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Abstract: Euphorbiasteroid, a lathyrane-type diterpene from Euphorbiae semen (the seeds of Euphorbia
lathyris L.), has been shown to have a variety of pharmacological effects such as anti-tumor and
anti-obesity. This study aims to investigate the metabolic profiles of euphorbiasteroid in rats and rat
liver microsomes (RLMs) and Cunninghamella elegans bio-110930 by integrating ultra-performance
liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS), UNIFI
software, and NMR techniques. A total of 31 metabolites were identified in rats. Twelve metabolites
(M1–M5, M8, M12–M13, M16, M24–M25, and M29) were matched to the metabolites obtained by
RLMs incubation and the microbial transformation of C. elegans bio-110930 and their structures were
exactly determined through analysis of NMR spectroscopic data. In addition, the metabolic pathways
of euphorbiasteroid were then clarified, mainly including hydroxylation, hydrolysis, oxygenation,
sulfonation, and glycosylation. Finally, three metabolites, M3 (20-hydroxyl euphorbiasteroid), M24
(epoxylathyrol) and M25 (15-deacetyl euphorbiasteroid), showed significant cytotoxicity against four
human cell lines with IC50 values from 3.60 µM to 40.74 µM. This is the first systematic investigation
into the in vivo metabolic pathways of euphorbiasteroid and the cytotoxicity of its metabolites, which
will be beneficial for better predicting the metabolism profile of euphorbiasteroid in humans and
understanding its possible toxic material basis.

Keywords: euphorbiasteroid; metabolic pathway in vivo; UPLC-Q/TOF-MS; Cunninghamella elegans;
microbial biotransformation

1. Introduction

Euphorbiae semen, known as “Qian-Jin-Zi” in China, is the dried and ripe seeds of
Euphorbia lathyris L. According to the 2020 edition of the Chinese Pharmacopoeia, Euphorbiae
semen could be clinically used either alone or in combination with other herbal medicines as
remedies for reducing water and phlegm retention, promoting blood circulation, removing
blood stasis, curing tinea and scabies, and treating amenorrhea, snakebites, terminal
schistosomiasis, anuria, and constipation. It is worth noting that Euphorbiae semen was
listed as one of the 28 toxic Chinese herbal medicines in the Chinese Pharmacopoeia [1]. It
has been proven to exhibit a strong stimulating effect on the gastrointestinal tract, and its
intensity is three times that of croton oil. The main toxic components of Euphorbiae semen
are diterpenoids, identified by means of fractionation. Euphorbiasteroid (M0, Figure 1),
a natural lathyrane-type diterpenoid, was deemed as one of the intestinal tract stimulant
constituents to induce diarrhea [2]. Moreover, euphorbiasteroid has the potential to reverse
resistance to anticancer drugs in MES-SA/Dx5 cells [3], and also exhibits anti-obesity [4],
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and anti-tumor activities [5], meaning that it has broad biomedical research prospects.
Previous studies have shown that euphorbiasteroid is one of the main toxic and active
components of Euphorbiae semen, and has also been used as a quantitative index for quality
control in Chinese pharmacopoeia [6]. However, there is still a lack of research on the
metabolism of diterpenoids in euphorbiasteroid, which brings difficulties to the clinically
safe use of this toxic Chinese medicine. Thus, in order to further understand the toxic and
active mechanisms of euphorbiasteroid, a systematic study of its metabolic profiles is of
great significance.
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The in-depth study of drug metabolism can clarify the metabolic pathways as well as
the toxic and active mechanisms of drugs so as to ensure their safety and lay a theoretical
foundation for clinical application and toxic and side effect detection [7]. Therefore, it is of
great significance and value to establish a sensitive and reliable analytical method for the
identification of drug metabolites. Liquid chromatography (LC) is one of the main meth-
ods used to analyze active pharmaceutical ingredients (APIs) in American and European
Pharmacopoeia, and has been combined with a variety of detectors, such as fluorescence
detectors, electrochemical detectors or flame photometric detectors. However, these detec-
tors cannot clearly identify compounds separated by LC. In contrast, high performance
liquid chromatography-mass spectrometry (HPLC-MS), with liquid chromatography as
the separation system and mass spectrometry as the detection system, combines the high
separation capability of HPLC for complex samples with the high selectivity and sensitivity
of mass spectrometry and its ability to provide relative molecular mass and structural
information, perfectly compensating for this deficiency [8,9]. Especially, ultra-performance
liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS)
combined with the computer-aided identification platform Waters UNIFI, has become a
powerful analytical tool, which has the advantages of accurate mass measurement, efficient
separation technology, and rapid identification of metabolites, and has been widely applied
in the metabolism research of traditional Chinese medicine in recent years [10]. How-
ever, the main disadvantage of mass spectrometry analysis is that the molecular weight
of structural characterization depends on the collision-induced dissociation of protonated
molecular ions of target compounds, so it cannot provide accurate metabolite structure in
most cases [11]. Nuclear magnetic resonance (NMR) is a complementary analytical method,
which can characterize metabolites in more detail. The advantages of the combination of
UPLC-Q/TOF-MS and NMR have been verified in several reports in recent years [12–14].
However, the sensitivity of NMR is not as good as that of mass spectrometry, and the
presence of impurities in the sample has great influence on NMR signal. Therefore, it
is necessary to separate the analyte from the impurity well and obtain enough quantity
for structural identification by NMR. Generally, supplementary methods can be used to
obtain a sufficient sample amount of metabolites, including chemical methods [11] and
small experimental animal models [15], microsomal preparations [16,17], enzyme-catalyzed
reactions [18,19], microbial transformation [11,20] and so on. Compared with other meth-
ods, microbial transformation is more convenient and economical, especially with the
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advantages of in vitro large-scale preparation [20–24]. In particular, the filamentous zygote
fungus C. elegans has been shown to possess a human-like cytochrome P450 monooxy-
genase system, including the CYP509A1 isoenzyme that is similar to the CYP51 family,
thus producing similar metabolic profiles to mammalian animals [25,26].Sufficient sam-
ples for structural characterization based on NMR techniques as well as the evaluation of
bioactivity and toxicity can thus be acquired. Therefore, a combination of in vivo animal
experiments and in vitro microbial transformation will contribute to accurately elucidating
the structures of metabolites.

The current work aimed to identify the metabolites of euphorbiasteroid in rats and
in vitro models (RLMs and C. elegans bio-110930), by using UPLC-Q/TOF-MS and the
UNIFI platform as well as NMR technique, and to rationalize the elimination mechanism of
euphorbiasteroid, in which the biotransformation based on the fungus C. elegans bio-110930
and chemical hydrolysis were applied to prepare the samples of potential metabolites. This
method has been used in the previous research of our research group and is reasonable [27].
Finally, a total of 31 metabolites in vivo, including four phase II metabolites, were detected
and identified. Additionally, the structures of 12 metabolites were accurately characterized
and confirmed by structural elucidation based on NMR technique and by comparing the
chromatography retention times and mass spectra with those of standard compounds from
the biotransformation products of C. elegans bio-110930. Then, the metabolic pathway of
euphorbiasteroid in rats was rationally elucidated on the basis of the study of metabolism
in vivo and in vitro. The cytotoxic assay showed that three metabolites of euphorbiasteroid
(M3, M24-M25) have cytotoxicity on four strains of human cells (SH-SY5Y, LO2, AC-16,
and HK-2) with the IC50 values from 3.60 µM to 40.74 µM, while euphorbiasteroid did not
show cytotoxicity on the same cell lines (IC50 > 50 µM). Therefore, our research findings
will provide new insights into the metabolism mechanism of euphorbiasteroid and the
possible toxicity of the metabolites, be beneficial for understanding the in vivo elimination
process of euphorbiasteroid, and provide data support and reference for safe, reasonable
and controllable clinical application of Euphorbiae semen.

