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Many research applications of neuroimaging use magnetic resonance imaging (MRI). As

such, recommendations for image analysis and standardized imaging pipelines exist.

Clinical imaging, however, relies heavily on X-ray computed tomography (CT) scans

for diagnosis and prognosis. Currently, there is only one image processing pipeline for

head CT, which focuses mainly on head CT data with lesions. We present tools and

a complete pipeline for processing CT data, focusing on open-source solutions, that

focus on head CT but are applicable to most CT analyses. We describe going from

raw DICOM data to a spatially normalized brain within CT presenting a full example with

code. Overall, we recommend anonymizing data with Clinical Trials Processor, converting

DICOMdata to NIfTI using dcm2niix, using BET for brain extraction, and registration using

a publicly-available CT template for analysis.

Keywords: CT, image processing, image normalization, image analysis, non-contrast CT, image de-identification,

neuroimaging, neuroimaging analysis

1. INTRODUCTION

Many research applications of neuroimaging use magnetic resonance imaging (MRI). MRI allows
researchers to study amultitude of applications and diseases, including studying healthy volunteers.
Clinical imaging, however, relies heavily on X-ray computed tomography (CT) scans for diagnosis
and prognosis. Studies using CT scans cannot generally recruit healthy volunteers or large
non-clinical populations due to the radiation exposure and lack of substantial benefit. As such,
much of head CT data is gathered from prospective clinical trials or retrospective studies based on
health medical record data and hospital picture archiving and communication system (PACS). We
discuss transforming this data from clinical to research data and provide some recommendations
and guidelines from our experience with CT data similar insights from working with MRI studies.
We will discuss existing software options, focusing on open-source tools, for neuroimaging in
general and those that are specific to CT throughout the paper.

We will focus on aspects of quantitatively analyzing the CT data and getting the data into a
format familiar to most MRI neuroimaging researchers. Therefore, we will not go into detail of
imaging suites designed for radiologists, which may be proprietary and quite costly. Moreover, we
will be focusing specifically on non-contrast head CT data, though many of the recommendations
and software is applicable to images of other areas of the body.

The pipeline presented here is similar to that of Dhar et al. (2018). We aim to discuss the
merits of each part of the pipeline with a set of choices that have available code. In addition,
we present a supplement with a working example, including code, to go from DICOM data to
a spatially-normalized brain image. We also touch on points relevant to de-identification of the
data, not only from DICOM metadata, but also removing identifiable information from the image
itself such as the face. Overall, we aim to discuss the suite of tools available, many of which built
specifically for MRI, but provide slight modifications if necessary to have these work for head CT.
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2. DATA ORGANIZATION

Most of the data coming from a PACS is in DICOM (Digital
Imaging and Communications in Medicine) format. Generally,
DICOM files are a combination of metadata (i.e., a header)
about an image and the individual pixel data, many times
embedded in a JPEG format. The header has a collection of
information, usually referred to as fields or tags. Tags are usually
defined by a set of 2 hexadecimal numbers, which are embedded
as 4 alphanumeric characters. For example, (0008,103E)
denotes the SeriesDescription tag for a DICOM file. Most
DICOM readers extract and use these tags for filtering and
organizing the files. The pixel data is usually given in the axial
orientation in a high resolution (e.g., 0.5 mm2) grid of 512 x
512 pixels.

We will use the phrase scanning session (as opposed to
“study” and reserve study to denote a trial or analysis), a series
for an individual scan, and a slice for an individual picture
of the brain. Each series (Series Instance UID tag) and
scanning session (Study Instance UID tag) should have a
unique value in the DICOM header that allows DICOM readers
to organize the data by scanning session and series. The following
sections will discuss data organization and data formats.

