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Abstract: The yeast Yarrowia lipolytica naturally produces pyomelanin. This pigment accumulates
in the extracellular environment following the autoxidation and polymerization of homogentisic
acid, a metabolite derived from aromatic amino acids. In this study, we used a chassis strain
optimized to produce aromatic amino acids for the de novo overproduction of pyomelanin. The gene
4HPPD, which encodes an enzyme involved in homogentisic acid synthesis (4-hydroxyphenylpyruvic
acid dioxygenase), was characterized and overexpressed in the chassis strain with up to three
copies, leading to pyomelanin yields of 4.5 g/L. Homogentisic acid is derived from tyrosine. When
engineered strains were grown in a phenylalanine-supplemented medium, pyomelanin production
increased, revealing that the yeast could convert phenylalanine to tyrosine, or that the homogentisic
acid pathway is strongly induced by phenylalanine.

Keywords: Yarrowia lipolytica; pyomelanin; chassis strain; aromatic amino acids

1. Introduction

Melanins are a heterogeneous group of polymeric pigments that are widely found in
nature, in organisms ranging from microbes to humans. They result from the oxidation and
polymerization of phenolic or indolic compounds. The resulting macromolecules have high
molecular weights, are negatively charged and hydrophobic, and can vary in color. Based
on their biosynthetic pathway of origin, they form three groups: eumelanins, pheome-
lanins, and allomelanins. Eumelanins are produced when tyrosine and/or phenylalanine
is oxidized, generating o-dihydroxyphenylalanine (DOPA) as an intermediate compound
and, ultimately, a black or brown pigment. Pheomelanins are synthesized in a similar
manner, but the DOPA undergoes cysteinylation, resulting in a red-yellow pigment. The
allomelanins are a larger group and result from the oxidation of different compounds.
For example, catechols, 4-hydroxyphenylacetic acid, tetrahydroxynaphthalene, and ho-
mogentisic acid are precursors of different allomelanins. Pyomelanin in particular is a
brown pigment that is produced via the oxidation of homogentisic acid (HGA) synthesized
from tyrosine [1].

Melanins have diverse applications due to their chemical compositions and physico-
chemical properties. These pigments protect cells from various environmental stressors:
they absorb ultraviolet (UV) light, X-rays, and γ-rays; scavenge reactive oxygen species
(ROSs) and free radicals; and serve as ion exchangers [2]. Such properties are beneficial in
a wide range of contexts. Because they provide UV protection and have antioxidant effects,
they are often incorporated into pharmaceutical and cosmetics products [3,4]; they are also
employed in contact lenses and sunglasses [5]. Thanks to their redox behavior, melanins
can be used as amorphous organic semiconductors in electronics [6,7]. Moreover, melanins
are employed in bioremediation efforts at contaminated sites due to their capacity to act as
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metal chelators [8]. Finally, melanin can help synthesize silver or gold nanostructures and
nanoparticles, which have applications in the food and health industries [9,10].

Melanins can be produced in an ecofriendly way and at a low cost using microorgan-
isms [11]. Several recombinant microorganisms have been constructed to date; the highest
melanin yields (28.8 g/L) have been obtained using Streptomyces kathirae [12].

The yeast Yarrowia lipolytica is known for its natural ability to generate melanins from
tyrosine [13], which was discovered when researchers noticed brown pigments appearing
on ripening cheeses [14]. It was later understood that the underlying mechanism was
tyrosine degradation. The pigment is produced via a biphasic process in which a precursor,
HGA, first accumulates in the extracellular environment and is then autoxidized and
polymerized, leading to the formation of pyomelanin [13,15]. In addition, researchers
have identified the culture conditions under which pigment production is favored—high
aeration levels and a neutral pH [13]. Recently, Ben Tahar et al. [16] observed pyomelanin
production in the Y. lipolytica W29 wild-type strain. In tyrosine-supplemented media, they
obtained a yield of 0.5 g/L after 5 days of culture; they also demonstrated the pigment’s
antioxidant capacity and low cytotoxicity toward human keratinocytes, meaning the
compound could be used as an anti-UV agent in sunscreen. Ito et al. [17] showed that
melanin was constitutively synthesized in Y. lipolytica, where it helps to sequester metal
ions, increasing the species’ tolerance to copper. Apte et al. [9,18] enhanced melanin
production in Y. lipolytica by culturing the yeast in the presence of L-DOPA. Thanks to
its ability to act as an electron exchanger, the resulting melanin was used to synthesize
silver and gold nanoparticles. Silver nanoparticles are useful paint additives because
of their antifungal properties. Despite this body of work, little is actually known about
how Y. lipolytica generates melanin. We need a better mechanistic understanding of the
production process in this yeast if we wish to engineer higher yields.