2. Materials and Methods
2.1. Chemicals and Reagents

Euphorbiasteroid was purchased from Chengdu Herbpurify Co., Ltd. (Chengdu,
China). Soybean oil was bought from Ron Pharm (Shanghai) Co., Limited. Sabouraud
dextrose broth was procured from Qingdao Hope Bio-Technology Co., Ltd. (cat no. HB0233,
Qingdao, China). Sabouraud dextrose agar was obtained from Solarbio (cat no. P9240,
Beijing, China). The fungal strain, Cunninghamella elegans (bio-110930), was purchased
from the Beijing baioubowei Biotechnology Co., Ltd. (Beijing, China). Pooled rat liver
microsomes (RLM), Gentest TM NADPH regenerating system solution A (26.1 mM β-
nicotinamide adenine dinucleotide phosphate (NADP+), 66 mM D-glucose-6-phosphate
(Glc-6-P), 66 mM magnesium chloride (MgCl2) in water and solution B (40 U/mL Glc-6-P
dehydrogenase (Glc-6-P-DH) in sodium citrate (0.05 mM)), and 0.1 M PBS buffer were
purchased from IPHASE Biosciences (Beijing, China). Column chromatography (CC) was
performed using Sephadex LH-20 gel (GE Medical Systems Ltd., Buckinghamshire, UK).
Ethyl acetate and acetone were analytical grade from Shenyang Chemical Reagent Co., Ltd.
(Shenyang, China). LC-MS-grade acetonitrile, methanol and formic acid were purchased
from Fisher-Scientific (Fair Lawn, NJ, USA) and were used in the mobile phase and sample
preparation. LC-MS-grade leucine enkephalin was obtained from Sigma-Aldrich (St. Louis,
MO, USA). Ultra-pure water was purified by a Milli-Q system (Millipore, Bedford, MA,
USA). All other reagents were of analytical reagent grade. SH-SY5Y neuroblastoma cells,
LO2 cells, AC-16 cells, and HK-2 cells were purchased from Shanghai Institute of Biochem-
istry and Cell Biology, Chinese Academy of Sciences (Shanghai, China). CCK-8 assay kit
was obtained from Beyotime Biotechnology (Shanghai, China). 6 cm/10 cm Petri dishes
and 96-well plates were obtained from Corning Incorporated (Corning, NY, USA).
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2.2. Instrumentation and Analysis Conditions

For metabolite separation and detection, chromatographic analyses were performed
using a Waters Acquity UPLC I-class system (Waters, Milford, MA, USA), equipped with an
auto-sampler, a binary solvent delivery system, an online degasser, and a photodiode array
detector. An ACQUITY UPLC® HSS T3 column (2.1 × 150 mm, 1.8 µm, Waters) protected
with a HSS T3 VanGuard ™ Pre-Column 3/Pk (2.1 × 5.0 mm, 1.8 µm, Waters) was used.
The optimized parameters were set as follows: the mobile phase consisted of eluent A (0.1%
formic acid in water, v/v) and eluent B (acetonitrile). The flow rate was 0.3 mL/min. The
column and auto-sampler temperatures were maintained at 40 ◦C and 4 ◦C, respectively.
The gradient elution program was optimized as follows: 0–9 min, 30–70% B; 9–13 min,
70–90% B; 13–17 min, 90–100% B; 17–20 min, 100–100% B.

The mass spectrometry detection was performed on the SYNAPT G2-Si HDMS system,
equipped with an electrospray ionization (ESI) source (Waters Corp., Manchester, UK).
A positive ion mode was conducted in this analysis. Mass spectrometry conditions were
finally set as follows: capillary voltage of 3.0 kV, cone voltage of 40 V, source temperature
of 120 ◦C, and de-solvation temperature of 400 ◦C. Nitrogen was used as the desolvation
and cone gas with a flow rate of 800 and 50 L/h, respectively, and the full-scan mass range
was set as m/z 50–1500 Da. In the auto mass spectrometry mode, the collision-induced
dissociation energies were set at 0 eV for the precursor ion at the low-energy mode, and the
collision-induced dissociation energies were set from 2 to 10 eV for the high-energy mode.
Real-time data were calibrated using an external reference (LockSpray™) at a concentration
of 0.2 ng/mL with an infusion flow rate of 5 µL/min, generating a reference ion for the
positive ion mode (m/z 556.2771) during the UPLC-MS analysis. Data were acquired and
processed using MassLynx ™ NT 4.1 software (Waters, Milford, MA, USA).

Accurate molecular weights of some metabolites were acquired using an Agilent
6520 Accurate Mass quadrupole time-of-flight mass spectrometer (Q-TOF MS; Agilent
Technologies, Santa Clara, CA, USA). The capillary voltage of the ion source was set at
3.0 kV in positive ion mode. Nitrogen was used as the de-solvation and nebulizing gas at a
constant temperature of 350 ◦C. The scan range was set at m/z 100–1500 Da.

The isolation and purification of metabolites were achieved using an Agilent 1200 series
Semi-preparative High Performance Liquid Chromatography (HPLC) system (Palo Alto,
CA, USA) consisting of a G1311A quat pump solvent delivery system, a G1379A degasser
unit, a G1313A autosampler, and a G1315B DAD detector. The preparation was performed
with a Zorbax SB-C18 (5 µm, 9.4 mm × 25 cm) column (Agilent Technologies, Santa Clara,
CA, USA). The wavelength was set at 280 nm.

Nuclear magnetic resonance (NMR) spectra of euphorbiasteroid and metabolites were
measured on Bruker AV-500 spectrometers (Faellanden, Switzerland) using tetramethylsi-
lane as an internal standard.

2.3. Animal and Drug Administration

Male Sprague-Dawley rats (200–220 g) were commercially supplied by Shanghai
Sippr-BK Laboratory Animal Co., Ltd. (Shanghai, China) and were housed in a humidity-
and temperature-controlled room (50 ± 10% and 22–24 ◦C) with a 12-h light/dark cycle.
The experimental rats were allowed to access food and water ad libitum and acclima-
tized to the conditions mentioned above for a week, then fasted overnight but with free
access to water before the experiments. Euphorbiasteroid was dissolved in soybean oil
solution (containing 0.5% ethanol) to form a concentration of 10 mg/mL. A single dose of
100 mg/kg euphorbiasteroid was orally administered to rats and the same concentration
of soybean oil solution (containing 0.5% ethanol) was administered as a blank control. All
animal procedures were performed in accordance with the Guidelines for Care and Use
of Laboratory Animals of Naval Medical University and approved by the Animal Ethics
Committee of Naval Medical University.
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2.4. Sample Collection of Blood, Urine, and Feces

Blood samples (0.5 mL) were collected from six rats through the orbital sinus before
administration (blank sample) and 0.25, 0.5, 1, 2, 4, 6, and 12 h after administration. Plasma
samples were prepared by centrifugation at 4000 rpm for 10 min. For urine and feces
sampling, 12 rats were divided into an administration group and a blank group, and were
placed separately in stainless steel metabolic cages. Urine and feces samples were collected
in containers surrounded by ice over 0–6, 6–12, and 12–24 h after drug administration.
The mixed urine samples were centrifuged at 4000 rpm for 10 min at 4 ◦C to obtain the
supernatants, and fecal samples were left in a cool and dry place until dry. All the biological
samples were frozen at −80 ◦C before analysis.