2.1. DICOM Anonymization
One of the common issues with DICOM data is that a large
amount of protected health information (PHI) can be contained
in the header. DICOM is a standard where individual fields in
the header contain the same values across different scanners
and sites, but only if that manufacturer and site are diligent to
ascribing to the DICOM standard. ThoughmanyDICOMheader
fields are consistent across neuroimaging studies, a collection of
fields may be required to obtain the full amount of data required
for analysis. Moreover, different scanning manufacturers can
embed information in non-standard fields. The goal is to remove
these fields if they contain PHI, but retain these fields if they
embed relevant information of the scan for analysis. These fields
then represent a challenge to anonymization without loss of
crucial information if the data do not conform to a standard
across scanning sites, manufacturers, or protocols.

We will discuss reading in DICOM data and DICOM
header fields in the next section. Reading DICOM data may be
necessary for extracting information, but many times the data
must be transferred before analysis. Depending on the parties
receiving the data, anonymization of the data must be done
first. Aryanto et al. (2015) provides a look at a multitude of
options for DICOM anonymization and recommend the RSNA
MIRC Clinical Trials Processor (CTP, https://www.rsna.org/
research/imaging-research-tools) a, cross-platform Java software,
as well as the DICOM library (https://www.dicomlibrary.
com/) upload service. We also recommend the DicomCleaner
cross-platform Java program as it has similar functionality.
Bespoke solutions can be generated using dcm4che (such
as dcm4che-deident, https://www.dcm4che.org/) and other
DICOM reading tools (discussed below), but many of these
tools have built-in capabilities that are difficult to add (such as
removing PHI embedded in the pixel data, aka “burned in”).

2.1.1. A Note on De-identification: Time Between

Scans
Although most of the presented solutions are good at
anonymization and de-identification of the header information,
only a few such as CTP, have the utilities required for longitudinal
preservation of date differences. Dates are considered removable
identifiable information under HIPAA, some clinical trials and
other studies rely on serial CT imaging data, and the differences
between times are crucial to determine when events occur or are
used in analysis.

2.2. Publicly Available Data
With the issues of PHI above coupled with the fact that most
CT data is acquired clinically and not in a research setting, there
is a dearth of publicly available data for head CT compared
to head MRI. Sites for radiological training such as Radiopedia
(https://radiopaedia.org/) have many cases of head CT data, but
these are converted from DICOM to standard image formats
(e.g., JPEG) so crucial information, such as Hounsfield Units and
pixel dimensions, are lost.

Large repositories of head CT data do exist, though, and many
in DICOM format, with varying licenses and uses. The CQ500
(Chilamkurthy et al., 2018) dataset provides approximately 500
head CT scans with different clinical pathologies and diagnoses,
with a non-commercial license. All examples in this article use
data from 2 subjects within the CQ500 data set. The Cancer
Imaging Archive (TCIA) has hundreds of CT scans, many cases
with brain cancer. TCIA also has a RESTful (representational
state transfer) interface, which allows cases to be downloaded
in a programmatic way; for example, the TCIApathfinder
R package (Russell, 2018) and Python tciaclient module
provide an interface. The Stroke Imaging Repository Consortium
(http://stir.dellmed.utexas.edu/) also has head CT data available
for stroke. The National Biomedical Imaging Archive (NBIA,
https://imaging.nci.nih.gov) demo provides some head CT data,
but are mostly duplicated from TCIA. The NeuroImaging
Tools & Resources Collaboratory (NITRC, https://www.nitrc.
org/) provides links to many data sets and tools, but no head CT
images at this time. The RIRE (Retrospective Image Registration
Evaluation, http://www.insight-journal.org/rire/) and MIDAS
(http://www.insight-journal.org/midas) projects have small set of
publicly available head CT (under 10 participants).

2.2.1. Reading DICOM Data
Though MATLAB has an extensive general imaging suite,
including SPM (Penny et al., 2011), we will focus on R (R Core
Team, 2018) Python (Python Software Foundation, https://
www.python.org/), and other standalone software. The main
reasons are that R and Python are free, open source, and
have a lot of functionality with neuroimaging and interface with
popular imaging suites. We are also lead the Neuroconductor
project (https://neuroconductor.org/) (Muschelli et al., 2018),
which is a repository of R packages for medical image analysis.
Other imaging platforms such as the Insight Segmentation and
Registration Toolkit (ITK) are well-maintained, useful pieces of
software that can perform many of the operations that we will be
discussing. We will touch on some of this software with varying
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levels. We aim to present software that we have had used directly
for analysis or preprocessing. Also, other papers and tutorials
discuss the use of these tools in analysis (https://neuroconductor.
org/tutorials).