In a previous study, chassis strains overproducing tyrosine and phenylalanine were
developed by deregulating and overexpressing the shikimate pathway [19]. Such strains
are a good starting point for de novo pyomelanin production, circumventing the need
for aromatic amino acid (AAA) feeding (Figure 1). In this study, a gene encoding an
enzyme involved in pyomelanin production, 4HPPD, was characterized in Y. lipolytica. A
“hyperproductive” strain was developed using an AAA-overproducing chassis strain as a
starting point. Minimum yields of 4.5 g/L were reached.
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Figure 1. Schematic representation of the pyomelanin biosynthesis pathway. PHE: phenylalanine; TYR: tyrosine; Tyr-AT:
tyrosine aminotransferase; 4-HPPA: 4-hydroxyphenylpyruvic acid, 4HPPD: 4-hydroxyphenylpyruvic acid dioxygenase;
HGA: homogentisic acid.
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2. Materials and Methods
2.1. Strain and Plasmid Construction

The Escherichia coli DH5α strain was used for plasmid propagation. The plasmids
constructed in this study were assembled using a Golden Gate (GG) protocol and the
building blocks described in Larroude et al. [20]. All expression vectors were assembled
using the strong constitutive pTEF promoter and the tLIP2 terminator for each transcription
unit [20]. For 4HPPD overexpression, the YALI0B21846g open reading frame (ORF) was
PCR amplified from the W29 strain using the oligonucleotides described in Supplemental
Table S1 and cloned using the GG cloning procedure described in [20]. Overexpression of
TKL1 was carried out using a JMP62-type plasmid with LEU2ex as a marker and pTEF as a
promoter (JME3286) [21]. A vector expressing the CRE recombinase, JME547, was used for
marker recovery [22] as needed.

CRISPR/Cas9 vectors for Yl4HPPD disruption were constructed using Leu2–Cas9
JME4390 backbone vectors and the oligonucleotides 4HPPD_sgRNA1_Fw and 4HPPD_
sgRNA1_Rv (see Supplemental Table S1) using the sgRNA sequence cloning procedure [23].

Y. lipolytica was transformed utilizing the lithium acetate method [24]. Mutants were
selected on the appropriate media. For CRISPR/Cas9, transformation was followed by
outgrowth (as per [23]).

All the Y. lipolytica strains used in this study were derived from the Po1d strain (Table 1).

Table 1. YlARO4K221L and YlARO7G139S are both the mutated forms of Y. lipolytica Aro4 and Aro7, corresponding to the
feedback-inhibited counterpart of the S. cerevisiae enzymes; ScARO3K222L, ScARO4K229L, and ScARO7T226I correspond
to the feedback inhibited mutant of S. cerevisiae enzyme ScAro3, ScAro4, and ScAro7 [19].

Yarrowia lipolytica Strains Used in This Study

Name Genotype Auxotrophy Reference

JMY195, Po1d MATA ura3-302 leu2-270 xpr2-322 Ura−, Leu− [25]

JMY7997
Po1d + LEU2ex-YlARO1-YlARO2 +

URA3ex-YlARO4K221L-YlARO7G139S +
HPHex-ScARO3K222L + NATex-YlARO8-YlARO10

Prototroph This study

JMY8032
Po1d + URA3ex-YlARO1-YlARO2 +

LEU2ex(recovered)ScARO4K229L-ScARO7T226I +
LEU2ex-YlTKL+ NATex-YlARO8-YlARO10

Prototroph [19]