2.5. Preparation of Blood, Urine, and Feces Samples

An aliquot of 200 µL of plasma and urine samples was put in a 1.5 mL tube, respectively.
800 µL of acetonitrile was added and vortexed for 5 min to extract metabolites. Feces
samples (1.0 g) were crushed and then ultrasonically extracted with acetonitrile (10 mL)
for 30 min. All the above-mentioned mixtures were centrifuged at 13,000 rpm at 4 ◦C
for 10 min. The supernatants were then transferred and evaporated to dryness under a
nitrogen stream at 30 ◦C. The residues were dissolved in 100 µL of methanol and then
centrifuged at 13,000 rpm at 4 ◦C for 10 min. All supernatants were injected into the
UPLC-Q/TOF-MS system for analysis.

2.6. In Vitro Incubation of Euphorbiasteroid with Rat Liver Microsomes

The microsomal incubation approach was based on previous metabolism studies
published by Wintermeyer et al. [28] and Franziska et al. [17]. A 200 µL incubation system
containing 10 µL of solution A, 2 µL of solution B, 5 µL of rat liver microsomes (20 mg/mL)
and 182 µL 0.1 M PBS buffer (pH = 7.4) was constructed. The above solution was heated in
a 37 ◦C water bath, then 1 µL of euphorbiasteroid (dissolved in DMSO solution, 10 mM)
was used to start the reaction, and the mixture was then incubated at 37 ◦C for 1 h. The
reactions were terminated by the addition of 200 µL of ice-cold acetonitrile. The mixture
was then centrifuged at 13,000 rpm for 10 min, and a 2-µL aliquot of the supernatant was
directly injected into the UPLC-Q-TOF-MS system.

2.7. Microbial Transformation of Euphorbiasteroid

The biotransformation process was conducted at two scales: preliminary screening and
preparative. Preliminary screening scale biotransformation of euphorbiasteroid was carried
out in 250 mL Erlenmeyer flasks containing 100 mL of liquid medium. The flasks were
placed on a rotary shaker (160 rpm, 28 ◦C). A standard two-stage fermentation protocol
was employed in all experiments [29,30]. After 2 days of pre-culture, the substrates of
5 mg (dissolved in 0.5 mL of acetone) were added into each flask. Taking 1 mL samples on
days 0, 2, 4, 7, 10, and 14, samples were centrifuged and the degree of transformation was
compared to controls on TLC and HPLC, and a 2-µL aliquot of the supernatant was directly
injected into the UPLC-Q-TOF-MS system. Culture controls consisted of sterile medium, in
which microorganisms were grown under identical conditions without substrate. Substrate
controls were composed of sterile medium and the same amount of substrate incubated
under the same conditions without microorganisms.

2.8. Preparation of the Transformation Products of Euphorbiasteroid

The preparative scale biotransformation of euphorbiasteroid was carried out in
50 1000 mL Erlenmeyer flasks, each containing 400 mL of sterilized potato medium. The
flasks were placed on a rotary shaker operating at 160 rpm at 28 ◦C. After 48 h of pre-culture,
20 mg of substrates in 2 mL of acetone were added to each flask. After 12 days of incubation,
the culture was pooled and filtered. The filtrate was extracted three times with an equal
volume of EtOAc and concentrated under reduced pressure to dryness.
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The crude extract (3.58 g) was partitioned by MPLC column chromatography (CC)
eluted with gradient MeOH/H2O (100% H2O, 25 mL/min, 3 h; 30% MeOH, 25 mL/min,
3 h; 50–70% MeOH, 25 mL/min, 3 h; 70–100% MeOH, 25 mL/min, 3 h) into 6 fractions (Fr.
A-Fr. F). On the basis of TLC and HPLC analysis as well as comparing the LC-MS/MS data
with those of the metabolites in rats, the metabolites of euphorbiasteroid were detected
in Fr. B-Fr. E. Then, Fr. B (285.9 mg) was separated by Sephadex LH-20 CC (3 × 150 cm)
with MeOH/H2O (30%) as eluent to give the fractions Fr. B1-Fr. B4. Next, Fr. B2 (64.5 mg)
was purified by semi-preparative HPLC on a Zorbax SB-C18 semi-preparative column
with the mobile phase consisting of methanol and 0.1% formic acid water (42:58, v/v) to
obtain compound 9 (4.7 mg, tR = 24.5 min). Fr. C (56.2 mg) was applied to Sephadex LH-20
CC (3 × 150 cm) eluting with MeOH/H2O (50%) to yield Fr. C1-Fr. C3. Then, Fr. C2
(10.2 mg) was further separated using semi-preparative HPLC (50% MeOH in water, v/v,
2.0 mL/min) to give compound 6 (2.9 mg, tR = 51.5 min). Fr. D (78.9 mg) was purified by
Sephadex LH-20 CC (3 × 150 cm) eluting with MeOH/H2O (50%) to afford four fractions
(Fr. D1-Fr. D4). Then, Fr. D2 (40.4 mg) was further separated using semi-preparative HPLC
(35% CH3CN in water, v/v, 2.0 mL/min) to give compounds 2 (1.7 mg, tR = 58.6 min) and 5
(3.6 mg, tR = 62.3 min). Fr. E (345.0 mg) was subjected to Sephadex LH-20 CC (3 × 150 cm)
eluting with MeOH/H2O (50%) to provide five fractions (Fr. E1- Fr. E5). Then, Fr. E2
(30.3 mg) was submitted to semi-preparative HPLC eluting with MeOH-H2O (60:40, v/v,
2.0 mL/min) to yield compound 12 (10.6 mg, tR = 31.5 min). Fr. E3 (38.5 mg) was purified
by semi-preparative HPLC eluting with MeOH-H2O (65:35, v/v, 2.0 mL/min) to obtain
compounds 1 (7.1 mg, tR = 19.2 min), 4 (2.5 mg, tR = 30.5 min), and 3 (2.0 mg, tR = 37.0 min).
Compounds 7 (1.7 mg, tR = 26.5 min) and 8 (4.3 mg, tR = 38.5 min) were acquired by
semi-preparative HPLC (MeOH/H2O, 65%, 2 mL/min) from Fr. E4 (19.2 mg).

