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Erythrocyte recognition and invasion is critical for the intra-erythrocytic development of
Plasmodium spp. parasites. The multistep invasion process involves specific interactions
between parasite ligands and erythrocyte receptors. Erythrocyte-binding-like (EBL)
proteins, type I integral transmembrane proteins released from the merozoite
micronemes, are known to play an important role in the initiation and formation of tight
junctions between the apical end of the merozoite and the erythrocyte surface. In
Plasmodium yoelii EBL (PyEBL), a single amino acid substitution in the putative Duffy
binding domain dramatically changes parasite growth rate and virulence. This suggests
that PyEBL is important for modulating the virulence of P. yoelii parasites. Based on these
observations, we sought to elucidate the receptor of PyEBL that mediates its role as an
invasion ligand. Using the eukaryotic wheat germ cell-free system, we systematically
developed and screened a library of mouse erythrocyte proteins against native PyEBL
using AlphaScreen technology. We report that PyEBL specifically interacts with basigin,
an erythrocyte surface protein. We further confirmed that the N-terminal cysteine-rich
Duffy binding-like region (EBL region 2), is responsible for the interaction, and that the
binding is not affected by the C351Y mutation, which was previously shown to modulate
virulence of P. yoelii. The identification of basigin as the putative PyEBL receptor offers new
insights into the role of this molecule and provides an important base for in-depth studies
towards developing novel interventions against malaria.

Keywords: Plasmodium yoelii, PyEBL, basigin, invasion, protein-protein interaction, CD147, EMMPRIN
INTRODUCTION

Malaria, caused by Plasmodium spp., is a serious infectious diseases of global importance.
Understanding how the parasites infect and propagate within host cells as well as how they
induce pathological effects is important in the development of effective intervention approaches.
Plasmodium yoelii, a rodent malaria parasite species, has been widely studied to understand the
Abbreviations: EBL, Erythrocyte-binding-like; PBS, phosphate buffered saline; SDS-PAGE, sodium dodecyl sulfate-
polyacrylamide gel electrophoresis.
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interactions between malaria parasites and host cells. Three P.
yoelii parasite lines that differ greatly in their virulence; 17X
(non-lethal), 17XL and YM (lethal), have been used extensively
to study the molecular and genetic bases of growth rate
differences between parasites (Yoeli et al., 1975). Plasmodium
yoelii 17X mainly infects immature erythrocytes (reticulocytes),
while the 17XL and YM lines can infect both mature and
immature erythrocytes (Yoeli et al., 1975). Such differences in
host erythrocyte invasion preference may be driven by parasite
exploitation of different erythrocyte surface receptors. Indeed, a
single amino acid substitution in the P. yoelii erythrocyte
binding-like proteins (EBL) C-terminal Cys-rich domain
(region 6) is associated with parasite virulence as well as
determining localization of the protein to the micronemes (in
the reticulocyte restricted17X line), or to the dense granules (in
the non-restricted 17XL line) (Otsuki et al., 2009).

The importance of the EBL proteins in erythrocyte invasion
has been demonstrated in several Plasmodium species.
Identification of the erythrocyte receptors of EBL in each
parasite species will contribute to the understanding of the
molecular mechanism of erythrocyte invasion. These
interactions are important for host-pathogen recognition,
erythrocyte invasion and malaria pathology, and are therefore
attractive targets for vaccine and/or small molecule inhibitors.
Plasmodium vivax is highly dependent on its EBL orthologue, the
Duffy binding protein (PvDBP) and its receptor on the surface of
reticulocytes, Atypical Chemokine Receptor 1 (previously
referred to as Duffy antigen receptor for chemokines (DARC))
to infect humans (Akter et al., 2019). Individuals lacking Duffy
antigen have been observed to have a lower risk to P. vivax
infection (Howes et al., 2011). Furthermore, naturally acquired
antibodies that block the DBP-DARC interaction, can inhibit
erythrocyte invasion by P. vivax and are associated with clinical
protection (King et al., 2008; Nicolete et al., 2016). PvDBP region
2, the N-terminal cysteine-rich region (Adams et al., 1992) which
serves as a ligand to DARC, based candidate vaccine elicits strain
transcending functional antibodies in humans (Singh et al.,
2018). In P. falciparum, EBL orthologues, EBA-175 and EBA-
140 that interact with Glycophorin A and Glycophorin C,
respectively, have been targeted for vaccine development (El
Sahly et al., 2010).

