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Abstract

Background: The stress hormone corticosterone has the ability both to enhance and suppress synaptic plasticity and
learning and memory processes. However, until today there is very little known about the molecular mechanism that
underlies the bidirectional effects of stress and corticosteroid hormones on synaptic efficacy and learning and memory
processes. In this study we investigate the relationship between corticosterone and AMPA receptors which play a critical
role in activity-dependent plasticity and hippocampal-dependent learning.

Methodology/Principal Findings: Using immunocytochemistry and live cell imaging techniques we show that
corticosterone selectively increases surface expression of the AMPAR subunit GluR2 in primary hippocampal cultures via
a glucocorticoid receptor and protein synthesis dependent mechanism. In agreement, we report that corticosterone also
dramatically increases the fraction of surface expressed GluR2 that undergo lateral diffusion. Furthermore, our data indicate
that corticosterone facilitates NMDAR-invoked endocytosis of both synaptic and extra-synaptic GluR2 under conditions that
weaken synaptic transmission.

Conclusion/Significance: Our results reveal that corticosterone increases mobile GluR2 containing AMPARs. The enhanced
lateral diffusion properties can both facilitate the recruitment of AMPARs but under appropriate conditions facilitate the loss
of synaptic AMPARs (LTD). These actions may underlie both the facilitating and suppressive effects of corticosteroid
hormones on synaptic plasticity and learning and memory and suggest that these hormones accentuate synaptic efficacy.
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Introduction

Individual neurons contain ,10,000 synapses and the synapse-

specificity of signalling and plasticity underlies the immense

processing power of neuronal systems. The number and subunit

compositions of synaptic AMPARs are stringently regulated

because activity dependent changes in functional postsynaptic

AMPARs contribute to the two main forms of synaptic plasticity

that are believed to underlie learning and memory in the

hippocampus [1,2]. Long term potentiation (LTP) involves the

activity-dependent recruitment of AMPARs to the postsynaptic

membrane and a concurrent increase in AMPA-mediated

transmission whereas long term depression (LTD) is a decrease

in synaptic AMPAR function [3,4].

The stress hormone corticosterone exert marked effects on

learning and memory and both facilitating and impairing

influences are described in the literature [5,6]. Interestingly,

corticosteroid hormones have profound effects on AMPAR

function, synaptic transmission and plasticity via genomic and

non-genomic pathways. Long-lasting effects are mediated via

glucocorticoid receptors (GRs) which enhance AMPAR mediated

miniature excitatory postsynaptic current (mEPSC) amplitude [7],

impair NMDA receptor mediated long-term synaptic potentiation

(LTP) [8] and facilitate long-term synaptic depression (LTD)

[9,10]. Rapid, non-genomic effects of corticosterone are mediated

via high-affinity mineralocorticoid receptors (MRs), which act to

enhance AMPAR mEPSC frequency [11] and facilitate synaptic

potentiation [12].

Recently, using single particle tracking approaches it has been

reported that corticosteroid receptor activation directly and long-

lastingly impacts on AMPAR mobility. [13]. We investigated

whether corticosterone alters the levels of synaptic AMPARs in
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basal conditions and under conditions that induce synaptic