Compounds 10 and 11 were obtained by the hydrolysis of euphorbiasteroid. 210 mg
of euphorbiasteroid was dissolved in 45 mL of MeOH, and 3 mL of 1.54 mol/L KHCO3
aqueous solution was added dropwise to this solvent with stirring. The mixture was
stirred and hydrolyzed at 30 ◦C. After 5 days, methanol was removed by evaporation
under vacuum, and the remaining solution was then extracted three times with 200 mL of
solution (ethyl acetate: water = 1:1). The combined organic layer was evaporated under
a vacuum. The ethyl acetate extract (184.5 mg) was re-dissolved in 10 mL of methanol,
followed by Sephadex LH-20 CC (3 × 150 cm) eluting with MeOH/H2O (50%) to afford
four fractions (Fr. 1-Fr. 5). Fr. 2 was further purified using semi-preparative HPLC (50%
MeOH in water, v/v, 2.0 mL/min) to afford compounds 10 (44.6 mg, tR = 5.5 min) and 11
(45.7 mg, tR = 19.5 min).

2.9. Cell Culture and Cell Cytotoxicity Assay

Cell cytotoxicity was determined by the CCK-8 assay. Four strains of human cells
(SH-SY5Y) were seeded in 96-well plates at a density of 3 × 103 cells/well under 37 ◦C
and 5% CO2 for 12 h and subsequently treated with the test sample solution (euphorbias-
teroid and its metabolites, 10 µL) for 72 h. After treatment, each well with 10 µL CCK-8
reagent was incubated for 1–2 h in the incubator. Afterwards, the optical OD-value was
measured at 450 nm through a microplate reader. Three multiple wells were set as parallel
experimental groups.

3. Results and Discussion
3.1. Mass Fragmentation Behavior Analyses of Euphorbiasteroid

In order to obtain the overall fragmentation profile of euphorbiasteroid, the standard
solution of euphorbiasteroid was analyzed by UPLC-Q/TOF-MS, which is helpful to better
understand the MS/MS spectrum of its metabolites. The parent drug euphorbiasteroid had
a protonated molecular ion [M + H]+ at m/z 553.2809 with a retention time of 12.67 min.
In the MS/MS spectrum, it had the characteristic and most abundant fragment ion at
m/z 297.1850, derived from the loss of two CH3COOH and one C6H5CH2COOH neu-
tral molecules, which was further fragmented to form ion peaks at m/z 279.1746, m/z
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269.1898, and m/z 251.1794 via loss of H2O, CO, and CO + H2O, respectively. Moreover,
the fragment ions at m/z 493.2587 and m/z 417.2276 were produced by losing CH3COOH
and C6H5CH2COOH from the ion at m/z 553.2794, respectively, which further yielded
the fragment ions at m/z 433.2371 ([M + H-2CH3COOH]+) and m/z 357.2062 ([M + H-
CH3COOH-C6H5CH2COOH]+). In addition, the fragment ion at m/z 315.1953 resulted
from the ions at m/z 433.2371 and m/z 357.2062 by loss of C6H4CH2CO and CH2CO, respec-
tively, which further lost a water to form ion at m/z 297.1850. Therefore, CH3COOH (m/z
493.2587), C6H5CH2COOH (m/z 417.2276), CH3COOH + C6H5CH2COOH (m/z 433.2371)
and 2 CH3COOH + C6H5CH2COOH (m/z 279.1746) were the characteristic product ions of
euphorbiasteroid. Mass spectra and the fragmentation scheme for euphorbiasteroid were
shown in Figure 2. The 1H NMR and 13C NMR spectral data of euphorbiasteroid are listed
in Tables 1–3, with the carbon position labeled as shown in Figure 1.
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3.2. Identification of Metabolites of Euphorbiasteroid In Vitro and In Vivo

First, the metabolites of euphorbiasteroid in rats (plasma, urine, and feces), RLMs,
and C. elegans culture medium were predicted by setting the prototype components and
potential biological metabolic reactions in UNIFI 4.1 software. Then, the predicted metabo-
lites in each sample were further compared according to the characteristic mass spectrum
behaviors (including parent ions, internal cleavage in the ion source, and characteristic
fragment ions of each metabolite) and retention times. A total of 31 metabolites identified
in vitro and in vivo are listed in Table 4. The retention times, precursor molecular ions, and
key fragments of euphorbiasteroid and its metabolites are listed in Table 4. The extracted
ion chromatograms and product ion spectra of metabolites are shown in Figures 3 and 4.
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Table 1. The 1H NMR data for euphorbiasteroid and its transformation products (1–6).

Position M0 a 1 a 2 a 3 a 4 a 5 a 6 b

1a 3.32 (dd, 8.15, 13.68) 3.29 (dd, 8.29, 14.22) 3.32 (dd, 8.38, 14.26) 3.30 (dd, 8.67, 14,43) 3.19 (dd, 8.25, 14.37) 3.35 (dd, 8.25, 14.28) 3.20 (dd, 8.16, 12.94)
1b 1.35 (dd, 12.01, 13.68) 1.34 (dd, 12.42, 14.22) 1.37 (dd, 12.22, 14.26) 1.36 (dd, 12.80, 14.43) 1.04 (dd, 12.60, 14.37) 1.42 (dd, 12.26, 14.28) 1.41 (t, 12.94)
2 2.08 (m) 2.06 (overlap) 2.07 (m) 2.07 (m) 2.01 (m) 2.10 (overlap) 2.05 (overlap)
3 5.48 (brt., 3.32) 5.47 (brt., 3.15) 5.47 (brt., 3.05) 5.50 (s) 5.49 (brt., 2.84) 5.50 (brt, 3.03) 5.37 (brt, 2.95)
4 1.86 (dd, 3.32, 9.28) 1.85 (dd, 3.20, 9.35) 1.86 (dd, 3.05, 9.30) 1.92 (d, 9.66) 1.84 (dd, 2.84, 9.11) 1.88 (dd, 3.03, 9.17) 1.83 (dd, 2.95, 9.02)
5 6.24 (d, 9.28) 6.23 (d, 9.23) 6.23 (d, 9.30) 6.25 (d, 9.66) 6.28 (d, 9.11) 6.25 (d, 9.17) 6.29 (d, 9.02)

7a 1.87 (m) 2.14 (m) 2.12 (m) 2.14 (m) 2.12 (overlap) 2.10 (overlap) 2.10 (m)
7b 0.92 (m) 0.94 (t, 13.16) 0.93 (m) 0.98 (m) 0.94 (m) 0.93 (m) 0.97 (t, 13.93)
8a 2.10 (m) 2.06 (overlap) 2.07 (m) 2.12 (overlap) 2.09 (m) 2.07 (m) 2.00 (m)
8b 1.72 (m) 1.77 (m) 1.72 (m) 1.75 (m) 1.72 (m) 1.68 (m) 1.80 (m)
9 1.09 (m) 1.21 (m) 1.09 (ddd, 3.78, 8.08, 12.07) 1.21 (overlap) 1.09 (m) 1.09 (m) 1.33 (m)

