies have found several common 

hallmarks of aging in different individuals, such as 

genomic alteration, epigenetic changes, mitochondrial 

damage, and cellular senescence. The findings of previous 

studies have provided clues to further explore the 

mechanisms of anti-aging or alleviating aging-related 

damage and cancer [3]. 

  Volume 13, Number 4; 1063-1091, August 2022                       

http://dx.doi.org/10.14336/AD.2021.1208
mailto:chenshujie77@zju.edu.cn
mailto:jianmin_si@zju.edu.cn
mailto:houtongyao0805@zju.edu.cn
https://creativecommons.org/licenses/by/4.0/


 Shen W., et al.  Association between aging and cancer 

Aging and Disease • Volume 13, Number 4, August 2022                                                                              1064 

 

Recently, the high rates of morbidity and mortality 

caused by various cancers have made it a much-

researched topic. According to statistics, the incidence of 

cancer among humans is 11-fold higher in individuals 

aged >65 years than in individuals aged < 65 years. 

Furthermore, most cancers are diagnosed in people aged 

>55 years [4]. Currently, the gap in the incidence of 

cancer between young and older individuals has increased 

compared to that described earlier. In some cancers, aging 

is a factor that leads to malignant tumors with a poorer 

prognosis; hence, various cancers seem to have a close 

relationship with aging [5, 6].  

A recent study performed by Gomes at al. revealed 

that aging-mediated metabolic reconstitution, especially 

accumulation of methylmalonic acid, can form an internal 

environment that facilitates cancer cell growth and 

progression [7]. These findings further confirmed the 

existence of a mysterious intersection between aging and 

cancer. Therefore, exploring the pathogenesis of aging-

induced cancer is of great importance. In this study, the 

junctions of aging and cancer were addressed by 

comparing various research findings. The study results 

indicate that delaying aging may be a promising 

intervention against aging-related cancers. 

Aging and cancer have common pathogenetic 

mechanisms 

 

The mechanisms of the occurrence and development of 

aging and cancer are being researched since the past few 

decades, and several results have been achieved. These 

studies have revealed several mechanisms involved in the 

occurrence and/or development of both aging and cancer. 

For instance, studies have reported that cellular 

senescence significantly diminishes in malignant tumors, 

enhanced ubiquitin–proteasome and lysosome–autophagy 

systems prolong lifespan but promote cancer progression, 

and alterations in the systemic immune microenvironment 

mediated by aging push further demic recession and 

cancer appearance. In addition, intestinal flora, local or 

systemic metabolism, and hormones change with age, 

which in turn affects the longevity of human, drives 

tumorigenesis, and causes cancer deterioration in health 

simultaneously. Moreover, aging and cancer are regulated 

by the expression of similar genes. Therefore, we aimed 

to precisely describe the common mechanisms involved 

in the occurrence and development of both aging and 

cancer (Fig. 1, Table 1, and Table 2). 

 
Figure 1. Common pathogenetic mechanisms between aging and cancer. 

Cellular senescence: What happens in cancer? 

 

Cellular senescence refers to the permanent proliferative 

arrest of cells subjected to stressors. It can be induced by 

various physiological and pathological factors, such as 

telomere erosion, oxidative stress, and activation of 

oncogenes [8]. 

In cancer cells, powerful telomerase activity leads to 

attenuated telomere erosion and delayed cellular 

senescence. Therefore, antitelomerase therapy can be an 

important therapeutic intervention for malignant growth 

and can induce cell death. Notably, cancers that retain 

wild-type p53, a well-known anti-oncogene, can falsify 

the response to antitelomerase therapies, which only 

trigger proliferative arrest rather than inducing cell death. 

Furthermore, this change results in prolonged treatment 

and increased drug resistance [9]. 
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Table 1. Common mechanism between aging and cancer. 

 
Mechanism Alteration during aging Effect on aging Effect on cancer 

Proteostasis    

Chaperones Decrease Delay Promote 

        Ubiquitin-proteasome Decrease Delay Promote 

Lysosome-autophagy Decrease Delay Promote 

Microbiota disorder    

    Akkermansia  Decrease Delay Inhibit 

    Bifidobacterium Decrease Delay Inhibit 

    Escherichia coli Increase / Promote 

    Bacteroides fragilis Increase / Promote 

Immune microenvironment    

Inflammation Increase Accelerate Promote 

Immunosenescence Increase / Promote 

Metabolic disorder    

   Energy metabolism    

    NAD+    Decrease Delay Promote 

Mitochondrial damage Increase Accelerate Promote 

Substance metabolism    

Methylmalonic acid Increase / Promote 

Quinolinate Increase / Promote 

Phosphoenolpyruvate Increase / Inhibit 

α-ketoglutarate Decrease Delay Bidirectional 

Endocrine disorder    

       TSH Decrease Delay Promote 

       GH/IGF-1 Decrease Accelerate Promote 

       FSH/LH Decrease Delay Promote 

Genetics    

       Klotho Low expression Delay Inhibit 

       AUF1 / Delay Bidirectional 

       SIRT1 Low expression Delay Bidirectional 

P16 High expression Accelerate Inhibit 
 

NAD+, nicotinamide adenine dinucleotide; TSH, thyroid stimulating hormone; GH, growth hormone; IGF-1, insulin-like growth factor I; FSH, 

follicle-stimulating hormone; LH, luteinizing hormone. 

The life and death of cells is largely determined by 

their redox status. Oxidative stress is a cause of cellular 

senescence in normal cells. In malignant cells, although 

excessive proliferation results in higher generation of 

reactive oxygen species (ROS), the cells can realign their 

redox status and enhance their antioxidant ability, thereby 

avoiding reaching the ROS thresholds that trigger cellular 

senescence. Moreover, the cells can also optimize ROS-

mediated DNA damage and subsequent malignant 

proliferation [10]. 

 
Table 2. Common phenomena between aging and cancer. 

 
Phenomenon Alteration during aging Alteration in cancer 

Cellular senescence Increase Increase (premalignant tumor) 

Decrease (malignant tumors) 

Epigenetics   

       DNA Methylation age Accelerate Accelerate 

       Genomic imprinting Increase/Decrease Increase/Decrease 

Gene silencing Loss Loss 
 

In premalignant tumors, activation of oncogenes, such 

as HRASG12V and EGFR, leads to permanent cell 

proliferative arrest and inhibits cancer progression [11, 

12]. In other words, cellular senescence serves as a 

protective mechanism and extensively exists in the 

precancerous stage. However, during the stage of tumor 

progression and transformation to malignancy, 

inactivation of anti-oncogenes and common 

overexpression of other oncogenes disables the process of 

cellular senescence [13] (Fig. 2). 
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Figure 2. Disabling cellular senescence in cancer. 1. Powerful telomerase activity attenuates telomere erosion; 2.  Realigning 

redox improves antioxidant capacity; 3. Although activation of individual oncogenes triggers cell proliferative arrest in the early 

stage, subsequent inactivation of anti-oncogenes and activation of multiple oncogenes restores cell proliferation. 

Alterations in proteostasis links aging with cancer 

 

Chaperones, ubiquitin–proteasome, and lysosome–

autophagy systems are important pillars of proteostasis. 

ATP-dependent chaperones are significantly inhibited 

during the aging process because of damage to energy 

metabolism. A research study on the nervous system 

revealed that 32% ATP-dependent chaperones were 

downregulated in the aged brain [14]. In addition, there 

was also a sharp decrease in the chaperones that play a 

role in target recognition [15]. In older individuals, a 

marked decline in autophagic function has also been 

shown in various species [16, 17], which may be due to a 

decline in the expression of Atg and Sirtuin 1 or 

hyperactivation of TORC1 [18]. Moreover, repression of 

proteasome activity has been observed in the early stages 

of various organic aging processes, such as aging of the 

brain and skin [19, 20].  