Unlike other EBLs, PyEBL lacks paralogues in the parasite
making it an ideal model for understanding how the parasite
exploits the molecule during invasion. Although the erythrocyte
receptors of PyEBL are believed to be important for erythrocyte
invasion, they remain understudied. In addition, the factors that
enable mutant 17XL and YM parasites to invade a larger
repertoire of erythrocytes than the 17X parasites are not
completely understood. In this study, we aimed at
systematically identifying the potential receptors for PyEBL on
the surface of mouse erythrocytes leveraging the wheat germ cell-
free system (WGCFS). Specifically, we developed and screened a
library of mouse erythrocyte recombinant proteins against native
PyEBL using an amplified luminescent proximity homogeneous
assay (AlphaScreen). As a result, we identified mouse basigin, an
erythrocyte surface protein, as the putative receptor of PyEBL.
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MATERIALS AND METHODS

Production of Recombinant P. yoelii and
Mouse Erythrocyte Proteins
PyEBL (PY17X_1337400) regions were prepared as described
(Otsuki et al., 2009). Briefly, the sequences encompassing the
ectodomain or other specific regions and/or domains were
amplified from P. yoelii 17X genomic DNA by PCR by using
sense primers with XhoI restriction sites and antisense primers
with NotI restriction sites (Supplementary Table S1). The
amplified fragments were then restricted and ligated into the
pEU-E01-GST expression vector (CellFree Science, Matsuyama,
Japan) followed by sequencing with an ABI PRISM 3100-Avant
genetic analyzer (Applied Biosystems, Foster City, CA). The
GST-tagged proteins were expressed with WGCFS (CellFree
Sciences) and purified using glutathione-Sepharose 4B columns
(GE Healthcare, Camarillo, CA) as previously described (Otsuki
et al., 2009).

Expression constructs of putative mouse erythrocyte surface
proteins were prepared as previously described (Miura et al.,
2018). Membrane and GPI anchored proteins (n=237) were
selected from the FANTOM (functional annotation of mouse
cDNA) database on the basis of being putative mouse orthologs
of the human genes that encode erythrocyte proteins as
annotated in the Ensemble (http://asia.ensembl.org/) database
(Supplementary Table S2). The proteins were expressed using
the WGCFS as N-terminal mono-biotinylated recombinant
proteins as previously described (Miura et al., 2018). For
further characterization, cDNA of the C57BL/6J mouse basigin
gene (FANTOM ID: 0610008G13) was ligated into pEU-E01-
GST, and protein was expressed with WGCFS and purified using
glutathione-Sepharose 4B column (GE Healthcare) as described
(Ito et al., 2013). All specific primers used in this study are
presented in Supplementary Table S1.

Preparation of P. yoelii Parasite Lysate
From Infected Mice
Plasmodium yoelii parasite soluble extracts were prepared
following intraperitoneal injection of 8-week-old female
BALB/c mice (Charles River, Yokohama, Japan) with P. yoelii
17XL parasites as previously described (Rungruang et al., 2005).
Briefly, blood from infected mice was depleted of leukocytes
using a CF11 cellulose (GE Healthcare, Buckinghamshire, UK)
column. Plasmodium yoelii extracts containing PyEBL were
prepared by freeze-thawing schizont-infected erythrocyte
pellets in the presence of protease inhibitors (1 mg/ml of
leupeptin, 1 mg/ml of pepstatin A, 100 mM 4-(2-aminoethyl)
benzenesulfonyl fluoride hydrochloride) with 1 mM EDTA. The
supernatant containing the soluble extract of approximately 1 ×
107 parasites/ml was obtained by centrifugation at 21,600 × g for
10 min and subsequently used for screening assays.