11 1.48 (dd, 8.11, 11.34) 1.65 (dd, 8.39, 11.13) 1.48 (dd, 8.08, 11.35) 1.71 (m) 1.48 (dd, 8.20, 11.42) 1.47 (dd, 8.10, 11.39) 1.78 (overalp)
12 6.59 (d, 11.34) 6.59 (d, 11.23) 6.59 (dd, 1.05, 11.35) 6.71 (d, 12.41) 6.59 (dd, 1.05, 11.30) 6.59 (d, 11.39) 6.69 (d, 11.28)
16 0.66 (d, 6.63) 0.65 (d, 6.65) 0.67 (d, 6.66) 0.67 (d, 6.63) 0.33 (d, 6.70) 0.69 (d, 6.69) 0.76 (d, 6.72)
17a 2.48 (d, 3.37) 2.49 (d, 3.35) 2.49 (d, 3.40) 2.62 (s) 2.50 (d, 3.24) 2.50 (d, 3.24) 2.56 (d, 3.54)
17b 2.30 (brt., 3.37) 2.29 (brt., 3.35) 2.31 (brt., 3.40) 2.50 (s) 2.28 (brt., 3.24) 2.21 (brt., 3.24) 2.20 (t, 3.54)
18a 1.20 (s) 3.52 (d, 11.25) 1.20 (s) 1.21 (s) 1.21 (s) 1.20 (s) 3.48 (d, 11.25)
18b 3.44 (d, 11.25) 3.38 (d, 11.25)
19 1.21 (s) 1.27 (s) 1.21 (s) 1.22 (s) 1.22 (s) 1.21 (s) 1.27 (s)
20a 1.84 (s) 1.84 (s) 1.84 (brd, 0.81) 4.42 (d, 12.38) 1.83 (d, 1.04) 1.84 (s) 1.79 (d, 0.93)
20b 4.28 (d, 12.38)

3-O-phenylacetyl
2′ 7.25 (overlap) 7.25 (overlap) 7.13 (d, 7.92) 7.27 (overlap) 7.37 (m)
3′ 7.30 (m) 7.29 (td, 1.21, 7.19) 6.76 (d, 7.92) 7.31 (t, 7.26) 7.32 (overlap) 6.90 (overlap) 6.86 (dd, 0.96, 7.35)
4′ 7.27 (t, 7.76) 7.24 (m) 7.26 (overlap) 7.30 (overlap) 7.18 (t, 7.45) 7.08 (t, 7.35)
5′ 7.30 (m) 7.29 (td, 1.21, 7.19) 6.76 (d, 7.92) 7.31 (t, 7.26) 7.32 (overlap) 6.88 (overlap) 6.78 (t, 7.35)
6′ 7.25 (overlap) 7.25 (overlap) 7.13 (d, 7.92) 7.27 (overlap) 7.37 (m) 7.11 (dd, 1.45, 7.45) 7.18 (d, 7.35)

7′a 3.58 (2H, d, 3.21) 3.56 (2H, 2.71) 3.50 (2H, d, 3.57) 3.58 (2H, s) 5.10 (2H, s) 3.70 (d, 15.10) 3.65 (d, 15.64)
7′b 3.55 (d, 15.10) 3.55 (d, 15.64)
8′

5-OAc
C=O
CH3 2.02 (s) 2.00 (s) 2.01 (s) 2.03 (s) 2.12 (s) 1.94 (s) 2.06 (s)

15-OAc
C=O
CH3 2.12 (s) 2.12 (s) 2.13 (s) 2.12 (s) 2.19 (s) 2.17 (s) 2.08 (s)

a Measured at 500 MHz in CDCl3. b Measured at 500 MHz in CD3OD.
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Table 2. The 1H NMR data for euphorbiasteroid and its transformation products (7–12).

Position M0 a 7 a 8 a 9 a 10 a 11 a 12 a

1a 3.32 (dd, 8.15, 13.68) 3.40 (dd, 8.21, 14.17) 3.39 (dd, 8.03, 13.95) 3.30 (dd, 8.24,14.25) 3.00 (dd, 9.58, 13.84) 3.15 (dd, 9.37, 14.18) 3.21 (dd, 7.65, 13.47)
1b 1.35 (dd, 12.01, 13.68) 1.52 (dd, 12.25, 14.17) 1.50 (dd, 12.69, 13.95) 1.36 (dd, 12.35, 14.25) 2.26 (dd, 6.08, 13.84) 0.91 (dd, 11.72, 14.18) 1.16 (overlap)
2 2.08 (m) 2.16 (m) 2.16 (m) 2.08 (m) 2.04 (m) 2.04 (m) 1.96 (m)
3 5.48 (brt., 3.32) 5.51 (brt., 3.08) 5.53 (brs.) 5.49 (brt., 2.80) 4.25 (brs) 5.46 (s) 5.37 (s)
4 1.86 (dd, 3.32, 9.28) 1.89 (dd, 3.08, 9.06) 1.89 (m) 1.87 (overlap) 1.28 (brs) 1.76 (dd, 2.84, 9.91) 1.79 (overlap)
5 6.24 (d, 9.28) 6.22 (d, 9.06) 6.24 (d, 8.82) 6.22 (d, 9.10) 4.39 (brs) 5.92 (d, 9.91) 6.21 (d, 8.90)

7a 1.87 (m) 2.08 (m) 2.08 (m) 2.17 (m) 2.04 (m) 2.12 (dd, 6.42, 13.12) 2.08 (overlap)
7b 0.92 (m) 0.92 (t, 13.69) 0.93 (t, 12.07) 1.01 (t, 13.36) 1.05 (m) 0.87 (m) 0.90 (m)
8a 2.10 (m) 2.04 (m) 2.05 (m) 2.11 (m) 1.77 (m) 2.08 (overlap) 2.08 (overlap)
8b 1.72 (m) 1.73 (m) 1.71 (m) 1.77 (m) 1.67 (dd, 10.35,13.80) 1.69 (m) 1.69 (m)
9 1.09 (m) 1.08 (m) 1.08 (m) 1.90 (overlap) 1.16 (m) 1.09 (m) 1.07 (brt., 8.28)

11 1.48 (dd, 8.11, 11.34) 1.48 (dd,8.07, 11.30) 1.48 (dd,8.37, 11.17) 2.44 (dd, 9.04, 11.20) 1.42 (dd, 8.48, 11.02) 1.48 (dd, 8.21, 11.60) 1.46 (dd, 8.28, 11.11)
12 6.59 (d, 11.34) 6.60 (d, 11.03) 6.60 (d, 11.17) 6.47 (d, 11.20) 6.68 (d, 8.48) 7.32 (overlap) 6.56 (d, 11.11)
16 0.66 (d, 6.63) 0.87 (d, 6.72) 0.85 (d, 6.39) 0.67 (d, 6.58) 1.11 (d, 6.84) 0.81 (d, 6.69) 0.42 (d, 6.46)
17a 2.48 (d, 3.37) 2.48 (d, 3.46) 2.49 (d, 3.33) 2.53 (d, 3.11) 2.64 (d, 3.79) 2.41 (d, 2.24) 2.46 (s)
17b 2.30 (brt., 3.37) 2.32 (brt, 3.46) 2.32 (brs) 2.29 (brt., 3.11) 2.59 (d, 3.79) 2.27 (s) 2.26 (s)
18 1.20 (s) 1.19 (s) 1.19 (s) 1.14 (s) 1.21 (s) 1.19 (s)
19 1.21 (s) 1.19 (s) 1.19 (s) 1.44 (s) 1.15 (s) 1.25 (s) 1.20 (s)
20 1.84 (s) 1.85 (s) 1.85 (s) 1.88 (s) 1.89 (s) 1.78 (s) 1.81 (s)