depression in hippocampal cultures. Under basal conditions,

corticosterone increased GluR2 but not GluR1 containing

AMPAR surface expression and enhanced mEPSPs. The increase

was protein synthesis dependent and was accompanied by

increased lateral diffusion. However corticosterone enhanced

AMPAR endocytosis under conditions which promote LTD

Materials and Methods

Dispersed hippocampal neuronal cultures and
immunocytochemistry

The experiments were carried out with permission of the local

Animal Committee of the Erasmus Medical Center and University

of Bristol. Primary hippocampal cultures were prepared from

embryonic day 18 (E18) rat brains as described [14]. Cells were

plated on coverslips coated with poly-D-lysine (30 mg/ml) and

laminin (2 mg/ml) at a density of 75,000/well. Hippocampal

cultures were grown in Neurobasal medium supplemented with

B27, 0.5 mM glutamine, 12.5 mM glutamate and penicillin/

streptomycin. At DIV13-20 hippocampal neurons were incubated

with GluR1 (Calbiochem (1:8) and GluR2 (Zymed (1:80) N-

terminal antibodies (10 mg/ml) at 37uC for 15 min [12]. After

washing in DMEM medium, the neurons were fixed for 5 min

with 4% formaldehyde/4% sucrose in phosphate-buffered saline

(PBS). Neurons were then washed three times in PBS for 30 min at

room temperature and incubated with secondary antibody

conjugated to Alexa488 (1:400) or Alexa568 (1:400) in staining

buffer without TritonX-100 (0.2% BSA, 0.8 M NaCl, 30 mM

phosphate buffer, pH 7.4) overnight at 4uC. Neurons were then

washed three times in PBS for 30 min at room temperature and

mounted.

For total staining cells were fixed for 5 min with 4%

formaldehyde/4% sucrose in phosphate-buffered saline (PBS).

Next, cells were incubated with GluR1 (1:5000) and GluR2 C-

terminal antibodies (1:500) [15] in staining-buffer with TritonX-

100 overnight at 4uC. Neurons were then washed three times in

PBS for 30 min at room temperature and incubated with

secondary antibody conjugated to Alexa488 (1:400) or Alexa568

(1:400) in GDB with TritonX-100 for 2 h at room temperature

and washed three times in PBS for 30 minutes.

Confocal images were obtained with sequential acquisition

settings at the maximal resolution of the microscope

(102461024 pixels). Morphometric analysis and quantification

were performed using MetaMorph software (Universal Imaging

Corporation). For details see supplementary materials and

methods.

Image analysis and quantification
Confocal images stained neurons were obtained with sequential

acquisition settings at the maximal resolution of the microscope

(102461024 pixels). Each image was a z-series of 6–10 images

each averaged 2 times. The resulting z-stack was ‘flattened’ into a

single image using maximum projection. The confocal settings

were kept the same for all scans when fluorescence intensity was

compared. Morphometric analysis and quantification were

performed using MetaMorph software (Universal Imaging Cor-

poration). For the quantification of surface antibody staining,

images were acquired with use of a 406 objective with 1.06
electronic zoom and the average intensity of the soma and

dendrites was measured in MetaMorph. Acquisition of the images

as well as morphometric quantification was performed under

‘‘blinded’’ conditions. Statistical analysis was performed with

student’s t test assuming a two-tailed and unequal variation. N

defined as the number of quantified neurons.

Biotinylation assays
High-density hippocampal cultures were prepared as described

previously (13After 14 DIV, neurons were treated with 100 nM

CORT for 3 h or treated vehicle only and membrane and total

fractions were prepared [16]. Immunoblotting was performed

using a rabbit polyclonal antibody to GluR1 (Upstate; 0.6 mg/ml)

and mouse monoclonal antibodies to GluR2 (Chemicon; 1 mg/

ml), Transferrin receptor (Sigma 1 mg/ml), b-actin (Sigma;

0.5 mg/ml) and a-tubulin (Sigma; 0.5 mg/ml). Quantitative

densitometric analysis was performed using NIH Image J.

Electrophysiology
Coverslips were placed in a recording chamber mounted on an

upright microscope (Nikon E600FN), continuously perfused with

artificial cerebrospinal fluid (aCSF) (32uC, 2–3 ml/sec; containing

in (mM): NaCl (120), KCl (3.5), MgSO4 (1.3), NaH2PO4 (1.25),

CaCl2 (2.5), Glucose (10.0) and NaHCO3 (25.0), pH 7.4) and kept

fully submerged. Whole cell patch clamp recordings were made

using an AXOPATCH 200B amplifier (Axon Instruments, USA),

with electrodes from borosilicate glass(1.5 mm outer diameter,

Hilgerberg, Malsfeld, Germany). The electrodes were pulled on a

Sutter (USA) micropipette puller. The pipette solution contained

(in mM): 120 Cs methane sulfonate; CsCl (17.5); HEPES (10);

BAPTA (5); Mg-ATP (2); Na-GTP (0.5); QX-314 (10); pH 7.4,

adjusted with CsOH; pipette resistance was between 3–6 MV.