AlphaScreen Assays
Interactions between PyEBL and the library of mouse erythrocyte
proteins was assessed via AlphaScreen (PerkinElmer, Waltham,
MA) as previously described (Miura et al., 2018). Briefly, the
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reaction mixture consisted of 1 ml of P. yoelii extracts, 1.3 mg/ml
mouse anti-PyEBL polyclonal antibodies and 1 mg/ml bovine
serum albumin (BSA) (Wako, Osaka, Japan) in PBS, for a total
volume of 9 ml/well in a 384-well OptiPlate (PerkinElmer).
Biotinylated recombinant mouse protein (1 ml) was then added
and incubated at 26°C for 30 min. A mixture of streptavidin-
coated donor-beads and protein G conjugated acceptor-beads
(PerkinElmer) was added to the mixture and incubated for 1 h
at 26 °C in the dark to allow the donor- and acceptor-beads to
optimally bind to biotin and IgG, respectively. Upon illumination
of this complex, a luminescence signal at 620 nm termed ‘raw
AlphaScreen Counts’ (ASC) was detected and quantified by an
EnVision plate reader (PerkinElmer). Flotillin 2 (FANTOM ID:
4933417M14) or Duffy blood group (FANTOM ID: 2510001J03)
that reacts with anti-Pys25 monoclonal antibody #16 (mAb#16)
(Tsuboi et al., 1997) was used as a negative control. After the initial
down-selection of the top 18 reactive erythrocyte proteins, the
assays were repeated twice including 5 additional GPI-anchored
proteins. The standardized magnitude of signal increase (AS
Signal) between individual mouse target proteins and the
negative control was determined using the formula: (ASC -
background ASC (ASC of negative control; NC)/ASC of NC to
give the AS Signal.

Surface Plasmon Resonance
SPR experiments were performed using a Biacore X100 instrument
(GE Healthcare) according to manufacturer’s instructions and as
previously described (Nagaoka et al., 2019). Briefly, recombinant
mouse basigin was immobilized to a CM5 chip (GE Healthcare) by
amine coupling. The buffer HBS-EP+ (10 mM HEPES, pH 7.4, 150
mM NaCl, 3 mM EDTA, 0.05% (v/v) surfactant P20) was used as
the running buffer for all SPR experiments. Blank flow cells were
used to subtract buffer effects on sensorgrams. Recombinant PyEBL
regions were assayed as analytes. After subtraction of the
contribution of bulk refractive index and nonspecific interactions
with the CM5 chip surface, protein-protein association (ka) and
dissociation (kd) rate constants were obtained by global fitting of the
data in a 1:1 bindingmodel equation.Measurement conditions were
optimized so that the contribution of mass transport to the observed
values of KD was negligible.

Ethics Approval
Animal experimental and immunization protocols were
approved by the Institutional Animal Care and Use Committee
of Ehime University and the experiments were conducted in
accordance with the Ethical Guidelines for Animal Experiments
of Ehime University (Ref: SU-17-1).
RESULTS

Plasmodium yoelii Native PyEBL
Interacts With Basigin
Since EBL proteins play an important role in initiation and
formation of the tight junction between the apical end of the
merozoite and erythrocyte surface, we sought to determine
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whether PyEBL binds directly to mouse erythrocytes proteins.
First, a recombinant PyEBL ectodomain spanning region (R) 1 to
R6 (PyEBL R1-6; amino acids V28-N788) was expressed using
WGCFS (Figure 1A). Expression was confirmed by SDS-PAGE
where it resolved as a single band of 120 kDa (Figure 1B). Mouse
polyclonal antibodies raised against the recombinant PyEBL
specifically recognized the native parasite protein as reported
previously (Otsuki et al., 2009).

To identify potential receptors for PyEBL on the surface of host
erythrocytes, we conducted AlphaScreen assays with the mouse
erythrocyte proteins as previously described (Miura et al., 2018). A
total of 237 membrane and GPI anchored mouse orthologs of the
human genes that encode erythrocyte proteins were successfully
expressed using the WGCFS as N-terminal mono-biotinylated
recombinant proteins (Supplementary Table S2). The
AlphaScreen assay was designed such that the polyclonal antibody
binds with native parasite PyEBL which in turn would bind with a
recombinant erythrocyte protein (Supplementary Figure S1). After
the initial down-selection of the top 18 reactive erythrocyte proteins
(Supplementary Table S3), the assays were repeated twice, this time
including 5 GPI-anchored proteins and a negative control. Basigin
(FANTOM ID: 0610008G13) had the highest and distinct signal
among the 23 erythrocyte proteins, suggesting its interaction with
parasite native PyEBL (Figure 1C; Supplementary Table S4).

