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Objective:Whole-exome sequencing (WES) based copy number variation (CNV) analysis
has been reported to improve the diagnostic rate in rare genetic diseases. In this study, we
aim to find the disease-associated variants in a highly suspected primary ciliary dyskinesia
(PCD) patient without a genetic diagnosis by routine WES analysis.

Methods: We identified the CNVs using the “Exomedepth” package in an undiagnosed
PCD patient with a negative result through routine WES analysis. RNA isolation, PCR
amplification, and Sanger sequencing were used to confirm the variant. High-speed video
microscopy analysis (HSVA) and immunofluorescence analysis were applied to detect the
functional and structural deficiency of nasal cilia and sperm flagella. Papanicolaou staining
was employed to characterize the morphology of sperm flagella.

Results: NC_000002.11(NM_145038.5): g.26635488_26641606del, c.156-1724_244-
2550del, r.156_243del, p. (Glu53Asnfs*13), a novel DRC1 homozygous CNV, was
identified by WES-based CNV analysis rather than routine variants calling, in a patient
from a non-consanguineous family. HSVA results showed no significant change in ciliary
beating frequency but with reduced beating amplitude compared with normal control, and
his spermatozoa were almost immotile. The diagnosis of multiple morphological
abnormalities of the sperm flagella (MMAF) was established through sperm motility and
morphology analysis. PCR amplification and Sanger sequencing confirmed the novel
variant of DRC1. Immunofluorescence showed that both cilia and sperm flagella were
deficient in protein expression related to the dynein regulatory complex.

Conclusion: This report identifies a novel DRC1 disease-associated variant by WES-
based CNV analysis from a highly suspected PCD patient with MMAF. Our findings not
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only expand the genetic spectrum of PCDwith MMAF but suggest that in combination with
CNV analysis might improve the efficiency of genetic tests.

Keywords: whole-exome sequencing, CNV,DRC1, primary ciliary dykinesia,multiplemorphological abnormalities of
the sperm flagella

INTRODUCTION

Primary ciliary dyskinesia (PCD, MIM 244400) is a disease
mainly inherited in an autosomal recessive manner and
primarily caused by variants in genes required for transport,
assembly, and function in motile cilia (Lucas et al., 2020). Due to
motile cilia distributed mainly in the respiratory and reproductive
system, most PCD patients exhibited bronchiectasis, chronic
sinusitis, and infertility (Bhatt and Hogg, 2020). With
increasing knowledge of the genetic background in PCD, the
prevalence of PCD has been estimated up to at least 1:7,500
(Hannah, 2022). According to the guidelines published by the
European Respiratory Society (ERS), the diagnosis of PCD
requires the use of multiple methods (Lucas et al., 2017).
These include the measurement of nasal nitric oxide (nNO),
direct analysis of ciliary beat frequency and pattern by high-speed
video microscopy analysis (HSVA), followed by the confirmatory
method, including transmission electron microscope (TEM)
analysis for analyzing the characteristic defects in ciliary
ultrastructure, and genetic analysis for identifying biallelic
pathogenic variants. However, TEM has some limitations that
cannot be ignored when used as a diagnostic tool (Werner and
Kouis, 2017). Only three kinds of ciliary ultrastructure defects
were regarded to be the diagnostic characteristics for PCD, and
the diagnostic rate of TEM is relatively low (Shoemark, 2017).
Therefore, genetic analysis plays an indispensable role in PCD
diagnosis.

With the continual developments in sequencing techniques
and bioinformatic analysis, whole-exome sequencing (WES)
provides a powerful tool to confirm the diagnosis of PCD.
WES technology can help detect deleterious genetic variants in
nearly the entire coding region of the genome. So far, over 50
genes have been reported to cause PCD (Wallmeier et al., 2020),
yet the genetic basis of the disease remains unknown in about
30% of suspected PCD patients (Bustamante-Marin et al., 2020).
Routine WES analysis in PCD most often focuses on identifying
single-nucleotide variations (SNVs) and short insertions and
deletions (INDELs), but as another kind of human genetic
variation, copy number variations (CNVs), which also play an
indispensable role in human Mendelian rare genetic disease (Pös
et al., 2021). Meanwhile, the relationship between PCD and
CNVs has not been clearly studied.