3-O-phenylacetyl
2′ 7.25 (overlap) 5.54 (brs) 5.66 (s) 7.27 (overlap) 7.32 (overlap)
3′ 7.30 (m) 7.54 (d, 10.30) 3.72 (brs) 7.31 (td, 0.83, 7.12) 7.36 (t, 7.35) 7.01 (d, 7.36)
4′ 7.27 (t, 7.76) 6.07 (dt, 1.81, 10.30) 4.25 (brd., 5.56) 7.26 (m) 7.28 (t, 7.21) 7.20 (t, 7.36)
5′ 7.30 (m) 4.26 (d, 7.49) 6.07 (m) 7.31 (td, 0.83, 7.12) 7.36 (t, 7.35) 6.92 (t, 7.36)
6′ 7.25 (overlap) 3.76 (m) 6.15 (d, 10.14) 7.27 (overlap) 7.32 (overlap) 7.12 (d, 7.36)

7′a 3.58 (2H, d, 3.21) 2.67 (m) 3.69 (m) 3.58 (2H, s) 3.67 (d, 16.65) 3.81 (d, 13.39)
7′b 2.54 (m) 2.55 (m) 7.27 (overlap) 3.64 (d, 16.65) 3.35 (d, 13.39)
8′

5-OAc
C=O
CH3 2.02 (s) 2.00 (s) 2.00 (s) 2.02 (s) 2.08 (s) 2.04 (s)
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Table 2. Cont.

Position M0 a 7 a 8 a 9 a 10 a 11 a 12 a

15-OAc
C=O
CH3 2.12 (s) 2.13 (s) 2.13 (s) 2.13 (s) 2.17 (s)

Glc
1′ ′ 4.81 (d, 6.77)
2′ ′ 3.69 (overlap)
3′ ′ 3.49 (m)
4′ ′ 3.69 (overlap)
5′ ′ 3.65 (m)

6′ ′a 3.89 (d, 13.27)
6′ ′b 3.85 (d, 13.27)

a Measured at 500 MHz in CDCl3.
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Table 3. The 13C NMR data for euphorbiasteroid and its transformation products (1–12).

Position M0 a 1 a 2 a 3 a 4 a 5 a 6 b 7 a 8 a 9 a 10 a 11 a 12 a

1 47.9(d) 47.8 (t) 47.9 (t) 47.3 (t) 47.5 (t) 47.7(t) 48.3 (t) 47.9 (t) 47.9 (t) 47.9 (t) 48.2 (t) 49.9 (t) 47.7 (t)
2 37.7 (s) 37.7 (d) 37.8 (d) 37.8 (d) 37.8 (d) 37.8 (d) 38.5 (d) 37.8 (d) 37.9 (d) 37.7 (d) 37.6 (d) 37.2 (d) 37.6 (d)
3 80.6(d) 80.6 (d) 80.6 (d) 80.6 (d) 82.6 (d) 81.5 (d) 80.9 (d) 79.8 (d) 79.8 (d) 80.6 (d) 78.9 (d) 82.8 (d) 81.0 (d)
4 49.9 (s) 49.9 (d) 49.9 (d) 49.9 (d) 49.7 (d) 49.7 (d) 50.6 (d) 49.9 (d) 49.7 (d) 50.0 (d) 53.4 (d) 51.6 (d) 49.7 (d)
5 65.2(d) 65.1 (d) 65.2 (d) 65.1 (d) 65.1 (d) 65.3 (d) 65.9 (d) 65.2 (d) 65.2 (d) 65.0 (d) 66.5 (d) 66.0 (d) 65.2 (d)
6 58.9 (s) 58.9 (s) 59.0 (s) 58.6 (s) 58.9 (s) 58.9 (s) 59.4 (s) 59.0 (s) 59.0 (s) 58.7 (s) 60.8 (s) 58.9 (s) 58.9 (s)
7 33.5(d) 33.4 (t) 33.5 (t) 33.4 (t) 33.4 (t) 33.5 (t) 34.1 (t) 33.5 (t) 33.4 (t) 32.9 (t) 32.1 (t) 33.9 (t) 33.4 (t)
8 20.0(d) 19.7 (t) 20.1 (t) 20.0 (t) 20.1 (t) 20.1 (t) 20.6 (t) 20.0 (t) 20.0 (t) 19.3 (t) 19.7 (t) 20.0 (t) 20.0 (t)
9 34.8 (s) 30.2 (d) 34.8 (d) 35.8 (d) 34.8 (d) 34.8 (d) 31.1 (d) 34.8 (d) 34.8 (d) 32.9 (d) 34.7 (d) 35.7 (d) 34.8 (d)
10 25.6 (s) 31.0 (s) 25.7 (s) 26.9 (s) 25.7 (s) 25.7 (s) 32.1 (s) 25.6 (s) 25.6 (s) 29.9 (s) 25.1 (s) 26.4 (s) 25.6 (s)
11 29.0 (d) 25.2 (d) 29.0 (d) 29.0 (d) 29.1 (d) 29.0 (d) 26.2 (d) 29.1 (d) 29.1 (d) 30.1 (d) 28.7 (d) 29.3 (d) 29.0 (d)
12 143.7 (t) 142.1(d) 143.8(d) 147.6(d) 143.8(d) 143.7(d) 144.1(d) 143.7(d) 143.7(d) 137.9(d) 144.6(d) 150.8(d) 143.7(d)
13 136.0(d) 136.7 (s) 136.0 (s) 138.4 (s) 136.0 (s) 136.0 (s) 136.7 (s) 136.0 (s) 135.9 (s) 139.0 (s) 136.2 (s) 135.1 (s) 135.9 (s)
14 196.9(d) 196.9 (s) 196.9(s) 198.4 (s) 196.6(s) 196.7(s) 197.3 (s) 196.9 (s) 196.8 (s) 197.2 (s) 202.8 (s) 199.3 (s) 197.3 (s)
15 91.7 (s) 91.7 (s) 91.8 (s) 91.5 (s) 91.5 (s) 91.6 (s) 92.2 (s) 91.8 (s) 91.7 (s) 91.7 (s) 88.4 (s) 88.7 (s) 91.6 (s)
16 13.5(q) 13.5 (q) 13.6 (q) 13.5 (q) 12.8 (q) 13.4 (q) 13.8 (q) 14.0 (q) 14.0 (q) 13.5 (q) 13.9 (q) 14.2 (q) 13.1 (q)
17 55.4 (t) 55.3 (t) 55.4 (t) 56.2 (t) 55.3 (t) 55.3 (t) 55.3 (t) 55.3 (t) 55.3 (t) 55.2 (t) 53.4 (t) 55.4 (t) 55.3 (t)
18 28.9(q) 71.2 (t)) 28.9 (q) 28.8 (q) 28.9 (q) 28.9 (q) 70.9 (t) 16.7 (q) 16.7 (q) 179.8 (s) 28.7 (q) 29.0 (q) 28.9 (q)
19 16.8(q) 12.5 (q) 16.8 (q) 16.7 (q) 16.8 (q) 16.8 (q) 12.9 (q) 28.9 (q) 28.9 (q) 10.4 (q) 15.8 (q) 16.3 (q) 16.7 (q)
20 12.3 (t) 12.4 (q) 12.4 (q) 58.1 (t) 12.3 (q) 12.4 (q) 12.5 (q) 12.4 (q) 12.4 (q) 12.5 (q) 13.0 (q) 12.2 (t) 12.3 (q)