To validate the interaction between PyEBL and basigin, we
analyzed the strength of the interaction between the two proteins
using SPR. We observed that recombinant PyEBL at increasing
concentration of 6, 12, 24, 48, and 96 nM, directly interacts with
recombinant GST-tagged basigin with an equilibrium binding
constant (KD) of 3.3 ×10

-8 M (Figure 1D). As a negative control,
His-GST did not show specific interactions with basigin
(Figure 1D). Other parameters determined by the SPR are
shown in Supplementary Table S5. These observations suggest
that basigin is the erythrocyte receptor for native PyEBL protein.

Region 2 Is Responsible for PyEBL
Interaction With Basigin, and the Binding
Is Not Affected by the C351Y Mutation
To determine the PyEBL region important for its interaction with
erythrocyte surface protein basigin, we synthesized PyEBL R1-6
as truncated proteins with sections corresponding to the
previously defined regions (Adams et al., 1992) namely region
(R)1-2, amino acid V28-G437; R2, E113-G437; R3-5, G437-C717; and
R6, C717-N788 (Figures 1A, 2A). We observed that recombinant
PyEBL R1-2 as well as R2, the N-terminal Cys-rich Duffy binding-
like region (DBL) interacted with basigin at equilibrium binding
constant (KD) of 1.6 ×10-8 M and 3.4 ×10-8 M, respectively
(Figure 2B). The binding constants were comparable to that of
PyEBL R1-6 (Figure 1D). In contrast, PyEBL R3-5 and PyEBL
R6 did not bind to recombinant basigin (Figure 2B), suggesting
that the region essential for interaction between PyEBL and
basigin is located in R2.

Since a single amino acid substitution in PyEBL R6 domain
determines the protein localization and influences the parasite’s
virulence (Otsuki et al., 2009) while a mutation in the DBL
domain affects both the parasite’s growth rate and virulence
April 2021 | Volume 11 | Article 656620
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FIGURE 1 | PyEBL interacts with basigin, a mouse erythrocyte surface protein. (A) Schematic representation of PyEBL (PY17X_1337400) domain architecture. The protein has a
predicted signal peptide (SP; 1 to 22 aa), followed by 7 homology regions (R) 1-7. R2 is referred to as the Duffy binding-like domain; R6 is the C-terminal Cysteine-rich domain.
Recombinant PyEBL R1-6 amino acids V28-N788 as well as truncates corresponding to R1-2, amino acid V28-G437; R2, E113-G437; R3-5, G437-C717; and R6, C717-N788 were
expressed as N-terminal GST-tagged proteins by wheat germ cell-free system (WGCFS). (B) WGCFS expressed recombinant PyEBL R1-6 was purified by glutathione-Sepharose
4B column and resolved by 12.5% SDS-PAGE under reducing condition and stained with Coomassie brilliant blue (CBB). The protein resolved as a single band as shown