JMY8107 JMY8032 with LEU2ex and NATex marker recovered Leu− This study

JMY8131 JMY8107 ∆-4hppd Prototroph This study

JMY8178 JMY8032 + HPHex-Yl4HPPD Prototroph This study

JMY8208 JMY8032 + (HPHex-Yl4HPPD) multicopies Prototroph This study

All restriction enzymes were purchased from New England Biolabs. PCR amplification
was performed using GoTaq DNA polymerases from Promega (Charbonnieres-les-Bains,
France). PCR fragments were purified with a NucleoSpin® Gel and PCR Clean-up Kit
from Macherey-Nagel (Duren, Germany), and plasmids were isolated from E. coli with the
NucleoSpin® Plasmid EasyPure Kit from Macherey-Nagel (Duren, Germany).

2.2. Strain Sequencing and Integration Site Identification

The complete genomes of JMY8032 and JMY8208 strains were fully sequenced by
Eurofins Genomics (Ebersberg, Germany) using the Illumina Novaseq 6000 platform
(paired-end 2 × 150 bp). For DNA extraction, cells were grown at 28 ◦C in 10 mL of YPD
medium for 24 h and harvested by centrifugation. Total genomic DNA was then extracted
from cell pellets using the MasterPureTM yeast DNA purification KIT from Epicentre
(Madison, WI, USA) according to the manufacturer’s instructions. The resulting DNA
pellets were dissolved in 100 µL TE (Tris-HCl 10 mM, EDTA 1 mM, pH 8.0) with 1 µL
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RNase A (10 mg/mL), incubated at 37 ◦C for 15 min, and ethanol precipitated. Finally, the
DNA was dissolved in Tris buffer (10 mM, pH 8). Raw sequencing data were deposited
to the SRA database and are available under the Project accession number PRJNA715500
(data accession number SRR14075915 for strain Y8032 and SRR13999501 for strain Y8208).

Reads were cleaned with fastp v. 0.19.4 [26] with the following options (–cut_mean_
quality 30 –cut_window_size 4 –n_base_limit 0 –length_required 100 –low_complexity_filter
–correction –cut_by_quality3). Then, overlapping paired-end reads were merged with
PEAR [27] with the following parameters (–max-assembly-length 290 –min-assembly-
length 20 –min-overlap 20 –p-value 0.01). Assembled and unassembled reads were mapped
with bwa mem algorithm [28] to the W29 strain reference genome and the cassette se-
quences. To find the insertion zones, alignments were manipulated with samtools [29] and
bedtools [30] in order to keep only pairs whose mates were mapped at the extremities of
the cassettes and somewhere on the reference genome, except to the URA3 gene. Finally,
remaining reads were visualized with IGV [31] for a manual expertise of region of interest.
A total of 3 regions with the insertion were identified in strain Y8208 that were not present
in the mother strain Y8032 (CP017556.1:3252866-3252937; CP017556.1:3616128-3616558;
CP017557.1:1868257-1868296).

2.3. Media and Culture Conditions

The E. coli strains were grown at 37 ◦C in Luria–Bertani medium (10 g/L tryptone,
5 g/L yeast extract, and 10 g/L NaCl) containing either 100 µg/L ampicillin or 50 µg/L
kanamycin for plasmid selection.

The Y. lipolytica strains were grown at 28 ◦C in minimal YNB medium containing
10 g/L glucose, 1.7 g/L yeast nitrogen base, 5 g/L NH4Cl, and 50 mM phosphate buffer
(pH 6.8) or in rich YPD medium containing 10 g/L glucose, 10 g/L peptone, and 10 g/L
yeast extract. Uracil (100 mg/L) and leucine (700 mg/L) were added to meet the require-
ments of auxotrophic strains; hygromycin B (250 mg/L) or nourseothricin (400 mg/L) were
added to select for strains. For the AAA bioconversion experiments, tyrosine (1 g/L) and
phenylalanine (2 and 7 g/L) were employed as supplements.