Under visual control (406 objective and 106 ocular magnifica-

tion) the electrode was directed towards a neuron with positive

pressure. Once sealed on the cell membrane (resistance above

1 GV) the membrane patch under the electrode was ruptured by

gentle suction and the cell was kept at a holding potential of

270 mV. The liquid junction potential caused a shift of no more

than 10 mV, which was not compensated during mEPSCs

recording. Recordings with an uncompensated series resistance

of ,15 MV and ,2.5 times of the pipette resistance with a shift of

,20% during the recording, were accepted for analysis. Data

acquisition was performed with Pclamp 8.2 and analyzed off-line

with Clampfit 9.0.

Miniature excitatory postsynaptic currents (mEPSCs) were

recorded at a holding potential of 270 mV. Tetrodotoxin

(0.25 mM, Latoxan, Rosans, France) and bicuculline methobro-

mide (20 mM, Biomol) were added to the buffer to block action

potential induced glutamate release and GABAA receptor

mediated miniature inhibitory postsynaptic currents (mIPSCs),

respectively. During some recordings the non–NMDA-receptor

blocker 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 mM,

Tocris) was perfused to confirm that the mEPSCs were indeed

mediated by AMPARs. The events were identified as mEPSCs

when the rise time was faster than the decay time. mEPSCs were

recorded for 5 min in each cell.

Sindbis virus preparation
Attenuated Sindbis virus expressing Super Ecliptic pHluorin

(SEP)-tagged GluR2 (SEP-GluR2) [17,18] was prepared and used

as previously described [19]. Neurons were transduced at a MOI

of 1 at 14–17 DIV and then returned to the incubator for an

additional 24 h before use.

Fluorescence imaging of SEP-GluR2 in living neurones
Protocols were as previously described [17,18]. Briefly, live

SEP-GluR2-expressing neurons (15–18 DIV) were preincubated
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for 3 hours in Neurobasal containing 30 nM corticosterone or

vehicle and then transferred in Earle’s buffer in the presence of

either corticosterone (30 nM) or vehicle for live confocal imaging

experiments. Neurons were placed on the heated stage (set at

37uC) of an inverted Zeiss Axiovert microscope and were

continually perfused at 3 ml/min with warm Earle’s6corticoster-

one solution. For low pH external solution, equimolar MES was

used instead of HEPES and pH adjusted to 6.0. NH4Cl (50 mM)

was used in place of equimolar NaCl to collapse pH gradient.

Fluorescence was excited using 636 water-immersion objective

(NA = 1.2) by 488 nm laser light and emission was detected

through a 505 nm long pass filter. Time series were collected as

repetitively scanned image stacks. Image stacks were then flattened

using the maximum projection algorithm from the Zeiss LSM

software. All SEP-GluR2 experiments include a brief (10 sec) low

pH wash at the beginning to ensure that the fluorescence from the

area of interest comes from surface-expressed AMPARs.

Fluorescence recovery after photobleaching, FRAP
Fluorescence data were collected from regions of interest drawn

around the fluorescence known to come from the cell surface of a

spine (as shown by low pH wash). Data were individually

normalized using a single-exponential fit to account for slow

photobleaching of the whole image during the acquisition. FRAP

was then expressed as a percentage of initial fluorescence (average

of five images immediately before photobleaching) over time and

fitted with the «Feder» equation that models Brownian diffusion in

a membrane after photobleaching [18,20]. The Mobile fraction

values were extracted for each experiment from these fits (see also

supplementary materials and methods).

Synaptic and extrasynaptic AMPARs after NMDAR-
dependent internalization

Brief bath application of 50 mM NMDA for 3 minutes at 37uC
was applied to CORT-treated hippocampal cultured neurones to

elicit a chemically induced form of long-term depression [21] and

in dispersed hippocampal cultures, exposure to NMDA evokes

internalization of synaptic GluR1- and GluR2-containing AM-

PARs [17,21,22,23].