For reading DICOM data, there are multiple options. The
oro.dicom (Whitcher et al., 2011) and radtools (Russell
and Ghosh, 2019) R packages, pydicom Python module
(Mason, 2011), MATLAB imaging toolbox, and ITK (Schroeder
et al., 2003) interfaces can read DICOM data amongst others.
The DICOM toolkit dcmtk (Eichelberg et al., 2004) has multiple
DICOM manipulation tools, including dcmconv to convert
DICOM files to other imaging formats. Though most imaging
analysis tools can read in DICOM data, there are downsides
to using the DICOM format. In most cases, a DICOM file
is a single slice of the full 3D image series. This separation
can be cumbersome on data organization if using folder
structures. As noted above, these files also can contain a large
amount of PHI. Some image data may be compressed, such as
JPEG2000 format. Alternatively, if data are not compressed, file
storage is inefficient. Most importantly, many imaging analyses
perform 3-dimensional (3D) operations, such as smoothing.
Thus, putting the data into a different format that handles 3D
images as 1 compressed file is desirable. We present examples of
reading DICOM data above, but generally recommend using 3D
imaging formats and using the above tools to read the DICOM
header information.

2.3. Converting DICOM to NIfTI
Many different general 3Dmedical imaging formats exist, such as
ANALYZE, NIfTI, NRRD, and MNC. We recommend the NIfTI
format, as it can be read by nearly all medical imaging platforms,
has been widely used, has a format standard, can be stored in
a compressed format, and is how much of the data is released
online. Moreover, we will present specific software to convert
DICOM data and the recommended software (dcm2niix)
outputs data in a NIfTI file.

Many sufficient and complete solutions exist for DICOM
to NIfTI conversion. Examples include dicom2nifti in
the oro.dicom R package, pydicom, dicom2nifti in
MATLAB, and using large imaging suites such as using ITK
image reading functions for DICOM files and then write
NIfTI outputs. We recommend dcm2niix (https://github.com/
rordenlab/dcm2niix) (Li et al., 2016) for CT data for the following
reasons: (1) it works with all major scanners, (2) incorporates
gantry-tilt correction for CT data, (3) can handle variable slice
thickness, (4) is open-source, (5) is fast, (6) is an actively
maintained project, and (7) works on all 3 major operating
systems (Linux/OSX/Windows). Moreover, the popular AFNI
neuroimaging suite includes a dcm2niix program with its
distribution. Interfaces exist, such as the dcm2niir (Muschelli,
2018) package in R and nipype Pythonmodule (Gorgolewski
et al., 2011). Moreover, the divest package (Clayden and
Rorden, 2018) wraps the underlying code for dcm2niix to
provide the same functionality of dcm2niix, along with the
ability to manipulate the data for more versatility.

We will describe a few of the features of dcm2niix for CT.
In some head CT scans, the gantry is tilted to reduce radiation

exposure to non-brain areas, such as the eyes. Thus, the slices
of the image are at an oblique angle. If slice-based analyses are
done or an affine registration (as this tilting is a shearing) are
applied to the 3D data, this tilting may implicitly be corrected.
This tilting causes issues for 3D operations as the distance of
the voxels between slices is not correct and especially can show
odd visualizations (Figure 1A). The dcm2niix output returns
both the corrected and non-corrected image (Figure 1). As the
correction moves the slices to a different area, dcm2niix may
pad the image so that the entire head is still inside the field of
view. As such, this may cause issues with algorithms that require
the 512 x 512 axial slice dimensions. Though less common,
variable slice thickness can occur in reconstructions where only
a specific area of the head is of interest. For example, an image
may have 5mm slice thicknesses throughout the image, except for
areas near the third ventricle, where slices are 2.5 mm thick. To
correct for this, dcm2niix interpolates between slices to ensure
each image has a consistent voxel size. Again, dcm2niix returns
both the corrected and non-corrected image.