The Y. lipolytica strains were precultured overnight in 5 mL of YPD medium (28 ◦C,
180× rpm). The precultures were then centrifuged, washed twice with sterile distilled
water, and used to inoculate 15 mL of YNB medium in 100 mL flasks (OD600 of 0.05). Cells
were grown at 28 ◦C under agitation (180 rpm) for up to 25 days. Every 2–3 days, the
cultures were visually assessed to monitor the appearance of brown pigment. Samples were
centrifuged, and the supernatants were used for HPLC analysis or pyomelanin extraction.
For each strain, two replicates were used.

Solid media for E. coli and Y. lipolytica were prepared by adding 15 g/L agar to
liquid media.

2.4. HPLC Analysis

The supernatants used in the HPLC analysis were treated with 1% (v/v) trifluoroacetic
acid at 4 ◦C for at least 1 h; they were then centrifuged and filtered (0.22 µm filters) prior
to analysis.

An UltiMate 3000 UHPLC apparatus (Thermo Fisher Scientific) was equipped with an
Agilent ZORBAX Eclipse Plus C18 Column (4.6 × 100, 3.5 microns) operating at 40 ◦C. A
gradient of acetonitrile and 20 mM KH2PO4 (pH 2) with 1% acetonitrile was used as eluent.
The flow rate was 0.8 mL/min; the percentage of acetonitrile increased from 0 to 10% in
the first 6 min and then from 10% to 40% from 7 min to 23 min. From 23 min to 27 min, the
flow contained 99% KH2PO4.
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Detection was performed using a diode array detector; measurements occurred at
200, 214, 280, and 310 nm. We looked for the following compounds of interest: Ehrlich
metabolites—2-(4-hydroxyphenyl)ethanol (4OH2PE), 4-hydroxyphenylacetic acid (4OH-
PAA), phenylethanol (2PE), and phenylacetic acid (PAA); AAAs (phenylalanine, tyrosine,
and tryptophan); and HGA. Calibration curves were established for each compound using
commercial standards from Sigma (St. Quentin Fallavier, France).

2.5. Pyomelanin Purification

Cultures were centrifuged (10,000× g for 15 min), and melanin was purified from
the supernatant via acidification (1 N HCl was added until a pH ~2 was reached), which
provoked pyomelanin precipitation. After 24 h at room temperature, the resulting samples
were centrifuged (10,000× g for 10 min). The brown pellet obtained [32] was then washed,
lyophilized, and weighed.

3. Results
3.1. Production of a Brown Pigment by Yarrowia Lipolytica

Previous research has shown that Y. lipolytica can produce a brown pigment, found
to be a polymer composed of a core of tyrosine-derived aromatic residues [13]. The pig-
ment was later identified as pyomelanin [16], a compound that results from the autox-
idation and polymerization of homogentisic acid (HGA) that has accumulated in the
extracellular environment [33].

To significantly improve de novo pyomelanin production in Y. lipolytica, we started
off using chassis strains optimized for AAA production. Their shikimate pathway has
been strongly engineered—key genes are overexpressed, including unregulated variants
of ARO4 and ARO7, whose products play key regulatory roles in the pathway [19]. Such
strains have higher tyrosine and phenylalanine content. For these reasons, they served as a
good starting point for improving de novo pyomelanin production. First, we compared
the abilities of two chassis strains, JMY7997 and JMY8032, and a wild-type strain to
produce brown pigment. The genetic modifications made to JMY7997 and JMY8032 are
described in Figure 2 and Table 1. After 25 days of culture in minimal YNB medium, the
two chassis strains yielded a brown-tinted supernatant, while the wild-type strain did not
(Figure 2). Precursor abundance was greatest at 5 days of culture (Figure 2) and tended to
decrease over time. This pattern was particularly noticeable for HGA, the direct precursor
of pyomelanin.