Analysis of FRAP
Each fluorescence recovery after photobleaching (FRAP)

dataset was expressed as a percentage of resting fluorescence

(average of two to four images immediately before photobleaching)

over time and fitted with the following equation that models

Brownian diffusion in a membrane after photobleaching and

incorporates the possibility of an immobile population [20]:

F tð Þ~
F0z R F0{F0

� �
zF0

t
t1=2

� �� �

1z t
t1=2

� � :

F0 is the fluorescence immediately after bleaching, R is the mobile

fraction, F0 is the fluorescence immediately before bleaching, and

t1/2 is the half-time of the recovery curve. R was constrained in

these fits to between 0 and 1.0. From these fits, the R and t1/2

values were extracted for each experiment. The t1/2 was used here

as a comparative measure of the rate of diffusion since the regions

that are being compared have the same or closely similar shape.

Statistical analysis
Statistical analyses were calculated using Prism 4 (GraphPad

software, Inc). Data are expressed as mean6s.e.m.. Unpaired

Student’s t-tests and one-way ANOVA were performed with a

Newman-Keuls post-test for multiple comparison data sets when

required.

Results

GR activation increases AMPAR surface expression
Representative images of the effects of the treatment of primary

hippocampal neurons with 30 and 100 nM corticosterone for 3 h

on surface GluR1 and GluR2 immunolabelling is shown in

Figure 1A. Quantitative dose response data (Figure 1B) indicate

that both GluR1 and GluR2 surface expression are increased by

corticosterone but that GluR2 is more sensitive and increases to a

greater extent than GluR1. Significant increases in surface levels of

GluR2 but not GluR1 were observed using 3 nM corticosterone,

which is around the Kd value of the GR [24]. There were no

detectable changes in surface expressed GluR1 or GluR2 after 1 h

incubation with corticosterone (Figure 1C). Two hours after

1 hour incubation with corticosterone GluR2 levels were en-

hanced (data not shown), indicating that increased surface

labelling is time dependent. The effects of corticosterone on

AMPAR surface expression is also long lasting since surface

GluR2 levels remain elevated 24 h after corticosterone application

(and 21 h after washout). Interestingly, surface levels of GluR1

were also markedly increased at this time point (Figure 1C).

Total GluR2 (surface and intracellular pools) levels remained

unchanged 3 h after incubation with 30 nM corticosterone

(Figure 1D) indicating that corticosterone selectively enhance

surface expression of AMPA receptors. This was confirmed using

surface biotinylation in primary hippocampal cultures (Figure 1F–

H).

The slow and persistent nature of the changes in AMPAR

surface expression is suggestive of a gene-mediated pathway

involving nuclear receptors. Consistent with this, application of the

GR antagonist RU38486 (500 nM) completely blocked the

corticosterone-induced increase in GluR2 surface expression and

co-treatment of corticosterone with the protein synthesis inhibitor

cycloheximide (100 mM) also fully prevented the effects of

corticosterone on GluR2 surface expression (Figure 1H). Electro-

physiological recordings demonstrate that corticosterone-treated

cells displayed increased mEPSC amplitude (50.5 pA64.9 for

corticosterone vs. 36.8 pA61.7 for control, Figure 2A) whereas the

frequency in dispersed hippocampal cultures remained unchanged

upon corticosterone treatment (Figure 2B). Frequency histograms

revealing enhanced mEPSC amplitude after corticosterone

treatment are shown in Figure 2C & D. Importantly, this indicates

that corticosterone induced increments in surface GluR2 labelling

are accompanied by enhanced AMPAR mediated synaptic

transmission.

Corticosterone increases surface mobility of GluR2
One explanation for the increase in surface GluR2 puncta and

mEPSCs is that corticosterone recruits extrasynaptic surface

expressed AMPARs to synapses. We therefore performed

fluorescence recovery after photobleach (FRAP) experiments using

SEP–GluR2 [18] to visualise the effects of corticosterone on

surface motility in spines. As expected spine heads contained

bright SEP-GluR2 fluorescence under resting conditions

(Figure 3A top panel). The extent of and time course of

fluorescence recovery following bleaching at individual spine

heads of similar shape provides information of the fraction of SEP-

GluR2 that is mobile and the residence time of synaptic AMPARs

[25]. There was a partial recovery of fluorescence in bleached

spines due to the exchange of bleached surface SEP-GluR2 with

Stress and AMPA Trafficking
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unbleached SEP-GluR2 from the dendritic shaft (Figure 3) via

lateral diffusion [18].