Once converted to NIfTI format, one should ensure the scale
of the data. Most CT data is between−1024 and 3071 Hounsfield
Units (HU). Values less than −1024 HU are commonly found
due to areas of the image outside the field of view that were not
actually imaged. One first processing step would be to Winsorize
the data to the [−1024, 3071] range. After this step, the header
elements scl_slope and scl_inter elements of the NIfTI
image should be set to 1 and 0, respectively, to ensure no data
rescaling is done in other software. Though HU is the standard
format used in CT analysis, negative HU values may cause
issues with standard imaging pipelines built for MRI, which
typically have positive values. Rorden (CITE) proposed a lossless
transformation, called Cormack units, which have a minimum
value of 0. The goal of the transformation is to increase the range
of the data that is usually of interest, from −100 to 100 HU and
is implemented in the Clinical toolbox (discussed below). Most
analyses are done using HU, however.

2.4. Convolution Kernel
Though we discuss CT as having more standardized Hounsfield
unit values, this does not imply CT scans cannot have
vastly different properties depending on parameters of
scanning and reconstruction. One notable parameter in image
reconstruction is the convolution kernel [i.e., filter, DICOM field
(0018,1210)] used for reconstruction.We present slices from
an individual subject from the CQ500 (Chilamkurthy et al., 2018)
dataset in Figure 2. Information on which kernel was used, and
other reconstruction parameter information can be found in the
DICOM header. The kernel is described usually by the letter “H”
(for head kernel), a number indicating image sharpness (e.g., the
higher the number, the sharper the image, the lower the number,
the smoother the image), and an ending of “s” (standard), “f”
(fast), “h” for high resolution modes (Siemens SOMATOM
Definition Application Guide), though some protocols simply
name them “soft-tissue,” “standard,” “bone,” “head,” or “blood,”
amongst others. The image contrast can depend highly on the
kernel, and “medium smooth” kernels (e.g., H30f, H30s) can
provide good contrast in brain tissue (Figure 2E). Others, such
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FIGURE 1 | Example of gantry-tilt correction. Using “dcm2niix,” we converted the DICOM files to a NIfTI file, which had a 30 degree tilt. The output provides the

uncorrected image (A) and the tilt-corrected image (B). We see that the reconstructed image without correction appears fine within the axial plane, but out of plane

has an odd 3D shape. This shape will be corrected with an affine transformation, which is done in the conversion, correcting the image as seen in (B).

as “medium” kernels (e.g., H60f, H60s) provide contrast in high
values of the image, such as detecting bone fractures (Figure 2A),
but not as good contrast in brain tissue (Figure 2B). Thus, when
combining data from multiple sources, the convolution kernel
may be used to filter, stratify, or exclude data.

Moreover, the noise and image contrast can be different
depending on the image resolution of the reconstruction. Most
standard head CT scans have high resolution within the axial
plane (e.g., 0.5 x 0.5 mm). Image reconstructions can have
resolution in the interior-superior plane (e.g., slice thickness)
anywhere from 0.5mm (aka “thin-slice,” Figure 2F) to 2.5 mm,
to 5 mm, where 5 mm is fairly common. The larger the slice
thicknesses are, the smoother the reconstruction (as areas are
averaged). Also, the added benefit for radiologists and clinicians
are that fewer slices are needed to be reviewed for pathology or to
get a comprehensive view of the head. In research, however, these
thin-slice scans can get better estimates of volumes of pathology,
such as a hemorrhage (CITE), or other brain regions. Moreover,
when performing operations across images, algorithms may need
to take this differing resolution, and therefore image dimensions,
into account. We will discuss image registration in the data
preprocessing as one way to harmonize the data dimensions,
but registration does not change the inherent smoothness or
resolution of the original data.