In contrast, alterations in proteostasis also influence 

the process of aging. In yeast, increasing proteasome 

capacity by upregulating the transcription factor Rpn4 can 

prolong their replicative lifespan [21]. In Drosophila 

melanogaster, upregulation of Rpn11 and DmPI31, 

gamma irradiation, and other processes have been shown 

to extend the lifespan by activating the proteasome [22-

24]. In mice, the phenomenon of delaying aging by 

upregulation of IGF-1 or dietary intervention has been 

shown to be closely related to proteasome activation [25, 

26]. In humans, powerful proteasome activity has also 

been observed in centenarians [27]. Similarly, most pro-

longevity methods have been shown to enhance 

autophagic function [28]. According to Krøll et al., RNA 

chaperones are involved in cell immortalization [29]. 

Furthermore, Ito et al. reported that improving 

mitochondrial chaperones could lead to longevity in 

elegans [30]. 

However, although enhanced proteasome capacity 

and autophagic function can extend the lifespan, it seems 

to promote cancer progression. For instance, the 

proteasome activator REGγ can enhance the transforming 

growth factor (TGF)-β pathway and result in lung cancer 

metastasis [31]. Tribble homolog 2 promotes ubiquitin 

degradation and weakens oxidative damage by 

upregulating proteasome activity, which promotes the 

progression of liver cancer [32]. Furthermore, 

Fusobacterium nucleatum has been shown to induce 

chemoresistance by activating autophagy in colorectal 

cancer (CRC) [33]. Autophagy also triggers immune 

evasion by improving MHC-I degradation in pancreatic 

malignant tumors [34]. In addition, cachexia, ubiquitin–

proteasome, and lysosome–autophagy systems are 

significantly activated in gastric cancer [35]. Moreover, 

heat shock proteins (HSPs), especially HSP90 and 

HSP70, play an important role in folding and transporting 

pivotal cancer proteins and are indispensable factors in 

cancer aggressiveness [36]. 

In conclusion, it was evident that powerful ubiquitin–

proteasome and lysosome–autophagy systems contribute 

to better proteostasis and longevity, thus inducing the 

degradation of anti-cancer factors and worsening of 

cancer. 
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Roles of microbiota disorders in aging and cancers 

 

The intestinal microbiota plays an indispensable role in 

the degradation of carbohydrates, synthesis of short-chain 

fatty acids, amino acids, and vitamins [37]. Maintaining a 

normal composition and proportion of intestinal 

microbiota is the foundation of the integrity of the 

epithelial barrier and immune balance. In the process of 

human aging, the composition of the gut microbiota 

changes constantly and manifests as a decline in microbial 

diversity, with a decrease in Bifidobacterium and increase 

in Clostridium, Enterobacteriaceae, and Enterococci 

[38]. In aged animals, researchers have observed 

decreased genera, indicating an antiphlogistic and 

butyrate-producing action, as well as increased genera, 

resulting in the degradation of mucin [39]. These changes 

can be used to explain aggravated gut inflammation and 

impaired integrity of the gut epithelial barrier in older 

individuals. 

Recently, researchers have revealed the role of 

intestinal flora in aging. For instance, in a previous study 

among centenarians and supercentenarians, there was an 

abundance of Christensenella, Akkermansia, and 

Bifidobacterium [40]. In addition, researchers have 

observed an increase in the expression of genes regulating 

xenobiotic biodegradation and metabolism such as 

toluene, chlorocyclohexane, and caprolactam, and a 

reduction in the expression of genes manipulating the 

carbohydrate metabolism in centenarians and 

supercentenarians [41]. Therefore, it is evident that certain 

flora may prolong one’s lifespan. A recent study has also 

proved this hypothesis, showing that administration of 

Akkermansia muciniphila by oral gavage prolonged the 

lifespan of progeroid mice [42]. Furthermore, A. 

muciniphila supplementation successfully delayed aging-

mediated reduction of colonic mucus thickness [43].  

In addition, the intestinal flora possibly intervenes in 

tumorigenesis and disease progression. Previous studies 

have indicated differences in the intestinal microbiota 

between healthy people and patients with cancer, which 

present as a reduction in the number of beneficial bacteria 

and an increase in the number of opportunistic pathogens 

in the gut of patients with cancer [44]. In subsequent 

experiments, most bacteria were proven to have a positive 

or negative correlation with cancer. 

Evidence shows that Fusobacterium stimulates the 

growth and metastasis of CRC and breast cancer [45-47]. 

In 2020 year, our team further discovered that 

Fusobacterium motivated the migration of CRC cells and 

lung metastasis by upregulating the levels of the long non-

coding RNA Keratin7-antisense and Keratin7 [48]. In 

addition, the main mechanisms that have been explored 

are also involved in virulence factors, immunoregulation, 

microRNAs, and bacterial metabolism [49]. In addition, 

colibactin‐producing Escherichia coli has been shown to 

be carcinogenic by suppressing effective T-cell response 

[50]. Moreover, enterotoxic Bacteroides fragilis can 

accelerate tumor growth by enhancing Treg activity or 

mediating the long non-coding RNA BFAL1, which 

depends on the RHEB/mTOR pathway [51]. A recent 

study has also proposed that seropositivity to seven 

common E. coli and two common enterotoxic B. fragilis 

was closely related to CRC progression, especially that of 

proximal colon cancers [52]. In addition to an increase in 

the carcinogenic flora, a decrease in probiotics has also 

been observed in patients with cancer. Therefore, it is 

evident that there is a close relationship between chronic 

colitis and CRC. This year, our team revealed that B. 

adolescentis can suppress DSS-induced chronic colitis by 

enhancing the protective Treg/Th2 response and 

promoting intestinal flora remodeling [53]. Moreover, 

based on test data from some references, Bifidobacteria 

can reduce the occurrence and progression of CRC by 

downregulating EGFR, HER-2, and COX-2 [54], 

manipulating microRNAs [55, 56], regulating immune 

response and so on [57]. Faecalibacterium prausnitzii can 

also inhibit the development of breast cancer by 

downregulating the interleukin (IL)-6/STAT3 pathway 

[58]. 

In conclusion, it is evident that aging is always 

accompanied by a decline in probiotics and an increase in 

harmful bacteria, which is the driving force behind 

tumorigenesis and cancer progression. 

 

Traditional mechanisms: changes in the immune 

microenvironment during aging and in tumors 

 

During the process of aging, chronic inflammation, 

attributed to an imbalance in inflammatory response, is 

the most distinct variation. Recent studies have revealed 

that aging-related chronic inflammation can also affect the 

progression of aging. In Drosophila, lower immune 

deficiency (IMD)/nuclear factor-κB (NF-κB) level can 

mobilize nutrients and prolong lifespan by inhibiting the 

immune–endocrine axis, whereas higher IMD/NF-κB 

levels can result in extensive neurodegeneration and early 

death by increasing antimicrobial peptides [59]. In 

humans, C-reactive protein, IL-6, and IL-10 are 

associated with aging-induced osteoarthritis and cognitive 

decline in older individuals, presenting as impaired 

executive function and processing speed [60, 61].  

Inflammation not only accelerates the process of 

aging but also supports cancer cells. In recent decades, 

researchers have shown the role of inflammation in 

tumorigenesis and cancer progression. Furthermore, NF-

κB and IL-6 could support the stemness of some cancer 

cells or induce chemotherapy resistance [62, 63]. NF-κB-

activated cyclooxygenase-2 has been shown to regulate 
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the magnitude and selectivity of inflammation induced by 

Bacillus Calmette–Guérin in bladder cancer [64]. In 

addition, tumor necrosis factor-α mediates the interaction 

between gastric cancer cells and activated fibroblasts, 

possibly contributing to tumor metastasis [65]. 