In this study, we found a patient who presented with highly
suspected PCD symptoms but without PCD-associated biallelic
pathogenic variants identified by WES-based SNV and INDEL
analysis. Then we conducted WES-based CNV analysis and
identified a novel dynein regulatory complex subunit 1
(DRC1) homozygous CNV. As a central component of the
nexin-dynein regulatory complex (N-DRC), DRC1 can
conjugate peripheral A and adjacent B microtubule to sustain

regular ciliary motility (Wirschell et al., 2013). DRC1 variants,
detected using routine WES analysis, resulting in DRC1 protein
loss of function and consequently PCD with multiple
morphological abnormalities of the sperm flagella (MMAF),
have been reported in recent studies (Lei et al., 2022). In our
study, we identified a novel DRC1 CNV that can also cause PCD
and MMAF, but the PCD-associated biallelic pathogenic variant
could not be detected by routineWES analysis initially. Our study
showed that the WES-based CNV detecting approach may be an
assistant way to improve PCD genetic accuracy.

MATERIALS AND METHODS

Ethical Compliance
The review board of the second Xiangya Hospital of Central
South University approved this study. Written informed consent
was obtained from the patient and the healthy control.

RoutineWhole-Exome Sequencing Analysis
EDTA anti-coagulated venous blood was collected from the
patient, the patient’s parents, and a healthy control. The
genomic DNA was extracted using the QIAamp DNA Blood
Mini Kit following the manufacturer’s protocol. Whole exome
enrichment was performed using xGen Exome Research Panel v2
and sequenced with the Illumina NovaSeq® systems.

The sequenced reads were aligned to the reference genome
(hg19) using BWA MEN, and PCR duplicates were marked with
PICARD. Variants were called by HaplotypeCaller in GATK4.0
with default parameters, and retained considering DP (reads
depth) ≥ 10, MQ (Mapping Quality) ≥ 30, and GQ
(Genotyping Quality) ≥ 20. After annotation using
ANNOVAR, variants both in coding region and splicing site
were kept and synonymous variants were removed. Beyond that,
variants were filtered by allele frequencies (AF) in the 1000
genome project, the Genome Aggregation Database (gnomAD
v2.1.1), the NHLBI GO Exome Sequencing Project (ESP) and a
local AF database with threshold of 1%, and potential damaging
effect (predicted to be deleterious by at least 2 predictive tools
among SIFT, Polyphen2-HVAR, MutationTaster and CADD for
variants in coding region; dbscSNV score > 0.6 for variants in
splicing site.

Copy Number Variation Analysis
CNVs were called from the read depth of WES data using the
ExomeDepth package according to the developers’ guidelines.
ExomeDepth is a validated method for exome read-depth
analysis, generating normalized read counts of the test sample
by using an optimized set of reference samples as a comparison to
determine the presence of a CNV at the exon level (Royer-
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Bertrand et al., 2021). Each exome was compared with a set of
matched, aggregate reference samples for these analyses.

RNA Isolation, PCR and Sanger Sequencing
We collected nasal epithelial biopsy sample from the patient and a
healthy control and extracted total RNA using a GeneJET RNA
Purification Kit (K0731, Thermo Fisher Scientific, Waltham, MA,
United States) according to the manufacturer’s instructions.
Then, we used TranScript® One-step gDNA Removal and
cDNA synthesis SuperMix (AT311, Transgene) to synthesize
cDNA. To confirm the deletion identified by CNV analysis,
cDNA of DRC1 were amplified using the GoldenStar® T6
Polymerase (TSE101, Tsingke). Primers were designed using
the primer blast of NCBI (https://www.ncbi.nlm.nih.gov/tools/
primer-blast/). The sequences of the primers are listed as
following: forward primer: 5′-GAGCACTTGTCCACCCAG
ATT-3′, reverse primer: 5′-GTATTGAGCATTTCCCACAGC-
3′. Meanwhile, according to the manufacturer’s instructions,
genome DNA was obtained using QIAamp DNA Blood Mini
Kit from the patient, patient’s parents, and healthy control. PCR
and Sanger sequencing were performed to validate the DRC1
breakpoint. The primer sequences designed are listed as follows:
forward primer: 5′- GAGCAGGGTCTTGATGATGTAA-3′,
reverse primer: 5′- CACCTTTATGAGATCCAGGGAAA-3′.

High-Speed Video Microscopy Analysis
Nasal brush biopsy samples were imaged using an upright
Olympus BX53 microscope (Olympus, Tokyo, Japan) and
recorded using a scientific complementary metal oxide
semiconductor camera (Prime BSI, Teledyne Photometrics
Inc., United States) as previously described (Xu et al., 2022).

Sperm Morphological Analysis
Semen samples were collected from the patient after at least five
days of sexual abstinence. According to the World Health
Organization guideline to classify sperm flagella morphology
(Cooper et al., 2010). Abnormal flagella of the sperm were
classified as absent, short, bent, coiled, or irregular using
Papanicolaou staining (Auger et al., 2016). Based on the
morphology of the sperm flagella, each spermatozoon can only
be classified in one morphological category.