Pigmentation levels varied across the strains and were clearly linked to genotype—
they were higher for JMY8032 than for JMY7997. As mentioned above, the wild type did not
show any signs of having produced brown pigment. The concentrations of key precursors—
phenylalanine, tyrosine, HGA, and Ehrlich metabolites (derived from phenylalanine and
tyrosine)—were quantified for the three strains after 5 and 25 days of culture. We found
that all the precursors (and especially HGA) tended to disappear over longer periods of
time. At 5 days of culture, precursor levels were much higher in both chassis strains than in
the wild-type strain (Figure 2). Each metabolite was at least twice as abundant in JMY8032
compared to JMY7997, a pattern that was particularly pronounced for HGA. These results
fit with our visual assessments of pigment levels. Consequently, we used JMY8032 in the
subsequent experiments, in which the brown pigment was characterized and its production
was boosted.
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3.2. Characterization of the Brown Pigment

The next phase of the study was to examine the impact of phenylalanine and tyrosine
on the growth of the strain JMY8032. The objective was twofold: to confirm that the
brown pigment produced by the strain was indeed pyomelanin and to further decipher the
pigment’s biosynthesis pathway.

When phenylalanine or tyrosine was added to the culture medium, the brown pig-
ment appeared more quickly. Tyrosine triggered greater pigment production than did
phenylalanine (Figure 3A: tyrosine = 1 g/L and phenylalanine = 2 g/L), and pigment levels
were highly pronounced after only 10 days of culture. The concentration of tyrosine could
not be further increased due to the compound’s low solubility. However, when concentra-
tions of phenylalanine were increased, pigment levels were boosted and time to pigment
appearance decreased (Figure 3: phenylalanine = 2 g/L and phenylalanine = 7 g/L). At a
phenylalanine concentration of 7 g/L, pigment levels were prominent at 10 days of culture;
at a phenylalanine concentration of 2 g/L, 20 days of growth were required to achieve
equivalent results. For the wild-type strain, the brown pigment only began to appear after
30 days of culture in YNB medium supplemented with tyrosine (1 g/L). These results differ
from those of [16], who observed that a Y. lipolytica wild-type strain produced pyomelanin
after fewer than 5 days of culture in a medium with the same tyrosine concentration
(1 g/L). Here, Y. lipolytica wild-type strains did not produce brown pigment under any
other experimental conditions. Our findings suggest that the pigment was generated by
phenylalanine and tyrosine catabolism.
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These results—the marked, rapid appearance of brown pigment (Figure 3A)—concur
with those of previous research [13]. Similarly, pigment precursors were found to accumu-
late in the extracellular environment during the exponential growth phase, and pigment
formation occurred during the stationary phase because of precursor oxidation [13].

Then, we assessed whether ascorbic acid had an effect on the brown pigment: this
acid acts as an antioxidant and thus inhibits melanin synthesis [34,35]. The addition of
10 mM of ascorbic acid to the media clearly reduced the production of brown pigment,
regardless of AAA supplementation (Figure 3B). This result suggests that the oxidation
of intermediate compounds was inhibited. In addition, when the medium contained no
buffer, no brown pigment was produced, even in the presence of AAA supplementation
(Figure 3C). This outcome may have resulted from the acidification of the medium during
Y. lipolytica growth, as the yeast naturally secretes several organic acids, including citric
acid, α-ketoglutaric acid, and pyruvic acid [36], while low pH can impair the oxidation of
intermediate compounds.

Another characteristic of melanins is that they are soluble in alkaline solutions but
not in water, organic solvents, or acid solutions [37]. We thus evaluated the solubility of
the brown pellet obtained after acidifying the supernatant. We found that the pellet was
soluble in NaOH but not in water (Supplementary Figure S1), a result that is in accordance
with the physicochemical properties of pyomelanin.
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3.3. Characterization and Improvement of the Pyomelanin Production Pathway