In older individuals, the existence of chronic 

inflammation also alerts the immune system to immediate 

danger. During the aging process, every part of the 

immune system degenerates, which is called 

immunosenescence. From the perspective of innate 

immune cells, maturation of natural killer (NK) cells and 

accurate anti-inflammatory effects of macrophages and 

neutrophils are apparently impaired in older individuals 

[66-68]. Considering adaptive immunity, bone marrow 

and thymic involution lead to reduction in the generation 

of naïve T/B cells and accumulation of effector memory 

T/B cells. Moreover, the normal capability of 

accumulated memory B cells is also damaged [69, 70]. 

Previous studies have also revealed that age-related 

chronic persistent inflammation can transform protective 

immune cells into various immunosuppressive cells, such 

as regulatory phenotypes of B cells (Bregs), T cells 

(Tregs), macrophages, and dendritic cells [71]. 

Many researchers believe that immunosenescence 

may also be responsible for the genesis and development 

of tumors. The escape of NK cells in older individuals 

caused by impaired maturation accelerates the 

progression of acute myeloid leukemia and decreases the 

rate of survival [72, 73]. In a separate study on aged mice, 

subtype remodeling of macrophages, which presented as 

expanded M2 macrophages in the bone marrow and 

spleens, was probably carcinogenic [74]. In addition, 

decreased naïve T cells and increased effector memory T 

cells would lead to incompetent T cell responses to novel 

tumor-associated antigens. A previous study on non-small 

cell lung cancer (NSCLC) showed that CD4+ Tregs were 

responsible for accelerated tumor growth [75]. Núñez et 

al. pointed out that cancer invasion in draining lymph 

nodes was also caused by Treg accumulation [76]. 

Previous studies have also concluded that tumor immune 

escape is the consequence of cross-regulation between 

Bregs and cancer cells [77].  

Therefore, the aged systemic microenvironment, 

especially the accumulation of inflammatory factors and 

immunosuppressive cells, can accelerate aging anteriorly. 

This vicious cycle aggravates the imbalance of the 

inflammatory response and triggers immune escape, 

which may trigger tumorigenesis. 

 

Energy metabolism and substance metabolism 

disorders influence both aging and cancer  

 

Metabolism is one of the most basic characteristics of life, 

and aging is characterized by receding bioenergetics, 

which are disorders such as those of lipid synthesis and 

decomposition and glucose utilization [78]. In the present 

study, we have summarized the relevance of aging and 

cancer from the perspectives of systemic energy 

metabolism and local substance metabolism. 

Nicotinamide adenine dinucleotide (NAD+) is a key 

coenzyme that mediates multiple redox reactions and 

plays an indispensable and irreplaceable role in energy 

metabolism [79]. Starting from post-puberty, NAD+ in 

both sexes is negatively correlated with age because of 

increased degradation and decreased generation [80, 81]. 

In addition to humans, mice and C. elegans also show an 

age-dependent decrease in NAD+ [82]. NAD+ levels play 

a crucial role in mitochondrial homeostasis in various 

species, and aging-mediated absence of NAD+ impairs 

mitochondrial function [83]. Several aging models have 

shown mitochondrial fission and fusion which can 

regulate metabolic efficiency to adapt to rapid changes in 

nutrient availability were impaired in older individuals. 

Furthermore, decreased mitochondrial trafficking has also 

been observed in the process of aging [84]. 

Subsequently, decreased levels of NAD+ and 

mitochondrial dysfunction expedite the aging process. 

Werner syndrome is a premature aging disease 

characterized by damaged mitochondria and NAD+ 

deficiency. NAD+ repletion can neutralize premature 

aging symptoms by restoring mitochondrial function and 

mitophagy [85]. Moreover, failure in NAD+ signaling has 

been proven to have a causal relationship with the 

vascular [86], immune system [87],  and nervous system 

[88], retina [89], cardiac and skeletal muscles during 

aging [90]. NAD+ can regulate circadian reprogramming 

to delay aging by suppressing the clock repressor PER2 

[91]. However, although NAD+ repletion seemed to 

counteract the aging process, this method could only 

improve healthspan in normal individuals. Some studies 

in mice revealed that their lifespan could not be extended 

or could only be slightly extended (approximately 40 

days) by replenishing NAD+ levels [92, 93]. 

In addition, numerous studies have suggested that 

NAD+ and mitochondrial dysfunction are closely related 

to cancer. The key enzymes of NAD+, such as de novo 

synthesis-nicotinate phosphoribosyltransferase and 

salvage synthesis-nicotinamide phosphoribosyl-

transferase, are overexpressed in various cancers and 

contribute to higher glycolytic activity, cancer 

progression, chemoresistance, and poor prognosis [94-

97]. According to Chowdhry et al., the survival of tumors 

relies on two key enzymes [98]. Moreover, a review 

summarized the role of NAD+ in cancers and concluded 

that NAD+ was the initiator of the Warburg effect in 

cancers [99]. Therefore, NAD+ mainly acts as a 

carcinogenic factor. Although NAD+ is upregulated in 

cancers, mitochondrial damage and dysfunction such as 
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increased mitochondrial fission, reduced mitochondrial 

fusion [100, 101], mutation and depletion of 

mitochondrial DNA [102-104], disruption of 

mitochondrial protein [105, 106] and other processess 

were also universally observed in various cancers which 

causing cancer growth, metastasis, invasion, and 

therapeutic resistance. 

Regarding local substance metabolism, a previous 

study conducted by Gomes et al. revealed that the levels 

of three metabolites—phosphoenolpyruvate (PEP), 

quinolinate, and methylmalonic acid (MMA) were 

significantly increased in older individuals compared to 

those in younger individuals [107]. MMA is a by-product 

of propionate metabolism that promotes a pro-aggressive 

epithelial-to-mesenchymal transition-like phenotype by 

upregulating SOX4 and triggering cancer progression 

[108]. This may be the most recent cogent evidence to 

prove the relationship between aging and cancer in terms 

of substance metabolism. Quinolinate, a metabolite of the 

kynurenine pathway, participates in NAD+ de novo 

synthesis. Quinolinate phosphoribosyltransferase is the 

rate-limiting enzyme in the kynurenine pathway, which is 

overexpressed in breast cancer and promotes cell 

migration and invasion [109, 110]. In contrast, PEP seems 

to have anticancer roles. In melanoma, increased PEP 

bolstered effector functions of tumor-specific T cells, 

leading to inhibited tumor growth and prolonged survival 

in rats [111]. This demonstrates that accumulated 

metabolites during aging may have positive or negative 

impacts on cancer cells and that the final effect is differ 

based on tumor types. 

In addition, α-ketoglutarate (α-KG), a tricarboxylic 

acid cycle intermediate, also changes on aging, thus 

intervening in the processes of both aging and cancer. 

During the process of aging, Chin et al. reported that α-

KG delayed aging and prolonged longevity by 

approximately 50% by suppressing ATP synthase and 

decreasing oxygen consumption [112]. The function of α-

KG in extending the lifespan has also been observed in 

Drosophila [113]. Last year, Shahmirzadi further proved 

that replenishing α-KG not only reduced frailty but also 

prolonged the lifespan of both female and male mice 

(especially female mice) by inhibiting aging-related 

chronic inflammation [114]. α-KG can also delay aging-

related osteoporosis and fecundity reduction [115, 116]. 

The effects of α-KG on cancers have also been 

reported in recent studies. For instance, α-KG 

supplementation or accumulation can switch glucose 

metabolism to oxidative phosphorylation from glycolysis, 

resulting in the inhibition of the Warburg effect, improved 

tumor suppressors, decreased HIF-1α levels, or 

downregulated matrix metalloproteinase 3 to suppress 

breast cancer oncogenesis, progression, and metastasis 

[117, 118]. In CRC, dietary α-KG can regulate the 

immune system or intestinal flora to inhibit inflammation-

related CRC [119]. In contrast, α-KG enhances glucose 

uptake, sustains cancer cell survival, and accelerates 

gliomagenesis by activating the IKKβ and NF-κB 

signaling pathways [120]. 