In control cells FRAP plateaus to ,60% (61.8%62.5) of pre-

bleach levels within 3–4 min. Corticosterone treatment (30 nM)

caused a full recovery of fluorescence after photobleaching

(107.7%64.2) over the time course of our experiments

(Figure 3B–D). Taken together, these data suggest a complete

loss of the immobile pool of synaptic AMPA receptor upon

corticosterone treatment (i.e. every single SEP-GluR2 subunit is

free to move inside/outside of the spine in corticosterone treated

neurons. Furthermore, the half time of fluorescence recovery in

spines (Figure 3E) was ,4 times higher for corticosterone-treated

cells (166.6 s626.9) than for control cells (40.5 s68.2) indicating

that corticosterone treatment acts to remove the immobile fraction

of synaptic AMPARs and that it takes longer in presence of

corticosterone to fully exchange the synaptic population of SEP-

GluR2.

Effects of corticosterone on AMPAR trafficking during LTD
A recent study using single particle tracking approaches

reported that short corticosterone application (10–20 min) in-

creases GluR2-AMPAR surface mobility in a time-dependent

Figure 1. Glucocorticoid receptor activation promotes surface AMPA receptor expression. A) Representative images of hippocampal
neurons at DIV13 treated with vehicle, 30 nM and 100 nM corticosterone for 3 h and stained for surface GluR1 (red) and GluR2 (green). B)
Quantification of GluR1 and GluR2 intensity after treatment with vehicle and 0.3–100 nM corticosterone for 3 h. C) Quantification of surface GluR1
and GluR2 intensity after treatment with vehicle for 3 h and 30 nM corticosterone for 1 or 3 h. In addition cells were incubated for 3 h with CORT,
washed and incubated in regular medium for 21 h (3 h+21 h). D) Quantification of total GluR1 and GluR2 intensity after treatment with vehicle and
30 nM corticosterone for 3 h. E) Quantification of surface GluR1 and GluR2 intensity of primary hippocampal neurons. Cells were treated with vehicle,
100 mM cycloheximide or 500 nM RU 38486 for 3 h followed 30 min later with vehicle or 30 nM corticosterone applications for 3 h. F) Representative
Western blots show expression of GluR1, GluR2, transferrin receptor (TrfR), actin and tubulin in total and surface fraction of biotinylated primary
hippocampal cultures treated with vehicle (2) or 100 nM corticosterone (+) for 3 h. G) Quantitative analysis of surface expression of GluR1, GluR2 and
transferrin receptor (TrfR) in biotinylated primary hippocampal neurons treated with 100 nM corticosterone for 3 h. H) Quantitative analysis of total
expression of GluR1, GluR2, transferrin receptor (TrfR), actin and tubulin in biotinylated primary hippocampal neurons treated with 100 nM
corticosterone for 3 h.
doi:10.1371/journal.pone.0004714.g001
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manner and increased residency of GluR2 at synapses, which

occludes increases in GluR2 synaptic content induced by a

chemical LTP protocol [13]. LTD is the converse process to

synaptic strengthening and is also mediated by synaptic AMPARs.

We therefore investigated the effects of corticosterone on

NMDAR-induced LTD in hippocampal cultured neurons [21–

23]. As we have reported previously [14] there was a marked

difference in the behavior of punctate synaptic and diffuse extra

synaptic SEP–GluR2 during NMDA application (Figure 4). In

control cells fluorescence from punctate, synaptic regions was

relatively stable during the 3 min period of NMDA application but

then slowly declined after NMDA removal. In stark contrast, non-

punctate extrasynaptic SEP–GluR2 fluorescence decreased im-

mediately and rapidly as soon as NMDA was applied consistent

with rapid internalization of AMPARs from the extrasynaptic

membrane into an acidic intracellular compartment [17]. After

NMDA washout, the fluorescence immediately began to recover

toward pre-stimulation levels.