3-O-phenylacetyl
1′ 133.8 (s) 133.7 (s) 125.8 (s) 133.7 (s) 138.4 (s) 120.3 (s) 121.1 (s) 150.2 (s) 151.0 (s) 133.6 (s) 133.8 (s) 123.1 (s)
2′ 129.4(d) 129.4(d) 130.6(d) 129.4(d) 126.5(d) 154.7 (s) 156.3 (s) 115.5(d) 117.6(d) 129.4 (s) 129.6(d) 155.3 (s)
3′ 128.5(d) 128.5(d) 115.4(d) 128.5(d) 128.4(d) 117.4(d) 115.8(d) 125.5(d) 72.3 (d) 128.5(d) 128.9(d) 114.5(d)
4′ 127.2(d) 127.2(d) 154.9 (s) 127.3(d) 128.7(d) 129.2(d) 129.1(d) 138.1(d) 72.2 (d) 127.3(d) 127.6(d) 129.2(d)
5′ 128.5(d) 128.5(d) 115.4(d) 128.5(d) 128.4(d) 120.9(d) 120.1(d) 73.5 (d) 137.1(d) 128.5(d) 128.9(d) 122.5(d)
6′ 129.4(d) 129.4(d) 130.6(d) 129.4(d) 126.5(d) 131.1(d) 132.3(d) 72.9 (d) 130.7(d) 129.4(d) 129.4(d) 131.2(d)
7′ 41.53 (t) 41.5 (t) 40.6 (t) 41.5 (t) 72.8 (d) 37.3 (t) 36.4 (t) 38.5 (t) 32.4 (t) 41.5 (t) 41.5 (t) 36.4 (t)
8′ 170.9(s) 170.9 (s) 171.3 (s) 170.9 (s) 173.7 (s) 172.1 (s) 171.7 (s) 165.8 (s) 165.8 (s) 170.9 (s) 169.9 (s) 172.0 (s)

5-OAc
C=O 170.8(s) 170.7 (s) 170.8 (s) 170.7 (s) 170.8 (s) 171.2 (s) 170.9 (s) 170.6 (s) 170.7 (s) 170.8 (s) 171.0 (s) 171.1 (s)
CH3 21.0(q) 21.0 (q) 21.0 (q) 21.0 (q) 20.9 (q) 20.8 (q) 21.1 (q) 20.9 (q) 20.8 (q) 21.0 (q) 21.1 (q) 20.9 (q)

15-OAc
C=O 169.6(s) 169.6 (s) 169.7 (s) 169.6 (s) 169.4 (s) 169.8 (s) 170.2 (s) 169.7 (s) 169.8 (s) 169.6 (s) 169.6 (s)
CH3 21.9 (s) 21.9 (q) 21.9 (q) 21.8 (q) 21.8 (q) 21.9 (q) 22.0 (q) 21.9 (q) 21.9 (q) 21.8 (q) 21.9 (q)

Glc
1′ ′ 101.2(d)
2′ ′ 73.5 (d)
3′ ′ 75.9 (d)
4′ ′ 69.6 (d)
5′ ′ 75.9 (d)
6′ ′ 61.8 (t)

a Measured at 125 MHz in CDCl3. b Measured at 125 MHz in CD3OD.

Metabolites M1, M3, and M6 were detected at 8.49, 9.99, and 11.38 min, respectively.
Taking M1 as an example (Figure 4), the molecular ion at m/z 569.2746 ([M + H]+) was
observed, with a 16 Da mass shift attributed to an oxygen atom relative to the substrate
euphorbiasteroid (M0). The fragment ions at m/z 509.2533 and m/z 449.2336 resulted from
successive CH3COOH loss from m/z 569.2746, and the fragment ions at m/z 433.2231,
m/z 373.2012, and m/z 313.1801 were generated by C6H5CH2COOH loss from the ions at
m/z 569.2746, m/z 509.2533, and m/z 449.2336, respectively. Furthermore, the ion at m/z
313.1801 was fragmented to form ions at m/z 295.1697, m/z 277.1595 and m/z 267.1741 via
loss of H2O, 2H2O and CO + H2O, respectively. Moreover, the proposed fragmentation
pathways of metabolites M3 and M6 were similar to those of metabolite M1, which were
more likely to lose a H2O group compared with M0. This clearly suggested that the
hydroxylated site should be located on the methyl moiety of the molecule, but the exact
substituted position remained to be determined.

Metabolites M2, M4, and M5 were eluted at 9.79, 10.34, and 10.66 min. Taking M2 as
an example (Figure 4), the molecular ion at m/z 569.2748 ([M + H]+) was observed, with a
16 Da mass shift attributed to an oxygen atom. The fragment ions at m/z 509.2543 and m/z
449.2332 resulted from successive CH3COOH loss from the molecular ion at m/z 569.2748,
and the fragment ions at m/z 375.2172 and m/z 315.1955 were generated by the loss of
C6H5CHCOO from the ions at m/z 509.2543 and m/z 449.2332, respectively. In particular,
the fragment ion at m/z 417.2275 resulted from the molecular ion at 569.2748 by losing
C6H5CH2COOH + O. Furthermore, the ion at m/z 315.1955 was fragmented to form ions
at m/z 297.1854, m/z 279.1748, and m/z 269.1904 via loss of H2O, 2H2O, and CO + H2O,
respectively. Moreover, metabolites M2, M4, and M5 were more likely to lose a H2O group
compared with euphorbiasteroid. The loss of C6H5CH2COOH + O clearly suggested that
the hydroxylated site should be located on the 3-O-phenylacetyl moiety of the molecule,
but the exact substituted position remained to be determined.
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Table 4. Mass spectrum characteristics of metabolites of euphorbiasteroid detected in vivo and in vitro.

No. Component
Name

RT (min) Formula
[M + H]+

Observed
m/z

Error
(ppm) MS n

Distribution

Rat
RLMs Fungi

Plasma Urine Faeces

M1 M + O 8.49 C32H41O9 569.2746 0.18
569.2746, 509.2533, 449.2336, 433.2231, 373.2012,
355.1910, 313.1801, 295.1697, 277.1595, 267.1741,
249.1643

√ √ √ √ √

M2 M + O 9.79 C32H41O9 569.2748 0.53
569.2748, 509.2543, 449.2332, 417.2275, 375.2172,
357.2069, 315.1955, 297.1854, 279.1748, 269.1904,
251.1803

-
√ √ √ √

M3 M + O 9.99 C32H41O9 569.2747 0.35
569.2747, 551.2642, 509.2538, 491.2438,449.2336,
431.2226, 373.2020, 355.1910, 313.1805, 295.1699,
277.1592, 267.1745, 249.1645

√ √ √ √ √

M4 M + O 10.34 C32H41O9 569.2756 1.93
569.2756, 509.2549, 449.2331, 417.2286, 375.2184,
357.2071, 315.1959, 297.1858, 279.1751, 269.1907,
251.1805

√ √ √ √ √

M5 M + O 10.66 C32H41O9 569.2754 1.58 569.2754, 509.2547, 449.2329, 417.2288, 375.2181,
357.2071, 315.1959, 297.1865, 279.1751, 269.1912

√
-

√ √ √

M6 M + O 11.38 C32H41O9 569.2747 0.35 569.2747, 509.2542, 449.2339, 431.2230, 373.2020,
355.1910, 313.1806, 295.1699, 277.1592, 267.1745