 

Endocrine hormones may delay aging but promote 

cancer 

 

Aging is accompanied by a recession of the endocrine 

axis, which contributes to neuroendocrine disequilibrium, 

manifesting as hormonal absence or excess. Previous 

studies have reported a reduction in the levels of thyroid 

stimulating hormone (TSH), growth hormone (GH), 

luteinizing hormone (LH), and follicle-stimulating 

hormone (FSH) in older individuals compared to those in 

younger individuals with the same health status [121-

123].  

Recently, hormones (TSH, GH, LH, and FSH) have 

been found to intervene in the lifespan of an individual. 

Researchers have revealed that the macrobian population 

is characterized by high TSH generation and TSH 

insensitivity without altered energy metabolism [124, 

125]. Moreover, TSH can reverse aging mediated by 

BRAFV600E mutations in mice, both in vitro and in vivo 

[126]. Similar to GH, insulin/insulin-like growth factor I 

signaling suppression delayed stress granule protein 

accumulation and subsequently prolonged longevity in C. 

elegans [127, 128]. Furthermore, GH treatment reduced 

longevity in aged mice (common mice or macrobian 

mice–Ames dwarfs) by intervening with the genotype, 

thus confirming the influence of hormones on lifespan 

[129, 130]. In humans, GH receptor exon 3 deletion 

homozygotes can prolong the lifespan of males by 

approximately 10 years [131]. In addition, gonadotropin-

releasing hormone, which regulates the FSH/LH ratio, has 

also been proven to restore impaired neurogenesis and 

delay aging in mice [132].  

The relationship between hormones (TSH, GH, LH, 

and FSH) and cancer has also been previously reported. 

Abnormally activated TSH receptors can result in 

accelerated angiogenesis and deterioration of thyroid 

cancer [133]. Furthermore, high levels of TSH are 

associated with an increased risk of thyroid cancer [134]. 

In addition, TSH can promote the growth of ovarian and 

liver cancers, resulting in poor survival rates and 

resistance to chemotherapy [135]. Moreover, GH 

treatment or receptor stimulation increases cancer 

incidence and the risk of cancer mortality, induces 

chemoresistance and metastasis in some specific 

populations and tumors [136-143]. Notably, people or 

rodents with developmental GH/IGF-1 show rare-to-no 

cancer occurrence due to the overexpression of DNA 

repair genes and perpetual strengthening of DNA repair 
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capacity [144]. This phenomenon further confirms the 

powerful effects of GH/IGF-1 on the promotion of 

cancers. Regarding gonadotropic hormones, FSH 

upregulates ACTL6A, a novel oncogene that supports 

glucose metabolism and, thus, increases the invasiveness 

of ovarian cancer cells [145].  

Therefore, aging is always related to endocrine 

disorders, which can result in an array of symptoms and 

diseases; hormone replacement therapy occasionally 

delays aging. However, direct replenishment of hormones 

is not appropriate because the method appears to be 

carcinogenic. In conclusion, the present study clearly 

indicates that hormones are a link between aging and 

cancer. 

 

Similarity in epigenetic changes between aging and 

cancers 

 

Epigenetics is a branch of genetics that deals with 

heritable changes in gene expression without altering the 

nucleotide sequence. Epigenetic phenomena include 

DNA methylation, genomic imprinting, maternal effects, 

gene silencing, and RNA editing. Herein, we have 

discussed the epigenetic phenomena involved in aging 

and cancer. 

Aging is accompanied by constantly decreasing rates 

of methylation on a genomic level, which incurs 

chromosomal instability. Moreover, due to this ascending 

rate of methylation in CpG island, which results from 

hypermethylation around the promoter of vital genes, 

these vital genes will gradually be silenced [146-148]. 

Recent studies have revealed a close association between 

DNA methylation age and chronological age. For 

instance, in embryonic stem cells, the age of DNA 

methylation was approximately zero, and in centenarians, 

it was consistent with the venerable age (r = 0.89)  [149, 

150]. Acceleration of the DNA methylation age, in other 

words, DNA methylation age is older than the 

chronological age, can improve mortality without being 

influenced by other risk factors [151]. Furthermore, 

several studies have revealed that individuals live longer, 

and their offspring exhibit a deceleration in DNA 

methylation age [152, 153]. 

Similarly, acceleration of the DNA methylation age 

also exists in cancer. Previous studies have shown that 

epigenetic age in cancer tissues increases by 40% in the 

same person compared that in normal tissues and that the 

acceleration was significantly conspicuous by nearly 36.2 

years on average [154, 155]. Several studies have 

proposed that the acceleration of DNA methylation age 

increases the risk of malignant tumor [156-159]. 

Furthermore, recent studies have proposed that the level 

of DNA methylation promoter in body fluids can serve as 

an early monitoring index in bladder cancer [160], and 

lung cancer [161] and some other cancers [162, 163]. 

Genomic imprinting is characterized by monoallelic 

expression. A previous study reported that the area of 

methylation on IGF2 promoters expanded during the 

aging process and that the initially unmethylated allele 

was methylated. This study also pointed that similar 

expansive methylation of IGF2 promoters was also 

revealed in some cancers, such as colon and lung cancers 

[164]. In a related study by Fu et al., IGF2 exhibited a 

tissue-specific loss of imprinting with aging in the 

prostate lobes of humans and rats, which may also exist in 

prostate cancer [165]. RasGrf1 is a paternal imprinted 

gene, and erasure of its imprinting leads to the 

downregulation of RasGrf1 and prolonged lifespan in 

mice [166]. Alterations in imprinting of the RasGrf1 gene 

is also observed in cancer cells. Furthermore, increased 

methylation of RasGrf1 in the gastric mucosa of patients 

with gastric cancer has been observed as compared with 

healthy individuals, which results in a low expression of 

RasGrf1 as well as tumor invasion [167].  

Heterochromatinization is a method of transcriptional 

gene silencing. In yeast and Drosophila melanogaster, 

loss of gene silencing occurs with age, and this 

phenomenon results from the loss of repressive 

heterochromatin during aging [168]. Instability or defects 

within heterochromatin are widespread alterations in 

cancer, which also take responsibility for the imbalanced 

epigenome of tumors [169]. 

 

The deepest connection: genetics of aging and cancers 

 

Klotho, a human gene located on chromosome 13, has 

been dubbed the “master of mortal longevity.” Klotho 

produces two proteins by selective splicing: a membrane 

protein and a circulating protein. Numerous investigations 

have established that Klotho is closely related to aging. 

The secretion of Klotho has been shown to decrease 

considerably in the kidneys and serum of aged mice [170]. 

Additionally, a previous study discovered that between 

the ages of 21 and 39 years, Klotho expression decreases 

at a rate of 0.082 K/S per year in granulosa cells and 31.95 

pg/mL per year in the serum [171]. 

Recent research has demonstrated that aging-related 

Klotho depletion accelerates aging. Chen discovered that 

mutations in the Klotho gene resulted in the suppression 

of the transcription factor Nrf2 and inactivation of 

glutathione reductase, resulting in cardiac aging [170]. 

Xiaofei Xu et al. demonstrated an intimate relationship 

between low Klotho expression and impaired ovarian 

reserve [171]. Ullah et al. proposed that Klotho deficiency 

impaired telomerase activity, resulting in stem cell aging 

and apoptosis [172]. Additionally, it has been 

demonstrated that the α-klotho protein fragment 
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successfully improves cognitive competence and neural 

resilience in aged mice [173]. 

Additionally, Klotho acts as a tumor suppressor, 

disrupting neoplastic glycolysis and mitochondrial 

function while sparing normal cells [174]. Rubinstein et 

al. pointed out that treatment with klotho or its active 

region KL1 could inhibit CRC growth in vivo or in vitro 

by improving the unfolded protein response [175]. Klotho 

also inhibits the NF-κB pathway and suppresses CCL2 

transcription, thereby decreasing CRC progression [176]. 