As previously noted, HGA is the direct precursor to pyomelanin (Figure 1). We thus
focused on a gene that potentially encoded an enzyme involved in HGA synthesis, based
on prior annotation of the Y. lipolytica genome (YALI0B21846g; 4-hydroxyphenylpyruvate
dioxygenase, 4HPPD). We generated strains (background genotype: JMY8032) in which
this gene was either disrupted or overexpressed to confirm that the gene was indeed
involved in HGA synthesis and that the pigment produced by JMY8032 was derived from
HGA. Gene disruption was carried out using CRISPR-Cas9; the resulting strain, JMY8131,
had a 16-nucleotide deletion at the PAM site (verified by sequencing; data not shown).
As expected, the strain was unable to produce brown pigment in any of the media tested
(Figure 4). In contrast, the strain in which the gene was overexpressed, JMY8178, displayed
increased levels of pigment formation. A brown tint was visible after 12 days of culture in
YNB medium and after just 3–4 days in YPD medium (Figure 4).
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Among the clones overexpressing the 4HPPD cassette, one appeared to become much
browner much more quickly than the others. To determine the cause, the clone (JMY8208)
and its parent strain (JMY8032) were fully sequenced. The results showed that all the
expected cassettes were present (i.e., those involved in the overexpression of the AAA
pathway). This “hyperproductive” strain (JMY8208) appeared to have a higher number
of 4HPPD cassettes. Sequencing revealed that the cassettes had been inserted at three
different loci in the Y. lipolytica genome, meaning that the strain had three copies of the
4HPPD overexpression cassette (See Materials and Methods). The three cassette copies
occurred in intergenic regions, so the high level of pyomelanin production was probably
not related to the characteristics of the integration sites. This three-copy strain thus shows
great promise for increasing pyomelanin yield.

All four strains—JMY8032, JMY8131, JMY8178, and JMY8208—were grown for 2 weeks
in YNB medium to evaluate their levels of precursor compounds, notably those of HGA
and the Ehrlich metabolites. As expected, the 4HPPD-deletion strain (JMY8131) generated
no HGA; it also produced a much larger quantities of Ehrlich metabolites than did the
parental strain (JMY8032) (Figure 5). Compared to the parental strain (JMY8032), the
strains with one and three copies of 4HPPD (JMY8178 and JMY8208, respectively) pro-
duced slightly lower quantities of Ehrlich metabolites and much larger quantities of HGA.
Furthermore, the three-copy strain produced quantities of HGA that were up to 15 times
higher than those of the other strains (Figure 5). These findings explain the three-copy
strain’s “hyperproduction” of the pigment.
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It was not possible to perform an HPLC analysis of the precursors occurring in the
YPD medium. However, because the three-copy strain produced pyomelanin much faster
in this medium (Supplemental Figure S2), we were able to evaluate its pyomelanin yield
after just 5 days.

After 5 days of culture, we took a 20 mL sample of the three-copy strain (JMY8208)
grown in YPD. Pyomelanin was precipitated from the resulting supernatant. After six
rounds of precipitation with 35% HCl, no more of the pellet was recovered even if the
supernatant was still very brown. The portion of the pellet that had been recovered was
lyophilized and weighed, yielding 0.0891 g of pyomelanin precipitate (4.5 g/L). This value
was clearly an underestimate of pigment production, given how brown the supernatant
remained. By comparison, the pigment yield for the parental strain (JMY8032) after 40 days
of culture was just 1 g/L.

4. Discussion

This study examined the role played by the 4HPPD gene in pyomelanin biosynthesis in
Y. lipolytica. We managed to create a strain with higher, faster pyomelanin production that
was engineered from a chassis strain optimized for AAA production and that expressed
multiple copies of 4HPPD. Indeed, its pyomelanin yield is the highest to date to be obtained
in this yeast without AAA feeding. The three-copy strain thus holds promise for several
applications, including synthesizing nanostructures in a more sustainable way [16].

Our findings indicate that the enzyme encoded by 4HPPD plays an important func-
tional role that must be considered when using Y. lipolytica to produce aromatic compounds.
The AAA-overproducing chassis strain already generated a large quantity of pyomelanin,
underscoring that AAAs are leaking through the pyomelanin pathway, as evidenced by
the rapid accumulation of HGA. Therefore, when Y. lipolytica is used to generate aromatic
compounds like naringenin, resveratrol, or Ehrlich metabolites, this pathway should be
deleted. Indeed, this is exemplified in the strain JMY8131 where the 4HPPD gene was
deleted, the amount of Ehrlich metabolites increases by a factor of 5 compared to the
parent strain.