Immunofluorescence
Nasal epithelial tissues and sperm were fixed in 4%
paraformaldehyde. Immunofluorescence on the slides was
performed as described previously (Xu et al., 2022). Briefly,
the slides were incubated overnight at 4°C with the primary
antibodies DRC4 (HPA041311, 1:50, Sigma-Aldrich, Missouri,
United States), and anti-acetylated tubulin (T7451, 1:500, Sigma-
Aldrich, Missouri, United States). Then secondary antibodies
detected the antibody binding, including Alexa Fluor 488 anti-
mouse IgG (A-21121, 1:200, Invitrogen, Carlsbad, CA,
United States) and Alexa Fluor 555 anti-rabbit IgG (A31572,
1:400, Invitrogen, Carlsbad, CA, United States). After incubation
for 2 h at 37°C, all the slides were stained with 2-(4-
aminophenyl)-1H-indole-6-carboxamidine (DAPI) for 5 min at
room temperature. Fluorescence signals were recorded using an

Olympus BX53 microscope (Olympus, Tokyo, Japan) and
scientific complementary metal oxide semiconductor (sCMOS)
camera (Prime BSI, Teledyne Photometrics Inc., United States).

RESULTS

Case Presentation
The proband is a 19-year-old unmarried Chinese male with
non-consanguineous parents and a healthy sister
(Figure 1A). He was reported to have coughing, yellowish
sputum, and sinusitis when he was three years old, and since
then, the symptoms have been recurrent, and combined with
exertional dyspnea. High resolution computed tomography
revealed chronic sinusitis (Figure 1B), and bronchiectasis of
both lungs (Figure 1C). The lung function test showed mild
obstructive ventilatory impairment (predicted forced
expiratory volume during the first second (FEV1): 79.3%,
FEV1/forced vital capacity: 87.0%). In addition, nNO
examination exhibited an abnormal low concentration
(10.8 nL/min). HSVA of nasal brush biopsies showed that
a normal ciliary beating frequency and a reduced amplitude
in ciliary beating pattern (Figure 1D and Supplementary
Video S1) compared with normal control (Supplementary
Video S2). We also tested the motile function of the patient’s
sperm, which showed that the patient’s spermatozoa were
totally immotile (Table 1). Subsequent Papanicolaou staining
also confirmed that the flagella morphologies of the patient
were abnormal, which met the diagnostic criteria of MMAF
(Table 1; Figure 1E).

Whole-Exome Sequencing-Based Copy
Number Variation Analysis to Capture
Disease-Causing Gene Variations
Combinedwith the above clinical symptoms of the patient: recurrent
cough and sputum expectoration, nasal congestion since early
childhood, abnormally low nNO levels, reduced ciliary beating
amplitude, and MMAF phenotype, we highly suspected that he
had PCD. Later, we performed WES-based SNV and INDEL
analysis following PCD diagnostic criteria, and the filtering
process was shown in Supplementary Figure S1. However, we
did not identify any PCD-associated biallelic pathogenic variants
(Supplementary Table S1). CNV analysis based on WES has been
established to broaden the diagnostic rate in genetic disorders, so we
further conductedCNVanalysis. The results returned a homozygous
deletion in exon 2 ofDRC1 in this patient (Figure 2A). Further PCR
amplification and Sanger sequencing validated the homozygous
absence of DRC1 exon 2 at RNA level (Figure 2C). We next
verified the breakpoint of the DRC1 variant at the DNA level.
Sanger sequencing of PCR product showed homozygous deletion
of 6119 bp and the breakpoints were:
NC_000002.11(NM_145038.5): g.26635488_26641606del, c.156-
1724_244-2550del, r.156_243del, p. (Glu53Asnfs*13) in this
patient (Figure 2B and Supplementary Figure S2). Yet, the
results revealed the patient’s parents were all heterozygous
carriers (Supplementary Figure S2).
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Analysis of Respiratory Cilia and Sperm
Flagella
Previously, it has been reported that the DRC3 or DRC4 protein
deletion can confirm the deletion of DRC1 protein through
immunofluorescence analysis (Wirschell et al., 2013). Since we
do not have a suitable DRC1 antibody, we used the DRC4
antibody (also named GAS8, GAS11) for immunofluorescence
analysis. The results confirmed the absence of DRC4 protein
expression in the ciliated tissue of the patient compared with the
healthy control (Figure 3A); immunofluorescence of the sperm
flagellum also confirmed the deficiency of DRC4 expression in the
patient (Figure 3B). All these results suggested that the patient
had DRC1 deficiency.