Klotho functions as an IGF-1R inhibitor in diffuse large 

B-cell lymphoma, inhibiting cell apoptosis and 

proliferation [177]. 

Additionally, there are numerous other common 

genetic factors associated with aging and cancer. 

However, it is important to note that some antiaging genes 

are bidirectional. 

AUF1 encodes RNA-binding proteins. Pont et al. 

postulated that AUF1 activates the telomerase promoter 

and assumes responsibility for the maintenance of 

telomere length. AUF1-deficient mice would present with 

premature aging [178]. Additionally, He et al. confirmed 

that AUF1 can prevent aging in vascular endothelial cells 

[179]. 

AUF1 has also been shown to affect cancer cells; this 

regulatory effect is bidirectional. AUF1 induces apoptosis 

and suppresses cell proliferation by inhibiting the proto-

oncogene bcl-2 and cyclin D1. Its presence plays a critical 

role in the antitumor activity of certain tumor suppressors, 

such as p63 [180]. In contrast, the overexpression of 

AUF1 has been shown to promote malignant 

transformation and cancer progression [181]. For 

example, AUF1 accelerates the development of CRC by 

activating the ERK1/2 and AKT pathways and is 

associated with a poor prognosis [182]. Additionally, it 

promotes the proliferation and invasion of breast cancer 

and thyroid cancers and results in poor outcomes in 

patients with hepatocellular carcinoma [183, 184]. 

The turning point of this bidirectional effect may be 

the level of expression. In other words, a normal 

expression of antiaging genes ensures that anticancer 

pathways remain functional. However, aberrant or 

obligatory overexpression results in retroaction by 

excessive activation of tumor promoters. 

SIRT1 is downregulated in aging individuals and 

plays a role in delaying the onset of organic aging [185, 

186]. Simultaneously, SIRT1 acts as a protective gene in 

certain types of cancers, including gastric and breast 

cancer, and its deficiency accelerates cancer progression 

and chemoresistance. Therefore, SIRT1 overexpression 

may inhibit the proliferation of cancer cells [187, 188]. 

However, this protective effect is not universal. In certain 

cancers, such as CRC and cervical cancer, artificial 

overexpression significantly enhances proliferation, 

invasion, and stemness, whereas spontaneous knock-out 

has an inhibitory effect [189-191].  

Therefore, we may also deduce that the effect of 

particular antiaging genes on various cancers is highly 

variable, regardless of whether they are expressed 

passively or silently, and may differ according to tissue 

specificity. 

p16 is a biochemical indicator of biological 

senescence that increases with age [192]. Previous studies 

have established that the downregulation of p16 

expression improves the regenerative capacity of 

pancreatic β-cells [193] and rescues the degradation of the 

thymus [194], adipose tissue, skeletal muscle, and eyes 

[195, 196]. In general, p16 is a pro-aging element.  

In contrast to what we have previously stated, this 

pro-aging factor generally functions as a tumor suppressor 

gene. p16, a cyclin-dependent kinase inhibitor, arrests 

cells in the G1 phase. Numerous carcinogens, including 

miR-30 and constitutive photomorphogenesis 9 

signalosome 6, cause cancer by suppressing p16 

expression, enhancing cell division, and interfering with 

efficient cellular senescence [197, 198]. Liu et al. also 

demonstrated that ablation of p16 in B cells could reverse 

aging while significantly increasing the incidence of B-

cell neoplasms [199]. These findings suggest that cellular 

senescence may have evolved as a strategy to protect 

against cancer. 

In conclusion, from a genetic standpoint, delaying 

aging does not always suppress cancer. 

 

Aging and cancer have common means of 

interventions 

 

Antiaging and anticancer agents are two important 

subjects that compel us to pursue them indefinitely. Here, 

we summarize the approaches that can delay aging, or 

even prolong lifespan, and suppress cancer synergistically 

(Fig. 3, Table 3, and Table 4).  

 

Repurposing common medicines to treat aging and 

cancer 

 

While researching antiaging and anticancer treatments, 

researchers surprisingly discovered that some 

medications possessed dual effects. 

 

1. Metformin.  

 

In mice, metformin delayed ovarian and gut aging, 

attenuated hearing loss and age-related neuro-

degeneration, and improved skin healing abilities in aged 

rats [200-204]. In inbred 129/Sv mice, Anisimov et al. 

discovered that treatment with metformin reduced the 

mean lifespan by 13.4% in males, but increased it by 4.4% 
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in females [205]. However, another study found that the 

opposite phenomenon of metformin supplementation in 

the neonatal period extended the mean lifespan (+20%) 

and maximum life span (+3.5%) in male mice rather than 

in female mice [206]. Zhu et al. further showed that 

metformin impaired cardiac homeostasis and longevity in 

female mice [207]. Therefore, the sex-related differences 

in the antiaging effects of metformin are significant and 

warrant further investigation. In humans, metformin 

delayed the aging of mesenchymal stem cells and reversed 

mitochondrial function in fibroblasts derived from 

patients with parkinsonism [208, 209]. Additionally, 

metformin improves muscle strength and alleviates frailty 

syndrome in the elderly [210]. In terms of cognitive 

competence, metformin has been shown to delay 

cognitive deterioration in diabetic older adults [211]. An 

ongoing study sponsored by the Albert Einstein College 

of Medicine is delving deeper into the antiaging properties 

of this incredible drug. They compared the number of 

upregulated genes in the muscle and adipose tissue of 

young healthy subjects categorized into two groups 

(metformin treated and placebo treated) after the 

intervention, which lasted 6 weeks, and discovered that 

the metformin group had significantly fewer genes than 

the control group, regardless of muscle or adipose tissue. 

This finding suggests that metformin may alter biology at 

the genetic level. By examining the disparate genetic 

functions, researchers will have a better understanding of 

the antiaging mechanisms of metformin 

(https://clinicaltrials.gov/ct2/show/NCT02432287). 

 
Figure 3. Common means of interventions between aging and cancer. 

To date, numerous studies have been conducted on 

the anticancer properties of metformin. Metformin has 

been shown to suppress tumorigenesis, growth, 

metastasis, and improve chemosensitivity in various 

cancers in both in vitro and in vivo animal experiments 

[212-216]. In humans, a recent trial demonstrated that 

treatment with metformin could improve disease-free 

survival (not with metformin: HR = 1.40, p = 0.043), 

distant disease-free survival (not with metformin: HR = 

1.56, P = 0.013), and overall survival (not with metformin: 

HR = 1.87, p = 0.004) in patients with diabetes and HER2-

positive breast cancer [217]. Additionally, another phase 

2 trial indicated that metformin supplementation 

increased cisplatin sensitivity and improved overall 

survival compared to the expected survival in nondiabetic 

patients with ovarian cancer [218]. Metformin possesses 

anticancer properties in NSCLC [219]. However, a trial of 

patients with advanced pancreatic cancer discovered that 

the administration of metformin did not improve the 

prognosis of patients treated with chemotherapy  [220]. 

Therefore, we can deduce that the anti-cancer effects of 

metformin are unaffected by diabetes mellitus but vary 

according to tumor type. 

Most importantly, Anisimov et al. observed that 

treatment with metformin initiated at a young and middle-

age prolonged longevity (young: +14.1%; middle: +6.1%, 

p > 0.05) and delayed tumorigenesis (young: delay by 

22%; middle: delay by 25%) in female SHR mice. 

Correspondingly, commencing metformin treatment at an 

advanced age did not increase life expectancy and lost its 

anticancer effects [221]. Moreover, in 129/Sv mice, 

metformin extended the mean lifespan of healthy males 

(+20%, p< 0.05) and tumor-bearing males (+4%, although 

p = 0.177). In contrast, it was unable to slow aging in 

https://clinicaltrials.gov/ct2/show/NCT02432287
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healthy females, while simultaneously improving survival 

in tumor-bearing females [206]. These phenomena could 

be explained in part by the putative associations between 

anticancer effects and the antiaging properties of 

metformin. 