(arrowhead) at the expected molecular weight. All blue ™ molecular marker points are shown. (C) AlphaScreen reactivity profile of recombinant PyEBL R1-6 and mono-
biotinylated recombinant putative mouse erythrocyte surface proteins. PyEBL R1-6 was mixed with mouse anti- PyEBL R1-6 polyclonal antibodies, 1 ml P. yoelli parasite lysate and
each of the 237 biotinylated erythrocyte surface proteins and incubated for 1h at 26°C to form an antibody-native PyEBL-mouse protein complex. A suspension of streptavidin-
coated donor-beads and protein G conjugated acceptor-beads mixture was then added to the reaction followed by a 1 h at 26°C incubation. This allowed the donor- and
acceptor-beads to optimally bind to biotin and rabbit IgG, respectively. Upon illumination of this complex, a luminescence signal at 620 nm was detected by the EnVision plate
reader (PerkinElmer) and the result was expressed as AlphaScreen counts (ASC). The top 23 mouse proteins were assayed two times which are represented by a white and a
filled pattern bar per protein. The number on the x-axis represent FANTOM IDs. Flotillin 2 (4933417M14) reacted with anti-Pys25 mAb#16 was used as the negative control.
Basigin (ID: 0610008G13) had the highest signal. Detailed description is provided in Supplementary Table S4. (D) Sensorgram of SPR single-cycle kinetic analysis between
recombinant PyEBL R1-6 and recombinant mouse basigin. GST tagged ecto-basigin, expressed as illustrated, was immobilized on CM5 chip and used as the ligand while
recombinant PyEBL R1-6 was used as analyte. His-GST was assayed as a negative control. Blue curve represents the actual data-generated sensorgram while black curve
indicates line of fit used to calculate kinetics parameters. The assay was performed at an increasing analyte concentration of 6, 12, 24, 48, and 96 nM at 120s and dissociation
time of 180s. The last dissociation time was extended to 600s to accurately determine kinetic parameters.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org April 2021 | Volume 11 | Article 6566204
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FIGURE 2 | PyEBL interacts with basigin via the Region 2, the Duffy binding-like domain. (A) Recombinant PyEBL truncates namely R1-2, amino acid V28-G437; R2,
E113-G437; R3-5, G437-C717; and R6, C717-N788 were expressed as N-terminal GST, C-terminal His-tagged proteins were purified with Ni-affinity columns, resolved
by 12.5% SDS-PAGE under reducing conditions, and stained with CBB. Different truncates are shown. (B) Sensorgram of SPR single-cycle kinetic analysis between
recombinant PyEBL truncates and recombinant mouse basigin. The SPR Chip used was same as used in Figure 1D with GST tagged Basigin as the analyte. The
blue curve represents the actual data-generated sensorgram while the black curve indicates line of fit used to calculate kinetics parameters. R1-2 and R2 were
assayed at an increasing protein concentration of 0.96, 4.8. 24, 120 and 600 nM. R3-5 and R6 were assayed at 62.5, 125, 250, 500 and 1000 nM at 120s and
dissociation time of 180s. The last dissociation time was extended to 600s to accurately determine kinetic parameter. (C) Sensorgram of SPR single-cycle kinetic
analysis between recombinant PyEBL C351Y and recombinant mouse basigin. The SPR Chip used was same as that used in Figure 1D with GST tagged basigin
as the analyte. Blue curve represents the actual data-generated sensorgram while black curve indicates line of fit used to calculate kinetics parameters. The assay
was performed at an increasing analyte concentration of 6, 12, 24, 48, and 96 nM at 120s and dissociation time of 180s. The last dissociation time was extended to
600s to accurately determine kinetic parameters. (D) Comparison of equilibrium binding constants between recombinant Basigin and recombinant PyEBL derived
from P. yoelii wild type (PyEBL) or mutant (PyEBL C351Y). Each bar represents average SPR equilibrium binding constants of 4 independent experiments with error
bars representing SE of the mean.
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(Abkallo et al., 2017), we sought to determine whether the DBL
C351Y mutation affects the ability of PyEBL to bind to its
putative receptor. Sequences derived from the PyEBL C351Y
mutant were cloned, confirmed by sequencing, and used to
express recombinant protein. SPR analysis revealed slightly
stronger albeit statistically non-significant difference in
the binding kinetics between the C351Y mutant (KD of
2.6 ×10-8 M) and wildtype derived R1-6 proteins (Student’s t-
test, p = 0.23), suggesting the mutation had but a minimal effect
on the protein’s binding capabilities to basigin (Figures 2C, D).
Taken together, the data presented here suggest that PyEBL DBL
(R2) is responsible for PyEBL interaction with basigin, and that
this binding may not be affected by the C351Y mutation.
DISCUSSION

Plasmodium erythrocyte-binding-like proteins are involved in
erythrocyte invasion by merozoites. In this study, by
systematically screening a library of mouse erythrocyte
proteins using PyEBL bait, we observed that the native parasite
PyEBL protein interacts with basigin, the Ok blood group
antigen. We further confirmed that region 2 of PyEBL is
responsible for this interaction, consistent with the PyEBL
orthologues of P. falciparum and P. vivax which are also
known to interact with erythrocyte receptors through region 2
(Chitnis and Miller, 1994; Sim et al., 1994).