DISCUSSION

Our study recruited a patient with bronchiectasis, chronic
sinusitis, abnormal sperm motility, and abnormal sperm
flagellar morphology. The HSVA, nNO, and semen analysis
results suggested that the patient has highly clinical suspicion
of PCD combined with MMAF. We initially conducted the
routine WES analysis to identify the disease-causing variants
in this patient, but we got a negative result. Then we performed
WES-based CNV analysis, which is less noticed in variants calling
and filtering procedures. Finally, a novel homozygous DRC1
CNV was identified. Subsequent PCR amplification, Sanger
sequencing, and immunofluorescence supported the
pathogenicity of the CNV in DRC1. Although the transmission
electron microscopic analysis results were not available, the
diagnosis of PCD was made because we identified biallelic
pathogenic DRC1 variants in this patient.

According to PCD diagnostic guidelines, since not all patients
have the characteristic abnormal ciliary axonemal ultrastructure
and beating pattern in HSVA, it is crucial to identify disease-
associated biallelic variants for patients with clinically suspected
PCD (Lucas et al., 2017). Currently, among the high-throughput
sequencing methods to identify PCD pathogenic variants, the
WES analysis is the first-line method in China (Zhao et al., 2021).
Though WES analysis covers 1–1.5% of the human genome, it
houses approximately all exons of the known protein-coding
genes (Ng et al., 2009). Compared with other next-generation
sequencing technologies, such as whole-genome sequencing
(WGS), WES is a more affordable high-throughput technology
that allows the analysis of the coding regions of more than 20,000

FIGURE 1 | Pedigree and clinical features of the patient. (A) The pedigree indicated that the patient was from a non-consanguineous family, and other family
members were asymptomatic. The arrow indicates the proband. (B) High resolution computed tomography of sinuses exhibited sinusitis (arrows). (C) Chest high-
resolution computed tomography showed bronchiectasis in both lungs (arrows). (D) The ciliary beating frequencies showed no statistically significant difference between
normal control and patient. (E) Papanicolaou staining revealed the abnormal morphology of sperm flagella compared with the healthy control.

TABLE 1 | Semen parameters and sperm flagella morphology in the patient.

Patient References value

Semen parameters
Semen volume (ml) 3.6 >1.5
Sperm count (106/ml) >2 >15.0
Motility (%) 0 >40.0
Progressive motility (%) 0 >32.0

Sperm morphology
Normal flagella (%) 3.4 >23.0
Coiled (%) 64.9 <17.0
Short (%) 7.7 <1.0
Absent (%) 7.2 <5.0
Bent (%) 10.6 <13.0
Irregular (%) 6.2 <2.0

At least 200 spermatozoa were observed for morphology analysis.
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FIGURE 2 | Identification of theDRC1 variant. (A) IGV tools revealed the absence of exon 2 inDRC1. (B) Sanger sequencing showed the 6119 bp deletion ofDRC1
in the patient and the patient’s mother at DNA level. (C) Electrophoresis and Sanger sequencing identified the deletion of DRC1 exon 2 in the patient compared with
normal at RNA level. (D) The location of the novel DRC1 homozygous variant in this report.
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genes (Tetreault et al., 2015). Routine WES analysis mainly
considered SNVs and INDELs, but the prevalence and clinical
significance of CNVs in PCD genes are yet unclear. Until now,
only two studies have been conducted to study the relationship
between CNVs and PCD. Marshall reported that by combining
WES and the targeted CNV method, the genetic diagnosis rate of
PCD could increase from 42% to 76% (Marshall et al., 2015). A
study from Japan found that CNVs might play an important role
in PCD, and CNVs in DRC1 were the main cause of PCD in the
Japanese population (Takeuchi et al., 2020). All the above
research indicated that CNVs were significant as PCD disease-
causing variants.