 
Table 3. The effect of different therapies in rats. 

 
Intervention               Prolong lifespan  Inhibit cancer Both in a model 

Medicine    

Metformin  

Resveratrol 

Rapamycin   

Yes (sex specificity) [205-207]  Yes [212, 215, 216] Yes [205, 206, 221] 

Yes [226-228] Yes [236-239] No evidence 

Yes (sex specificity) [244-246, 351] Yes [248, 250] Yes [255, 256, 351-354] 

DR    

CR Yes [264, 265] Yes [268-270] Yes [272, 273] 

KD Yes [277] Yes [279-282] Yes [277] 

Microbiota    

Symbiotic Only delay aging[286-289] Yes [295-298] No evidence 

    FMT Yes [302] Yes [304-307] No evidence 

Metabolites    

NMN Only delay aging[313-319] No evidence No evidence 

Spermidine Yes [327, 330, 331] Yes [341, 342] Yes [331] 
 

DR, dietary restriction; CR, caloric restriction; KD, ketogenic diet; FMT, fecal microbiota transplantation; NMN, nicotinamide mononucleotide. 

2. Resveratrol 

 

In mice, resveratrol therapy delays aging of the 

cardiovascular system, improves cognitive performance, 

and reduces aging-mediated renal impairment [222-225]. 

Additionally, it increased the life expectancy of HtrA2 

knockout mice (mitochondrial dysfunction), SOD1G93A 

transgenic mice (amyotrophic lateral sclerosis), and 

SAMP8/1 mice (Alzheimer’s disease) [226-228]. In 

humans, resveratrol treatment has been shown to slow the 

process of skin aging [229], improve cerebrovascular 

function, delay cognitive decline [230, 231], and improve 

mobility-related physical function [232]. 

The anticancer properties of resveratrol have also 

been investigated. In an in vitro experiment, resveratrol 

successfully inhibited the migration, invasion, and 

viability of cancer cells and induced cell death [233-235]. 

In vivo experiments showed that resveratrol suppressed 

tumorigenesis, decreased micro-vessel formation of 

tumors, alleviated tumor burden, and improved 

chemotherapeutic response in mice [236-239]. 

Unfortunately, clear and direct evidence regarding the 

effects of clinical treatment continues to be insufficient. 

 

3. Rapamycin 

 

Short-term rapamycin treatment inhibited premature 

ovarian failure, rejuvenated oral health, and slowed the 

epigenetic age of the liver in aging mouse models [240-

242]. In terms of lifespan, Bitto et al. observed that 3 

months of rapamycin supplementation increased the life 

expectancy of middle-aged mice by 60% [243]. Strong et 

al. further pointed out the sex-specific effects of 

rapamycin, stating that a 3-month course of rapamycin 

improved longevity in male mice, whereas female mice 

required continuous exposure [244]. However, it has been 

demonstrated that rapamycin does not extend longevity in 

progeroid models with DNA repair deficiency or 

telomerase deletion, regardless of dosage, gender, or 

timing [245, 246]. This indicates that the antiaging effects 

of rapamycin are sex-specific and that its mechanism of 

action may involve enhancing DNA repair capacity and 

preventing DNA damage. Topical rapamycin treatment 

delays skin aging and improves skin appearance in 

humans [247]. 

In terms of anticancer activity, rapamycin alone or in 

combination with other agents has been shown to decrease 

the progression of various tumors or to enhance the 

chemotherapeutic response in vitro or in vivo [248-250]. 

Clinically, as an adjuvant therapy, rapamycin successfully 

developed a pathological response and inhibited 

metabolic activity in rectal cancer [251], suppressed head 

and neck tumor growth [252], enhanced the curative effect 

of intravesical BCG therapy [253], decreased the 

incidence of secondary skin cancers, and improved 

squamous cell cancer-free survival at 5 years (p = 0.007) 

in kidney transplant recipients [254]. Of course, these are 

phase I and II trials, and additional clinical trials are 

needed to investigate the direct therapeutic effects of 

rapamycin in various types of cancers. 

Several studies on rats have demonstrated a more 

direct connection between aging and cancer. For example, 

Anisimov et al. discovered that rapamycin treatment 

increased the mean (+4.1%) and maximal lifespans 

(+12.4%), as well as delayed the incidence of breast 

cancer (p < 0.001) and decreased tumor burden (p < 0.01) 

[255]. Wilkinson et al. reported that rapamycin delayed 

the aging of multiple systems while decreasing the 
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incidence rates for adrenal tumors (p = 0.04) and lung 

tumors (no statistical significance) [256]. Additionally, 

researchers discovered that rapamycin, despite its ability 

to prevent cancer growth, failed to prolong survival in rats 

already suffering from tumors. Therefore, we conclude 

that rapamycin suppresses tumorigenesis by delaying 

aging rather than delaying death by inhibiting cancer. 

Hence, there are several targets controlled by rapamycin 

in cancer and aging. 

 
Table 4. The effect of different therapies in humans. 

 
Intervention Delay aging Prolong lifespan1 Inhibit cancer Improve prognosis 

Medicine     

Metformin  

Resveratrol 

Rapamycin   

Yes [208-211] No evidence Yes (vitro and vivo) [212-214, 216] Yes [217-219] 

Yes [229-232] No evidence Yes (vitro) [233-235] No evidence 

Yes [247] No evidence  Yes (vitro and vivo) [248, 249, 251-254] No evidence 

DR     

CR Yes [266] Yes2 [267] Yes (vivo)2 [271] No evidence 

KD Yes [278] No evidence Yes (vivo) [284] Yes [284, 285, 355] 

Microbiota     

Symbiotic Yes [290-294] No evidence Yes (vivo)2 [299, 301] Yes3 [300] 

    FMT No evidence No evidence Yes (vivo) [308] Yes [308] 

Metabolites     

NMN No evidence No evidence Unclear [320, 321] No evidence 

Spermidine Yes [332-334] Yes2 [335] Yes (vitro and vivo2) [336-340] No evidence 
 

DR, dietary restriction; CR, caloric restriction; KD, ketogenic diet; FMT, fecal microbiota transplantation; NMN, nicotinamide mononucleotide. 

1: Prolong lifespan means that this method can extend longevity of whole populations rather than patients with specific diseases. 

2: Only proved in retrospective study. 

3: 0.05 < P-value < 0.1 

Conserved role of dietary restriction in aging and 

cancers 

 

In recent years, we have begun to pay more attention to 

dietary restriction which has been shown to extend the 

healthy lifespan of several species without causing 

malnutrition. Caloric restriction (CR), restriction of 

specific dietary ingredients, ketogenic diet (KD), fasting, 

and so on are all examples of dietary restriction [257]. In 

this study, we were mostly concerned about the role of CR 

and KD in aging and cancer. 

 

1. CR 
 

In rats, CR restored redox homeostasis in aged hearts 

[258], delayed skeletal muscle degeneration [259], 

postponed aging-correlative recession in locomotor 

activity [260], alleviated aging-related metabolic 

disorders [261], remodeled age-related methylation 

pattern[262], and even caused epigenetic age deceleration 

[263]. In terms of longevity, in the last century, people 

have observed that 40% of long-term CR maintains 

cellular replication capacity and increases both average 

lifespan and maximum lifespan by 36% and 20%, 

respectively [264]. Yan et al. demonstrated that lifelong 

CR increased the survival of rats by 30% when combined 

with GH/IGF-1 suppression, while GH/IGF-1 suppression 

alone only improved survival by 8% [265]. In humans, CR 

prolonged the replicative lifespan of adipose-derived 

stromal/progenitor cells and delayed white adipose tissue 

recession [266]. A retrospective study revealed that 

Okinawans who adhered to a CR diet extended both 

average and maximum longevity compared to Japanese 

and Americans [267]. 

In terms of anticancer effects, CR has been shown to 

decrease the progression of numerous cancers and 

improve the therapeutic response in mice [268-270]. 