Pretreatment with corticosterone had dramatic effects on

AMPAR trafficking in LTD (Figure 4). In corticosterone-treated

cells the punctate synaptic SEP-GluR2 fluorescence started to

decrease immediately on exposure to NMDA with a time course

similar to the decrease in diffuse non-synaptic SEP-GluR2

(Figure 4B, D). Further, there was a much greater initial loss of

SEP-GluR2 fluorescence from non-punctate regions. In direct

contrast to control cells, the punctate and diffuse SEP-GluR2 in

corticosterone-treated cells showed similar loss of SEP-GluR2

fluorescence kinetics upon NMDAR activation. These results are

consistent with corticosterone both increasing and recruiting the

normally synaptic immobile fraction into the freely diffusing pool

of receptors (Figure 3). Further, these data imply that corticoste-

rone facilitates NMDAR-dependent AMPAR endocytosis within

the spine and allows rapid exchange of surface synaptic expressed

receptors from spines to endocytic sites on the dendritic shaft.

Discussion

It has recently emerged that corticosterone treatment directly

and long-lastingly impacts on AMPAR lateral mobility [13]. Here

we report that prolonged corticosterone treatment increases

GluR2 surface expression in a time and concentration dependent

manner. We observed no change in GluR2 after 1 h of

corticosterone but pronounced effects after 3 h suggestive of a

mechanism involving GR-mediated transcriptional regulation.

Consistent with this, corticosterone had no effect on GluR2 in

the presence of a protein synthesis inhibitor. Additionally, using

electrophysiological approaches, we found that the increased levels

of surface GluR2 in corticosterone-treated cells result in increased

functional synaptic AMPARs.

Despite the marked changes in surface levels of GluR2 total

levels were unchanged. These results could be interpreted to

suggest that newly synthesized GluR2 is rapidly targeted to the cell

surface and there is a corresponding increase in degradation of

intracellular GluR2 to maintain balance. A more likely alternative

explanation, however, is that GR activation does not directly

target the GluR2 encoding gene. Indeed, in preliminary studies no

Figure 2. Corticosterone induces a delayed enhancement of the mEPSC amplitude. A) mEPSC amplitude and (B) frequency after treatment
with vehicle or corticosterone. C) Normalized frequency histogram for the distribution of the amplitude of mEPSCs in hippocampal primary neurons
after control treatment or treatment with corticosterone. A shift toward larger amplitudes was observed after hormone treatment. D) Cumulative
frequency histogram shows a marked shift toward larger amplitude mEPSCs after corticosterone treatment. *P,0.05.
doi:10.1371/journal.pone.0004714.g002
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transcriptional regulation of any of the four AMPAR subunits

(GluR1-4) was observed with qPCR in tissue prepared from

hippocampal slices 3 h after corticosterone treatment (unpublished

observations). Rather we envisage a system in which GR activation

alters genes encoding proteins involved in regulating GluR2/3

delivery and/or membrane anchoring. There are multiple

potential candidates including TARPS, PICK1, GRIP or NSF

and AP2 [21,26–29]. Interestingly, AP2 is one of the down-

regulated genes picked up in a microarray survey using

corticosterone-treated hippocampal slices of rats [30]. However,

we could not observe a significant difference in total AP2 protein

levels in 100 nM glucocorticoid treated hippocampal cultures

compared to controls (Figure 5).

The corticosterone mediated enhancement of surface GluR2

levels can be attributed to increased exocytosis and/or reduced

endocytosis of AMPARs. In addition, using fluorescence imaging

of SEP-GluR2 in living neurons we noted that corticosterone

mobilizes normally synaptically anchored surface expressed

AMPARs. One advantage of live cell imaging of SEP-GluR2

over single particle tracking methods is that it samples populations

of receptors and allows simultaneous analysis of both mobile and

immobile populations [25]. We demonstrate an apparent

complete loss of the immobile pool of synaptic AMPA receptor

upon corticosterone treatment (i.e. every SEP-GluR2 subunit is

free to move in corticosterone treated neurons) and that it takes

under these conditions longer to exchange half of the bleached

SEP-GluR2 population (which is double in corticosterone-treated

cells compared to control neurons). The absence of a detectable

immobile fraction of SEP-GluR2 following corticosterone treat-

ment suggests that corticosterone effectively removes the diffusion

barrier that normally limits AMPAR entry and egress between the

spine and shaft membrane compartments.