In some instances, only certain images are available for
certain subjects. For example, most of the subjects have a non-
contrast head CT with a soft-tissue convolution kernel, whereas
some only have a bone convolution kernel. Post-processing
smoothing can be done, such as 3D Gaussian (Figure 2C) or
anisotropic (Perona-Malik) smoothing (Perona and Malik, 1990;
Figure 2D). This process changes the smoothness of the data,
contrast of certain areas, can cause artifacts in segmentation,

but can make the within-plane properties similar for scans with
bone convolution kernel reconstructions compared to soft-tissue
kernels in areas of the brain (Figure 2E).

2.5. Contrast Agent
Though we are discussing non-contrast scans, head CT scans
with contrast agent are common. The contrast/bolus agent again
should be identified in the DICOM header field (0018,0010),
but may be omitted. The contrast changes CT images, especially
where agent is delivered, notably the vascular system of the brain
(Figure 2G). These changes may affect the steps recommended
in the next section of data preprocessing, where thresholds
may need to be adjusted to include areas with contrast
which can have higher values than the rest of the tissue
(e.g., > 100 HU; Figure 2G).

3. DATA PREPROCESSING

Now that the data is in a standard file format, we can discuss data
preprocessing. As the data are in NIfTI format, most software
built for MRI and other imaging modalities should work, but
adaptations and other considerations may be necessary.

3.1. Bias-Field/Inhomogeneity Correction
In MRI, the scan may be contaminated by a bias field
or set of inhomogeneities. This field is generally due to
inhomogeneities/inconsistencies in the MRI coils or can be
generated by non-uniform physical effects on the coils, such as
heating. One of themost common processing steps done first is to
remove this bias field. In many cases, these differences can more
general be considered non-uniformities, in the sense that the
same area with the same physical composition and behavior may
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FIGURE 2 | Different series for a scanning study. Here we present different non-contrast head CT exported from a PACS. We display a reconstructed scan with a

bone convolution kernel (A), showing bright areas of the skull, which can be investigated for breaks or fractures. When applying a window of 0–100 Hounsfield units

(HU) of this image, we see the image resolution (B). Using a Gaussian (C) or Perona-Malik (D) smoother, we see the resulting image smoothness is similar to the

image reconstructed with a soft-tissue convolution kernel (E). Images (A–E) had a slice thickness of 5 mm. The thin-slice scan (F) had a slice thickness of 0.62 mm

and a soft-tissue convolution kernel. CT scan with contrast agent (G) to show how the contrast affects the CT image.

take on a different value if it were in a different spatial location of
the image. Though CT data has no coil or assumed bias field due
to the nature of the data, one can test if trying to harmonize the
data spatially with one of these correction procedures improves
performance of a method. Though we do not recommend this
procedure generally, as it may reduce contrasts between areas of
interest, such as hemorrhages in the brain, but has been used to
improve segmentation (Cauley et al., 2018). We would like to
discuss potential methods and CT-specific issues.

Overall, the assumptions of this bias field are that it is
multiplicative and is smoothly varying. One of the most
popular inhomogeneity corrections are the non-parametric non-
uniformity normalization (e.g., N3; Sled et al., 1998) and its
updated improvement N4 (Tustison et al., 2010) in ANTs,
though other methods exist in FSL (Zhang et al., 2001) and
other software (Ashburner and Friston, 1998; Belaroussi et al.,
2006). Given the assumption of the multiplicative nature of the
field, N4 performs an expectation–maximization (EM) algorithm
on the log-transformed image, assuming a noise-free system.
As CT data in HU has negative values, the log transform is
inappropriate. Pre-transforming or shifting the data values may
be necessary to perform this algorithm, though these transforms
may affect performance. Moreover, artifacts or objects (described
below), such as the bed, may largely effect the estimation
of the field and segmentation may be appropriate before
running these corrections, such as brain extraction or extracting
only subject-related data and not imaged hardware. The
ANTsR package (https://github.com/ANTsX/ANTsR) provides
the n4BiasFieldCorrection function in R; ANTsPy
(https://github.com/ANTsX/ANTsPy) and NiPype (Gorgolewski
et al., 2011) provide n4_bias_field_correction and
N4BiasFieldCorrection in Python, respectively.