Additionally, clinical studies have shown that CR 

successfully reduces the incidence of breast cancer (all 

women: OR = 0.52, p = 0.001; premenopausal women: 

OR = 0.36, p < 0.001; postmenopausal women: OR = 

0.77, p = 0.001) [271]. 

The antiaging and anticancer effects of CR were 

observed using the same models. Weindruch et al. 

discovered that CR not only extended the lifespan of mice 

but also suppressed the occurrence of spontaneous 

lymphoma [272]. Lee et al. found that CR prolonged the 

maximum lifespan of mice by 13% (p < 0.0001) and 

appeared to decrease the incidence of hepatocellular 

carcinoma and lymphoma in mice (both p ≤ 0.001) [273]. 

 

2. KD 

 

KD is a low-carbohydrate diet with a high fat content (5–

10% of the total daily consumed kcal). Recently, it was 

discovered that non-obesogenic KD improved memory 

[274], inhibited myocardial remodeling and damage 

[275], and preserved skeletal muscle mass and function in 
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mice during the aging process [276]. Additionally, Megan 

et al. demonstrated that KD preserved physiological 

function while increasing median longevity by 13.6% 

along with survival in mice [277]. Numerous 

investigations conducted in humans have established that 

KD improves cognitive function and memory in patients 

with Alzheimer’s disease, particularly those with the 

APOE4- genotype, even in short-term memory [278].  

The anticancer effects of KD were also investigated. 

For example, in a mouse model, KD alone has been shown 

to inhibit the growth of a variety of tumors [279, 280]. In 

mice with pancreatic cancer, combining radiotherapy with 

KD may improve radiation sensitivity and extend survival 

time compared to radiotherapy alone [281]. Additionally, 

it may enhance the anticancer properties of rapamycin and 

other chemotherapeutic agents [279, 282]. In humans, KD 

has been shown to enhance the effects of chemotherapy, 

promote the incidence of complete or partial responses, 

and increase patient survival rate without inducing side 

effects [283-285]. In summary, KD serves as an adjuvant 

therapy to enhance the effectiveness of conventional 

therapy. 

It is worth mentioning that KD not only increased 

median lifespan by 13.6% in a mouse model, but also 

decreased the incidence of malignancies, particularly 

histiocytic sarcoma (P < 0.1), at the time of death. This 

effect was dose-dependent [277]. This result further 

established that energy and substance metabolism connect 

aging with cancer, which is likely to be mediated by 

mitochondrial function and oxidative stress. 

 

Emerging approaches: interventions in the gut 

microbiota in aging and cancer 

 

Previous research has established that disturbances in the 

intestinal microbiota occur inexorably with aging and can 

result in various age-related diseases, including cancer. 

Thus, microbiota intervention strategies such as 

probiotics, prebiotics, symbiotics, and fecal microbiota 

transplantation (FMT) are emerging to rectify flora 

disturbances. 

 

1. Symbiotic 

 

Symbiotic bacteria have been shown to increase cognitive 

function, minimize memory deterioration, delay 

behavioral degeneration (such as muscular vigor and 

exploratory activity), and protect against primary and 

secondary osteoporosis in aging mice [286-289]. In 

humans, earlier research concluded that symbiotic 

bacteria restore the skin barrier; protect against 

photoaging; and improve hair quality [290], cognitive 

function, and aging-mediated memory impairment during 

aging [291-293]. Liu et al. also argued that ingesting 

symbiotics significantly upregulated serum calcium 

concentrations in older individuals, although its benefits 

to bone health remained ambiguous [294].  

Recently, a plethora of evidence supporting the 

anticancer effects of symbiotics has emerged. Previous 

research has shown that symbiotics, such as 

Bifidobacterium, Bacteroides fragilis, and Akkermansia 

muciniphila, can inhibit cancer progression, mainly breast 

and CRC, and enhance chemotherapy effects in vitro or in 

mice [295-298]. Clinically, Toi et al. discovered that 

Lactobacillus casei strain Shirota consumption showed a 

negative correlation with breast cancer incidence (OR = 

0.65, p = 0.048) [299]. Takada et al. demonstrated that 

supplementation with probiotics improved progression-

free survival (HR = 1.73, p = 0.0229), disease control (OR 

= 0.51, p = 0.0004), and overall response (OR = 0.43, p < 

0.0001) in NSCLC patients receiving anti-programmed 

cell death 1 protein (anti-PD-1) monotherapy [300]. 

Additionally, the use of probiotics decreased the 

incidence of metachronous gastric cancer after 

endoscopic resection (HR = 0.29, p = 0.034)  [301]. 

 

2. FMT 

 

It is worth noting that FMT from wild type mice prolongs 

the life of progeroid mice, and it has been established that 

Akkermansia muciniphila plays a predominant role. 

Antiaging effects may be dependent on secondary bile 

acid restoration [302]. Additionally, another study 

discovered that FMT was capable of successfully 

regulating Hippo signaling, which is involved in the 

manipulation of aging processes [303].  

An earlier study showed that FMT from normal mice 

to tumor-bearing mice decreased tumor load and size in 

the azoxymethane-dextran sodium sulfate (AOM-DSS) 

model of CRC [304, 305]. Gopalakrishnan et al. observed 

that the gut microbiome of patients responding to anti-PD-

1 could improve antitumor immunity in germ-free mice 

and restore the effects of PD-1 blockade in resistant mice 

[306, 307]. In humans, a recent clinical study discovered 

that FMT from healthy obese individuals to patients with 

gastroesophageal cancer improved therapeutic response 

(p = 0.035), and may also improve overall survival (HR = 

0.38, p = 0.057) and progression-free survival (HR = 0.5, 

p = 0.092) in patients [308]. 

The use of gut microbiota intervention for anti-aging 

and anti-cancer strategies is currently limited. Additional 

evidence is necessary to support this therapy. 

 

Replenishing insufficient metabolites: is it effective 

and safe enough? 

 

Previous research has shown that circulatory metabolites, 

including NAD+, glutathione, spermidine, glutamine, and 
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α-ketoglutarate, decrease significantly in the older 

individuals [309-312]. Therefore, the role of restoring 

these depleted metabolites in antiaging processes is of 

interest. Here, we have focused on nicotinamide 

mononucleotide (NMN) and spermidine. 

 

1. NMN 

 

NMN, as an NAD+ booster, has been shown to delay 

vascular aging, promote functional vascular rejuvenation, 

and reverse vascular dysfunction in aged mice [313, 314]. 

It also alleviates memory recession and improves learning 

and cognitive function in mice [315-317]. Additionally, 

NMN supplementation has been shown to enhance 

osteogenesis and improve bone density, locomotor 

activity, and eye function in aged mice [318, 319]. 

However, the direct antiaging effects of NMN have not 

been elucidated in humans yet. 

With regard to cancer, NAD+ is catalyzed by 

nicotinamide mononucleotide adenylyl transferases 

(NMNATs, the rate-limiting enzymes) from NMN. In 

humans, earlier research found that NMNAT2 is highly 

expressed in CRC and its increased expression correlates 

with a deeper invasive depth and an advanced TNM stage 

(p < 0.05) [320]. Additionally, as previously stated, 

NAD+ is a known carcinogen in a wide variety of 

malignancies. NMN supplementation appears to be 

involved in the progression of cancer. However, Grozio et 

al. discovered that increased expression of SLC12A8, a 

particular NMN transporter required for NMN uptake, 

was associated with a favorable prognosis in patients with 

pancreatic and breast cancer [321]. Zong et al. discovered 

that in a mouse model, NMN supplementation could 

prevent liver fibrosis, which could progress to liver cancer 

[322].  

However, the effects of NMN on cancers are 

unknown and it is unclear whether replenishing NMN for 

antiaging purposes is carcinogenic. 