The physiological significance of the profound effects cortico-

sterone has on GluR2 lateral mobility is likely to be widespread

and dependent on the cellular and synaptic context. Under basal

conditions the corticosterone-invoked increase in freely mobile

GluR2 facilitates recruitment and leads to increased synaptic

efficacy. Furthermore, the extracellular N-terminal domain of

GluR2 can interact directly with the cell adhesion molecule N-

cadherin to promote the formation and growth of dendritic spines

[31,32]. Via these pathways corticosterone could potentially

facilitate learning and memory processes when corticosterone

levels are elevated in the context of the learning event [5,33]. In

addition, enhanced AMPAR levels 2–3 hours after corticosterone

may occlude LTP [5,10,34] and hinder learning processes after

exposure to stress [5].

Figure 3. FRAP of SEP–GluR2 in hippocampal neurons shows
that corticosterone treatment alters AMPAR lateral diffusion.
A) Images from experimental time course showing that photobleached
AMPARs on the surface of spine heads (in white circle) are exchanged
for fluorescent SEP-GluR2. B) Normalised FRAP curves from experiments
showed in A indicating that corticosterone treatment (30 nM) induces
fully recovery of fluorescence after photobleaching over the course of
13 min as bleached AMPARs are completely exchanged with un-
bleached AMPARs. C) Normalised pooled and averaged FRAP curves
from 10 spines from vehicle and corticosterone (30 nM) treated
hippocampal neurones. D) Histogram showing mean6SEM of SEP–
GluR2 mobile fractions in spine heads under vehicle and corticosterone
conditions. Note that SEP-GluR2 FRAP corresponding to AMPAR
exchange in spines is greatly enhanced by pre-incubation with 30 nM
corticosterone. *** p,0.0001 vs. control. E) Histogram showing
mean6SEM of half time of SEP–GluR2 fluorescence recovery in spine
heads under vehicle and corticosterone conditions. ** p,0.001 vs.
control.
doi:10.1371/journal.pone.0004714.g003
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Further, our data also indicate that corticosterone facilitates

NMDAR-invoked endocytosis of both synaptic and extra-synaptic

SEP-GluR2. Thus, under these circumstances GR activation will

reduce synaptic AMPAR content leading to decreased synaptic

efficiency [10].

Thus, depending on the synaptic context corticosterone can

facilitate and reduce synaptic efficacy. This suggests that in stressed

situations corticosterone can facilitate normal AMPAR trafficking

processes that may accentuate learning and memory processes.
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(punctate) and extrasynaptic (diffuse) AMPARs induced by activation of NMDARs in control hippocampal neurons. Scale bar, 20 mm. B) Rapid
endocytosis of synaptic (punctate) and extrasynaptic (diffuse) AMPARs induced by activation of NMDARs in corticosterone-treated hippocampal
neurons. Scale bar, 20 mm. C) Binned and averaged fluorescence values from punctate (red) and diffuse (blue) regions during and after NMDAR
stimulation in control treated cells. Data reflect error bars show6SEM (4 cells for each condition with 14 punctate and 17 diffuse regions). D) Binned
and averaged fluorescence values from punctate (red) and diffuse (blue) regions during and after NMDAR stimulation in corticosterone treated cells.
Data reflect error bars show6SEM (4 cells for each condition with 14 punctate and 17 diffuse regions).
doi:10.1371/journal.pone.0004714.g004

Figure 5. AP-2 levels in primary hippocampal neurons treated
with corticosterone. Hippocampal neurons (DIV 22) were treated
with vehicle (lane 1–4) or 100 nM corticosterone (lane 5–8) for 3 h and
harvested directly in sample buffer. The immunoblots were probed with
two different anti-AP-2 (from Sigma and BD biosciences), anti-a-tubulin
and anti-pan-actin antibodies. The positions of molecular weight
standards (kDa) are indicated at left. No difference in AP-2 expression
levels between control and corticosterone treated neurons is observed.
doi:10.1371/journal.pone.0004714.g005
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