3.2. Brain Extraction in CT
Head CT data typically contains the subject’s head, face, and
maybe neck and other lower structures, depending on the field
of view. Additionally, other artifacts are typically present, such
as the pillow the subject’s head was on, the bed/gurney, and
any instruments in the field of view. We do not provide a
general framework to extract the complete head from hardware,

but provide some recommendations for working heuristics.
Typically the range of data for the brain and facial tissues are
within −100 to 300 HU, excluding the skull, other bones, and
calcificiations. Creating a mask from values from the −100 to
1000 HU range tends to remove some instruments, the pillow,
and the background. Retaining the largest connected component
will remove high values such as the bed/gurney, filling holes
(to include the skull), and masking the original data with this
resulting mask will return the subject (Figure 3).

Note, care must be taken whenever a masking procedure is
used as one standard way is to set values outside an area of
interest to 0. With CT data 0 HU is a real value of interest: if
all values are set to 0 outside the mask, the value of 0 is aliased
to both 0 HU and outside of mask. Either transforming the data
into Cormack units, adding a value to the data (such as 1025) then
setting values to 0, or using NaN are recommended in values not
of interest.

One of the most common steps in processing imaging of the
brain is to remove non-brain structures from the image. Many
papers present brain extracted CT images, but do not always
disclose the method of extraction. We have published a method
that uses the brain extraction tool (BET) from FSL, originally
built for MRI, to perform brain extraction (Muschelli et al., 2015)
with the CT_Skull_Strip function in the ichseg R package
(Muschelli, 2019). An example of this algorithm performance on
a 5mm slice, non-contrast head CTwith a soft-tissue convolution
kernel is seen in Figure 3, which extracts the relevant areas
for analysis. Recently, convolutional neural networks and shape
propagation techniques have been quite successful in this task
(Akkus et al., 2018) and models have been released (https://
github.com/aqqush/CT_BET). Overall, much research can still
be done in this area as traumatic brain injury (TBI) and surgery,
such as craniotomies or craniectomies, can cause these methods
to potentially fail. Overall, however, large contrast between the
skull and brain tissue and standardized Hounsfield Units can
make brain segmentation an easier task than in MRI.

3.2.1. Tissue-Class Segmentation
In many structural MRI applications, the next step may be
tissue-class segmentation, denoting areas of the cerebrospinal
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FIGURE 3 | Human and brain extraction results. Here we present a 5 mm slice, non-contrast head CT with a soft-tissue convolution kernel. The left figure represents

the CT image, showing all the areas imaged, overlaid with the extracted head mask as described in the section of “Brain Extraction in CT.” The right hand side is the

image overlaid with a brain mask. The brain mask was created using an adaptation of the Brain Extraction Tool (BET) from FSL, published by Muschelli et al. (2015).

fluid (CSF), white matter and gray matter. Though Cauley et al.
(2018) provides an example of tissue-class segmentation of CT
scans using available software (intended for MRI) (Zhang et al.,
2001), we will not cover them in detail here. One potential issue
is the contrast between white and gray matter is much lower
than compared to MRI T1-weighted imaging. Rather than tissue-
class segmentation, a number of examples exist of determining
CSF space from CT, including scans with pathology (Hacker
and Artmann, 1978; Liu et al., 2010; Li et al., 2012; Poh et al.,
2012; Ferdian et al., 2017; Patel et al., 2017; Dhar et al., 2018).
These methods sometimes segment the CSF from the brain,
including areas of the subarachnoid space, only the ventricles,
or some combination of the two. Moreover, these CT-specific
methods have not released open-source implementations or
trained models for broad use.

3.3. Removal of Identifiable Biometric
Markers: Defacing
As part of the Health Insurance Portability and Accountability
Act (HIPAA) in the United States, under the “Safe Harbor”
method, releasing of data requires the removal a number
of protected health information (PHI) (Centers for Medicare
& Medicaid Services, 1996). For head CT images, a notable
identifier is “Full-face photographs and any comparable images”.
Head CT images have the potential for 3D reconstructions, which
likely fall under this PHI category, and present an issue for
reidentification of participants (Schimke and Hale, 2015). Thus,
removing areas of the face, called defacing, may be necessary for
releasing data. If parts of the face and nasal cavities are the target
of the imaging, then defacing may be an issue. As ears may be
a future identifying biometric marker, and dental records may

be used for identification, these areas may desirable to remove
(Cadavid et al., 2009; Mosher, 2010).