Human genetic disorders may arise from genetic variations
ranging from the whole chromosome down to SNV. For humans,

compared with SNVs and INDELs (smaller than 50 bp), CNVs
account for only a tiny fraction (Lappalainen et al., 2019).
Traditional CNV assessment mainly contains genome-wide
screening technologies such as comparative genomic
hybridization-microarray (arrayCGH) or locus CNV detection
based on targeted PCR, for instance, multiplex ligation-
dependent probe amplification (MLPA) (Zech et al., 2021).
However, these two methods are time-consuming and
relatively expensive, and each one cannot fully cover all CNV
fragments (Falzarano et al., 2015; Roca et al., 2019). In the last
decade, WES-based CNV analysis has been used for detecting
CNVs, and it can overcome some of these shortcomings. Firstly, it
permits concurrently detection of large and small CNVs (as
previously detected by array CGH and MLPA, respectively)

FIGURE 3 | Analysis of ciliary tissue and sperm flagellum. (A) immunofluorescence analysis showed the absence of DRC4 protein expression in ciliated tissue of the
patient compared with normal control. (B) immunofluorescence analysis showed the absence of DRC4 protein expression in sperm flagella of the patient compared to
normal control.
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(Roca et al., 2019). Secondly, it is practical as it allows to
determine SNVs, INDELs, and CNVs simultaneously, thus
eliminating the necessity of using multiple different techniques
in one patient and helping speed up the diagnostic process
(Royer-Bertrand et al., 2021). Among WES-based CNV
approaches, the “Exomedepth” package has been corroborated
to have higher sensitivity and efficiency in detecting rare CNVs
(Roca et al., 2019; Rajagopalan et al., 2020), and it is most used to
identify CNVs in neurological diseases and mental disorders
(Szatkiewicz et al., 2020; Cheng et al., 2021; Yu et al., 2021).
Our study also used the “Exomedepth” package to call CNVs in a
patient with a negative routine WES analysis result. The patient
was finally confirmed to have a homozygous deletion of 6119 bp
in DRC1, (NM_145038.5:c.156-1724_244-2550del), which
contains exon 2 absence. The results suggested that WES-
based CNV may help improve the diagnostic yield in highly
suspected PCD.

The N-DRC functions as a linker between neighboring doublet
microtubules, stabilizes the axonemal core structure, and serves as a
central hub for controlling cilia motility (Gui et al., 2019). In most
species, the N-DRC contains at least eleven, mostly well
evolutionarily conserved subunits, DRC1–11 (Osinka et al., 2019).
Available data suggested that the 3-subunit core-complex (DRC1/2/
4) of the N-DRC subunits is a scaffold for the assembly of functional
subunits (DRC3/5 and DRC8/11) (Gui et al., 2019). By now, DRC
subunits deficiencies have been proved to cause motile ciliopathies.
DRC1,DRC2, andDRC4 were confirmed to be associated with PCD
(Horani et al., 2013; Wirschell et al., 2013; Olbrich et al., 2015), and
DRC5 variants have been linked to asthenospermia and male
infertility (Zhou, 2022). Variants in DRC1 or DRC2 could cause
PCD and result in the loss of DRC4 protein expression, while DRC4
does not affect the protein expression of DRC1 and DRC2 (Horani
et al., 2013; Wirschell et al., 2013; Olbrich et al., 2015). DRC1, also
known as CCDC164, locates on chromosome 2, consisting of 17
exons with 740 amino acids (Lei et al., 2022). A recent study found
that DRC1 variants could lead to PCD and MMAF, which is the
same diagnosis as the patient we reported in this study (Lei et al.,
2022). So far, only several genes have been covered to be related to
PCD with MMAF, including SPEF2, CFAP74, BRWD1, CCDC39,
CCDC40, ARMC4, and DRC1 (Sha et al., 2020; Tu et al., 2020; Chen
et al., 2021; Gao et al., 2021; Guo et al., 2021; Lei et al., 2022; Xu et al.,
2022). Since the axonemal ultrastructure of respiratory cilia and
sperm flagella is highly consistent, it is necessary to consider their
sperm motility and morphology when diagnosing a patient with
PCD. These findings provide strong evidence to confirm that the
DRC1 novel CNV is associated with PCD and MMAF.

In conclusion, we identified a novel homozygous variant ofDRC1
in a patient with PCD and MMAF by WES-based CNV analysis,
while heterozygous in the patient’s parents. Moreover, the novel
DRC1 variant (NM_145038.5:c.156-1724_244-2550del), can be
found in Esat Asian populations of gnomAD SVs v2.1 database
once (https://gnomad.broadinstitute.org/variant/DEL_2_15666?
dataset=gnomad_sv_r2_1). Previous studies have always potted
the importance of detecting SNVs and INDELs based on WES,
often ignoring CNVs. Our study shows that WES-based CNV
analysis is a helpful adjunct method for identifying disease-
associated variants in highly suspected PCD patients and

increases the appropriateness of WES as a first-line genetic
diagnostic method for PCD. Further studies could be conducted
on the importance of CNVs in PCD, and our results suggest that if
routine WES testing cannot detect the PCD-associated pathogenic
variants, WES-based CNV analysis can be considered, thus perhaps
further improving the PCD diagnostic rate.
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