 

2. Spermidine 

 

Recent research in aged mice discovered that dietary 

spermidine can improve structural brain measures [323], 

improve spatial and temporal memory [324], decrease 

locomotor activity loss [325], protect cardiac function 

[326, 327], delay skeletal muscle atrophy [328] and 

reverse arterial aging [329]. In terms of lifetime, it has 

been observed that dietary polyamines (spermine and 

spermidine) prolong longevity and improve survival in 

ICR mice [330]. Eisenberg et al. further reported that late-

life spermidine replenishment (which is easier to achieve 

in humans) successfully improved the median lifespan by 

10% [327]. Yue et al. pointed out that lifelong spermidine 

supplementation can increase the lifespan of mice by 25% 

[331]. In humans, spermidine has been shown to preserve 

female fertility [332], restore skin structure and barrier 

function [333] and improve mnemonic discrimination 

performance [334]. In humans, spermidine has been 

shown to preserve female fertility [335]. 

Similarly, spermidine was found to decrease cervical 

cancer in vitro by suppressing HeLa cell proliferation and 

inducing apoptosis intrinsically or via an apoptosis-

inducing factor [336-338]. Razvi et al. discovered that 

acylspermidine derivatives inhibited breast and blood 

cancer cell proliferation and triggered apoptosis [339]. 

Additionally, the presence of spermine/spermidine could 

induce apoptosis in CRC cells mediated by maize 

polyamine oxidase [340]. In mice, spermidine inhibited 

the growth of CT26 CRC cells transplanted into 

immunocompetent individuals [341]. Soda et al. also 

discovered that spermine and spermidine intake decreased 

the incidence of colon cancer induced by a chemical 

carcinogen in BALB/c mice [342]. Vargas et al. 

discovered that spermine and spermidine could 

significantly decrease the risk of CRC in women with a 

body mass index of ≤25 (HR = 0.58, p = 0.012) or in 

women who consume more fiber than the average (HR = 

0.44, p = 0.015) [343]. 

Most importantly, Yue et al. demonstrated that 

spermidine not only extended the lifespan but also 

alleviated liver fibrosis and inhibited hepatocellular 

carcinoma by improving MAP1S-mediated autophagy in 

the same model. This phenomenon indicated that 

spermidine could regulate both aging and cancer 

synergistically, possibly by manipulating autophagy 

[331]. 

 

Discussion 

 

Aging is an inevitable process. Economic, technological, 

and medical advancements have resulted in a decline in 

birth rates and an increase in the proportion of the older 

individuals, putting a strain on the health system. The 

increased incidence of various diseases in aged 

individuals implies that aging impairs health. As one of 

the leading causes of death among the elderly, a higher 

diagnostic rate of malignant tumors in the elderly also 

suggests a possible link between cancer and aging. For 

example, in the United States, more than 60% of all lung 

cancer cases occurred in those aged more than 65 years, 

whereas less than 2% of lung cancer occurred in people 

younger than 45 years [344]. Hospitalization costs 

associated with anticancer treatments have increased 

significantly in recent years. To extend a healthy lifespan 

and alleviate the strain on the health care system, it is 

critical to explore the link between aging and cancer. With 

the advancement of scientific research, significant 

changes in the human body during the process of aging 
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have already been identified, including chronic 

inflammation, immunosuppression, and endocrine 

disorders. Additionally, numerous pathogenic 

mechanisms for common cancers have been proposed, 

and we identified some aging-related alterations 

associated with tumor occurrence. Worse yet, these age-

related alterations might accelerate the rate of aging, 

creating a vicious circle. Hence, cancer therapy targeting 

aging is likely to be effective. 

During the last century, researchers have already 

noticed a decreased in the incidence of malignant tumors 

in patients with Huntington’s disease, which may be 

attributed to accelerated programmed cell death of 

precancerous cells [345]. Several years ago, Musicco et 

al. discovered that older individuals with Alzheimer’s 

disease had a lower risk of developing malignant tumors 

[346]. These findings appear to support a negative 

correlation between cancer, proliferative disease, and 

aging, which is typically associated with degenerative 

diseases. 

However, this correlation was not statistically 

significant. Last year, Ording et al. conducted additional 

research on the correlation between Alzheimer’s disease 

and cancer. They established that the negative correlation 

between these two diseases was quite limited (SIR = 0.94, 

95% confidence interval 0.92–0.96) and weakened over 

time [347]. Freedman et al. found no correlation between 

site-specific cancers and amyotrophic lateral sclerosis 

[348]. Liu et al. discovered a statistically significant 

positive correlation between the occurrence of melanoma 

and Parkinson’s disease [349].  

The association between cancer and degenerative 

diseases does not always exhibit an inverse correlation; it 

can occasionally exhibit a positive correlation. This 

suggests that the relationships between cancer and aging, 

or organic aging, are intricate, and their tissue specificity 

should be investigated. 

In this review, we summarized numerous strategies 

for delaying aging and restoring aging-related imbalances 

or disorders. Additionally, these techniques have been 

shown to have anticancer effects. At the same time, we 

further summarized the experimental phases of these 

strategies to estimate their feasibility and reliability. 

Metformin is a relatively well-studied medication. 

Researchers have established that it can slow organic 

aging and ameliorate the symptoms of senile diseases. It 

may also act as a regulator of human genes, bringing their 

expression levels closer to those of young people 

(https://clinicaltrials.gov/ct2/show/NCT02432287). 

Cancer has the potential to suppress tumor 

progression both in vivo and in vitro, as well as improve 

patient prognosis. However, its anticancer or antiaging 

effects may be gender- and tissue-specific, which have not 

been adequately investigated. Resveratrol and rapamycin 

have also been shown to delay organic aging and slow 

tumor progression; however, evidence of improved 

prognosis in cancer patients is currently lacking. Dietary 

restriction has already been shown to have anticancer and 

antiaging properties, which has been partially verified in 

humans. Additionally, there is a significant problem in 

that the level (percentage) or pattern (persistent or 

intermittent) of restriction, the species of restricted 

energy, and age or gender disparity are ambiguous. The 

effects of microbiota intervention on aging and cancer 

have been primarily tested in animals. Owing to concerns 

regarding the complexity of the methods, the survival rate 

of xenogenous microflora, and demic tolerance, the 

application of FMT in the human body is rather 

uncommon. Thus, its antiaging and anticancer effects 

must be further validated. Replenishment of scarce 

metabolites in elderly individuals, such as spermidine, is 

another attempt at this monumental task that has been 

demonstrated in animals to a certain extent. However, 

clinical trials in humans have not yet begun. Additionally, 

researchers discovered that spermidine, a polyamine, may 

suppress carcinogenesis but deteriorates established 

tumors [350]. Its bidirectional characteristics remain 

obscure. Additionally, all the approaches outlined above 

lack direct evidence of extending healthy human life and 

can only be used as adjuvant medications or therapies for 

cancer treatment. 

Hence, one of the most critical objectives of future 

research will be to optimize interventions for them to be 

extensively employed in clinical practice. For example, 

extending the scope of clinical trials based on safety to 

further evaluate the therapeutic effects and determine the 

optimal dose. Developing an appropriate dosage or 

compound that maximizes bioavailability, minimizes side 

effects, and improves compliance is critical. Additionally, 

determining the primary and most appropriate target for 

each individual and developing an individualized 

treatment plan are necessary before being extensively 

used in the clinic. Senolysis offers an alternative to the 

traditional prevention paradigm of “antiaging therapy,” 

which entails lifestyle or pharmacological interventions to 

delay the onset of age-induced decrepitude and the 

occurrence of diseases. The complexity of the human 

body and the diversity of aging and cancer mechanisms 

prevent us from conducting extensive and exhaustive 

research. Thus, additional methods need to be explored. It 

is notable that blind supplementation with missing 

substances is not a good idea. In contrast, it may fail to 

delay aging and even induce tumorigenesis. In the future, 

we should devote our efforts to precisely identify 

therapies that would effectively prevent the incidence and 

progression of cancer by delaying aging. 
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