The obvious method for image defacing is to perform
brain extraction we described above. If we consider defacing
to be removing parts the face, while preserving the rest of
the image as much as possible, this solution is not sufficient.
Additional options for defacing exist such as the MRI Deface
software (https://www.nitrc.org/projects/mri_deface/), which is
packaged in the FreeSurfer software and can be run using
the mri_deface function from the freesurfer R package
(Bischoff-Grethe et al., 2007; Fischl, 2012). We have found this
method does not work well out of the box on head CT data,
including when a large amount of the neck is imaged.

Registration methods involve registering images to the CT
and applying the transformation of a mask of the removal areas
(such as the face). Examples of this implementation in Python
modules for defacing are pydeface (https://github.com/
poldracklab/pydeface/tree/master/pydeface) and mridefacer
(https://github.com/mih/mridefacer). These methods work since
the registration from MRI to CT tends to performs adequately,
usually with a cross-modality cost function such as mutual
information. Other estimation methods such as the Quickshear
Defacingmethod rely on finding the face by its relative placement
compared to a modality-agnostic brain mask (Schimke and Hale,
2011). The fslr R package implements both the methods of
pydeface and Quickshear. The ichseg R package also has
a function ct_biometric_mask that tries to remove the face
and ears based registration to a CT template (described below).
Overall, removing potential biometric markers from imaging
data should be considered when releasing data and a number of
methods exist, but do not guarantee complete de-identification
and may not work directly with CT without modification.
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3.4. Registration to a CT Template
Though many analyses in clinical data may be subject-specific,
population-level analyses are still of interest. Some analyses
want spatial results at the population-level, which require
registration to a population template. One issue with these
approaches is that most templates and approaches rely on an
MRI template. These templates were developed by taking MRI
scans of volunteers, which again is likely unethical with CT
due to the radiation exposure risk without other benefits. To
create templates, retrospective searches through medical records
can provide patients who came in with symptoms warranting
a CT scan, such as a migraine, but had a diagnosis of no
pathology or damage. Thus, these neuro-normal scans are similar
to that of those collected those in MRI research studies, but with
some important differences. As these are retrospective, inclusion
criteria information may not be easily obtainable if not clinically
collected, scanning protocols and parameters may vary, even
within hospital and especially over time, and these patients still
have neurological symptoms. Though these challenges exist, with
a large enough patient population and a research consent at an
institution, these scans can be used to create templates and atlases
based on CT. To our knowledge, the first publicly available head
CT template exists was released by Rorden et al. (2012), for the
purpose of spatial normalization/registration.

One interesting aspect of CT image registration is again that
CT data has units within the same range. To say they are
uniformly standardized is a bit too strong as tomography and
other confounds can impact units. Thus, it is our practice to think
of them as more standardized than MRI. This standardization
may warrant or allow the user different search and evaluation
cost functions for registration, such as least squares. We have
found that normalized mutual information (NMI) still performs
well in CT-to-CT registration and should be at least considered
when using CT-to-MRI or CT-to-PET registration. Along with
the template above, Rorden et al. (2012) released the Clinical
toolbox (https://github.com/neurolabusc/Clinical) for SPM to
allow researchers to register head CT data to a standard space.
However, as the data are in the NIfTI format, almost all
image registration software should work, though one should
consider transforming the units using Cormack units or other

transformations as negative values may implicitly be excluded in
some software built for MRI registration. We have found using
diffeomorphic registrations such as symmetric normalization
(SyN) from ANTs and ANTsR with NMI cost functions to
perform well. We present results of registering the head CT
presented in brain extraction to the template from Rorden et al.
(2012) using SyN in Figure 4.