Past research has indicated that pyomelanin is mainly derived from tyrosine [13,33,38].
However, we discovered that brown pigment was also produced when the growth medium
was supplemented with phenylalanine. Phenylalanine can be irreversibly converted into
tyrosine via phenylalanine 4-monooxygenase in a variety of organisms, including bac-
teria [39]. Even though this process has not yet been described in yeasts and BLASTP
analysis did not reveal any orthologs, we found evidence that this biosynthetic pathway
might be present in Y. lipolytica. Given that the brown pigment appeared more slowly
when the medium was supplemented with phenylalanine than with tyrosine, it could
be that, in the former case, pigment production could only occur after the phenylalanine
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was converted to tyrosine. Another hypothesis is that phenylalanine supplementation
may have a regulatory effect on the conversion of tyrosine to HGA. As a result, tyrosine
degradation may accelerate, HGA levels may climb, and pyomelanin may accumulate.
However, the very dark tint obtained with phenylalanine supplementation suggests that it
comes from phenylalanine conversion as de novo synthesis of tyrosine in this strain could
hardly promote such a level of pyomelanin production.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
0.3390/microorganisms9040838/s1, Supplemental Figure S1: Acidification of the culture supernatant
using HCl. After centrifugation, we compared how the pyomelanin pellet dissolved in water
versus NaOH, Supplemental Figure S2: JMY8208 grown in YPD for 5 days and in YNB for 7 days,
Supplemental Table S1: Oligonucleotides used in this study.
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nanoparticles: Modelling and design, physico-chemical and biological characteristics. Microb. Cell Factories 2019, 18, 1–11.
[CrossRef]

17. Ito, H.; Inouhe, M.; Tohoyama, H.; Joho, M. Characteristics of copper tolerance in Yarrowia lipolytica. BioMetals 2006, 20, 773–780.
[CrossRef] [PubMed]

18. Apte, M.; Sambre, D.; Gaikawad, S.; Joshi, S.; Bankar, A.; Kumar, A.R.; Zinjarde, S. Psychrotrophic yeast Yarrowia lipolytica NCYC
789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 2013, 3, 32. [CrossRef]

19. Larroude, M.; Nicaud, J.; Rossignol, T. Yarrowia lipolytica chassis strains engineered to produce aromatic amino acids via the
shikimate pathway. Microb. Biotechnol. 2021. [CrossRef] [PubMed]

20. Larroude, M.; Park, Y.; Soudier, P.; Kubiak, M.; Nicaud, J.; Rossignol, T. A modular Golden Gate toolkit for Yarrowia lipolytica
synthetic biology. Microb. Biotechnol. 2019, 12, 1249–1259. [CrossRef]

21. Carly, F.; Vandermies, M.; Telek, S.; Steels, S.; Thomas, S.; Nicaud, J.-M.; Fickers, P. Enhancing erythritol productivity in
Yarrowia lipolytica using metabolic engineering. Metab. Eng. 2017, 42, 19–24. [CrossRef]

22. Fickers, P.; Le Dall, M.; Gaillardin, C.; Thonart, P.; Nicaud, J. New disruption cassettes for rapid gene disruption and marker
rescue in the yeast Yarrowia lipolytica. J. Microbiol. Methods 2003, 55, 727–737. [CrossRef]

23. Larroude, M.; Trabelsi, H.; Nicaud, J.-M.; Rossignol, T. A set of Yarrowia lipolytica CRISPR/Cas9 vectors for exploiting wild-type
strain diversity. Biotechnol. Lett. 2020, 42, 773–785. [CrossRef]

24. Le Dall, M.T.; Nicaud, J.M.; Gaillardin, C. Multiple-copy integration in the yeast Yarrowia lipolytica. Curr. Genet. 1994, 26, 38–44.
[CrossRef] [PubMed]

25. Barth, G.; Gaillardin, C. Yarrowia lipolytica. In Non-Conventional Yeasts in Biotechnology; Wolf, K., Breuning, K.D., Barth, J., Eds.;
Springer: Berlin, Germany, 1996; pp. 313–388.

26. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [CrossRef]
[PubMed]

27. Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014,
30, 614–620. [CrossRef] [PubMed]

28. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997.
29. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. Subgroup GPDP. The

Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef]
30. Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842.

[CrossRef]
31. Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualiza-

tion and exploration. Brief. Bioinform. 2013, 14, 178–192. [CrossRef]
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