Basigin, also known as cluster of differentiation 147 (CD147)
or extracellular matrix metalloproteinase inducer (EMMPRIN),
is a type I integral membrane receptor member of the
immunoglobulin superfamily with several distinct functions
including spermatogenesis, expression of the monocarboxylate
transporter and the responsiveness of lymphocytes. It has been
implicated in the pathogenesis of several infectious and
inflammatory diseases in which it has been extensively studied
as a target of drug or vaccine based interventions (Muramatsu,
2012). Basigin has been evaluated as an essential receptor for P.
falciparum Rh5 during human erythrocyte invasion (Crosnier
et al., 2011). Antibodies against PfRh5 have a robust growth
inhibitory activity making the molecule an attractive asexual
blood-stage vaccine target (Healer et al., 2019). Here, we show
that PyEBL interacts directly with mouse basigin using both
native and purified recombinant proteins in AlphaScreen and
SPR. Another protein, Band 3, was recently reported to co-
immunoprecipitate with PyEBL (Peng et al., 2020). However, in
our study, the protein did not show interaction with native
PyEBL in the AlphaScreen assays probably due to the difference
in the experimental approaches used. Put together, PyEBL-
basigin interaction may act as an important key pathway that
mediates attachment of merozoites to the erythrocyte surface,
and this protein-protein interaction is an attractive model for
vaccines and small molecule inhibitors studies.

Phenotypically, the P. yoelii nonlethal 17X parasite line mainly
invades reticulocytes while the lethal lines 17XL and YM (carrying
the C726R mutation) infect both reticulocytes and normocytes
(Yoeli et al., 1975). This single amino acid substitution (C726R) in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
region 6, that harbors the intracellular trafficking domain
(Culleton and Kaneko, 2010), alters the protein localization
from the micronemes to the dense granules although the protein
remains essential for parasite survival (Otsuki et al., 2009). It may
also change the susceptibility of infected erythrocytes to
complement pathways, and hence disease severity (Peng et al.,
2020). Abkallo et al. observed that another single nucleotide
polymorphism, C351Y, in the DBL domain (region 2)
dramatically changed the parasite’s ability to invade erythrocytes
and affected its growth rate (Abkallo et al., 2017) suggesting that
the mutation influences the function of this gene. In addition,
homology modeling suggested that the cysteine residue at position
351 forms a disulfide bond with the residue at position 420, and
this bond is abolished following the C351Y substitution
subsequently altering the DBL’ domain’s tertiary structure
(Abkallo et al., 2017). In line with this model, we observed that
C351Y mutant PyEBL bound basigin at a slightly lower affinity
relative to the wild type. This could imply that the mutation might
slightly strengthen the PyEBL interaction with basigin. In general,
disulfide bonds enhance proteins thermodynamic stability making
them more resistant to degradation as well as determining their
tertiary structures and functional interactions (Liu et al., 2016). A
C351Y substitution could increase flexibility of the PyEBL R2 via
increased conformational freedom allowing it to not only bind to
basigin, but also other uncharacterized receptor proteins.
Nevertheless, further investigation would be required to
elucidate the specific binding motifs as well as investigate if, and
how the mutations expand the repertoire of erythrocyte receptors.

The findings presented here suggest that PyEBL R2 interacts with
basigin. However, it remains unclear how the C726R polymorphism
in PyEBL R6 enables mutant parasites to invade both reticulocytes
and normocytes while still recognizing basigin. Further structural and
functional studies on how R2 and R6 relates are required to elucidate
these questions. Nonetheless, the identification of basigin as a putative
PyEBL erythrocyte receptor offers new insights into themechanism of
invasion in malaria parasites.
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