In some cases, population-level analyses can be done, but
while keeping information at a subject-specific level. For
example, registration from a template to a subject space
can provide information about brain structures that can be
aggregated across people. For example, one can perform a
label fusion approach to CT data to infer the size of the
hippocampus and then analyze hippocampi sizes across the
population. Numerous label fusion approaches exist (Collins and
Pruessner, 2010; Langerak et al., 2010; Sabuncu et al., 2010;
Asman and Landman, 2013; Wang et al., 2013), but rely on
multiple templates and publicly available segmented CT images
are still lacking. Additionally, the spatial contrast in CT is much
lower than T1-weighted MRI for image segmentation. Therefore,
concurrent MRI can be useful. One large issue is that any
data gathered with concurrent MRI the high variability in MRI
protocol done if it is not generally standardized within or across
institution. We see these limits as a large area of growth and
opportunity in CT image analysis.

3.5. Pipeline
Overall, our recommended pipeline is as follows:

1. Use CTP or DicomCleaner to organize and anonymize the
DICOM data from a PACS.

2. Extract relevant header information for each DICOM,
using software such as dcmdump from dcmtk and store,
excluding PHI.

3. Convert DICOM to NIfTI using dcm2niix, which can
create brain imaging data structure (BIDS) formatted data
(Gorgolewski et al., 2016). Use the tilt-corrected and data with
uniform voxel size.

After, depending on the purpose of the analysis, you may
do registration then brain extraction, brain extraction then

FIGURE 4 | Image registration result. Here we displayed the scan (A) registered to a CT template (B) from Rorden et al. (2012). The registration by first doing an affine

registration, followed by symmetric normalization (SyN), a non-linear registration implemented in ANTsR. The registration was done with the skull on the image and the

template. We see areas of the image that align generally well, but may not be perfect.
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registration, or not do registration at all. If you are doing
analysis of the skull, you can also use brain extraction as a
first step to identify areas to be removed. For brain extraction,
run BET for CT or CT_BET (especially if you have GPUs for
the neural network). If registration is performed, keeping the
transformations back into the native, subject space is usually
necessary as many radiologists and clinicians are comfortable
to subject-specific predictions or segmentations. Converting the
data from NIfTI back to DICOM is not commonly done, but is
possible as most PACS are built for DICOM data.

4. CONCLUSIONS

We present a simple pipeline for preprocessing (see
Data Sheet 1) of head CT data, along with software options
of reading and transforming the data. We have found that
many tools exist for MRI and are applicable to CT data.
Noticeable differences exist between the data in large part due
to the collection setting (research vs. clinical), data access,
data organization, image intensity ranges, image contrast, and
population-level data. As CT scans provide fast and clinically
relevant information and with the increased interest in machine
learning in medical imaging data, particularly deep learning
using convolutional neural networks, research and quantitative
analysis of head CT data is bound to increase. We believe this
presents an overview of a useful set of tools and data for research
in head CT.

For research using head CT scans to have the level of interest
and success as MRI, additional publicly available data needs
to be released. We saw the explosion of research in MRI,
particularly functional MRI, as additional data were released
and consortia created truly large-scale studies. This collaboration
is possible at an individual institution, but requires scans to
be released from a clinical population, where consent must be
first obtained, and upholding patient privacy must be a top
priority. Large internal data sets likely exist, but institutions
need incentives to release these data sets to the public. Also,
though institutions have large amounts of rich data, general
methods, and applications require data frommultiple institutions

as parameters, protocols, and population characteristics can
vary widely.

One of the large hurdles after creating automated analysis
tools or supportive tools to help radiologists and clinicians is
the reintegration of this information into the healthcare system.
We do not present answers to this difficult issue, but note that
these tools first need to be created to show cases where this
reintegration can improve patient care, outcomes, and other
performance metrics. We hope the tools and discussion we
have provided advances those efforts for researchers starting in
this area.

All of the code used to generate the figures in this paper is
located at https://github.com/muschellij2/process_head_ct. The
code uses packages fromNeuroconductor inR. All data presented
was from the CQ500 data set, which can be downloaded from
http://headctstudy.qure.ai/dataset.
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