√
-

√ √
-

M7 M + 2O 6.06 C32H41O10 585.2688 −1.03 585.2688, 525.2480, 507.2377, 433.2221, 373.1995,
331.1906, 313.1796, 295.1701, 285.1841, 277.1594

√ √
-

√
-

M8 M + 2O 6.36 C32H41O10 585.2704 1.71
585.2704, 525.2490, 507.2382, 465.2271, 433.2222,
391.2116, 373.2011, 355.1904, 313.1805, 295.1698,
285.1847, 267.1743, 255.1382

√ √ √ √ √

M9 M + 2O 6.59 C32H41O10 585.2689 −0.85
585.2689, 525.2485, 507.2382, 465.2272, 447.2169,
433.2221, 391.2114, 373.2005, 355.1900, 313.1806,
295.1689, 285.1847, 277.1591, 267.1749

√ √ √ √ √

M10 M + 2O 6.92 C32H41O10 585.2692 −0.34 585.2692, 525.2480, 507.2377, 465.2278, 391.2118,
373.2010, 355.1907, 313.1805, 295.1695, 267.1747

√
-

√ √
-

M11 M + 2O 7.12 C32H41O10 585.2714 3.42 585.2714, 525.2496, 465.2284, 373.1997, 355.1906,
313.1802, 295.1706

√
- -

√
-

M12 M + 2O + 2H 7.35 C32H43O10 587.2858 0.17 587.2858, 527.2645, 467.2433, 357.2069, 315.1961,
297.1860, 279.1752, 269.1905, 251.1796

√
-

√ √ √
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Table 4. Cont.

No. Component
Name

RT (min) Formula
[M + H]+

Observed
m/z

Error
(ppm) MS n

Distribution

Rat
RLMs Fungi

Plasma Urine Faeces

M13 M + 2O + 2H 7.49 C32H43O10 587.2867 2.72
587.2867, 527.2661, 509.2549, 467.2442, 449.2337,
417.2285, 357.2074, 315.1963, 297.1858, 279.1757,
269.1906

√
-

√ √ √

M14 M + O-2H 8.80 C32H39O9 567.2598 1.59 567.2598, 507.2377, 447.2166, 371.1853, 329.1760,
311.1644, 293.1538, 283.1700, 265.1597, 255.1747

√ √ √
-

√

M15 M + O-2H 8.95 C32H39O9 567.2598 1.59 567.2598, 507.2377, 447.2166, 371.1852, 329.1761,
311.1654, 293.1547, 283.1700, 265.1597

√ √ √
- -

M16 M + 2O-2H 8.71 C32H39O10 583.2530 −1.37
583.2530, 523.2330, 463.2126, 447.2032, 387.1815,
345.1707, 327.1595, 309.1498, 299.1645, 281.1541,
263.1438, 253.1591

√ √ √ √ √

M17 M + 2O-2H 9.49 C32H39O10 583.2548 1.71
583.2548, 523.2332, 463.2132, 387.1814, 345.1710,
327.1600, 309.1490, 299.1647, 281.1540, 263.1449,
253.1596

√
-

√ √ √

M18 M + 3O-2H 5.96 C32H39O11 599.2497 1.67 599.2497, 539.2279, 387.1814, 345.1704, 327.1600,
309.1490, 299.1645, 281.1540, 263.1425, 253.1594

√ √ √
- -

M19 M + 3O-2H 6.37 C32H39O11 599.2505 3.00
599.2505, 539.2284, 479.2076, 447.2024, 405.1918,
387.1812, 345.1705, 327.1601, 309.1494, 299.1647,
281.1541, 263.1436, 253.1585

√ √ √ √
-

M20 M + 3O-2H 6.75 C32H39O11 599.2500 2.17 599.2500, 539.2286, 387.1811, 345.1711, 327.1602,
309.1496, 299.1648, 281.1547, 263.1438, 253.1591

√ √ √
- -

M21 M + 4O-2H 4.61 C32H39O12 615.2451 2.44
615.2451, 597.2335, 555.2226, 537.2123, 477.1913,
385.1654, 343.1542, 325.1440, 307.1334, 297.1497,
279.1386, 261.1280, 251.1426

√ √ √
- -

M22 M + 4O-2H 5.04 C32H39O12 615.2460 3.90 615.2460, 555.2236, 537.2133, 477.1919, 343.1549,
325.1448, 297.1494, 279.1389, 261.1285, 251.1437

√ √ √
- -

M23 M + 4O-2H 5.77 C32H39O12 615.2453 2.76
615.2453, 555.2231, 537.2125, 477.1916, 343.1549,
325.1440, 307.1335, 297.1493, 279.1390, 261.1286,
251.1439

√ √ √
- -

M24 M-2CH2CO-C8H6O 5.84 C20H31O5 351.2166 0.00 351.2166, 333.2059, 315.1951, 297.1849, 279.1746,
269.1898, 251.1802

√ √ √ √
-
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Table 4. Cont.

No. Component
Name

RT (min) Formula
[M + H]+

Observed
m/z

Error
(ppm) MS n

Distribution

Rat
RLMs Fungi

Plasma Urine Faeces

M25 M-C2H2O 12.49 C30H39O7 511.2694 0.78 511.2694, 451.2482, 433.2373, 375.2171, 357.2068,
315.1959, 297.1858, 279.1750, 269.1902, 251.1431

√ √ √ √
-

M26 M-C2H2O + O 7.66 C30H39O8 527.2661 4.17 527.2661, 509.2540, 467.2440, 449.2337, 391.2120,
373.2017, 331.1910, 313.1803, 295.1696

√ √ √
- -

M27 M-C2H2O + O 9.14 C30H39O8 527.2647 1.52 527.2647, 509.2553, 467.2435, 449.2330, 391.2122,
373.2020, 331.1909, 313.1804, 295.1706

√ √ √
-

√

M28 M + O+ C6H10O5 5.23 C38H51O14 731.3280 0.96 731.3280, 569.2768, 509.2549, 449.2335, 357.2074,
315.1971, 297.1868, 279.1754, 269.1911 - -

√
- -

M29 M + O+ C6H10O5 6.97 C38H51O14 731.3286 1.78
731.3286, 671.3065, 569.2745, 509.2544, 449.2331,
375.2173, 357.2073, 315.1963, 297.1855, 279.1752,
269.1902

√
-

√
-

√

M30 M + 2O+ SO3 2.87 C32H41O13S 665.2271 1.35 665.2271, 647.2167, 605.2055, 587.1955, 545.1848,
393.1376, 313.1788, 295.1683, 277.1589, 267.1744 - -

√
- -

M31 M + 2O+ SO3 3.19 C32H41O13S 665.2267 0.75 665.2267, 605.2061, 545.1843, 393.1371, 313.1805,
295.1691, 277.1580 - -

√
- -



Metabolites 2022, 12, 830 15 of 31

Metabolites 2022, 12, x FOR PEER REVIEW 12 of 32 
 

 

molecular ions, and key fragments of euphorbiasteroid and its metabolites are listed in 
Table 4. The extracted ion chromatograms and product ion spectra of metabolites are 
shown in Figures 3 and 4. 

 
Figure 3. Extracted ion chromatograms of euphorbiasteroid metabolites in rats. Figure 3. Extracted ion chromatograms of euphorbiasteroid metabolites in rats.



Metabolites 2022, 12, 830 16 of 31Metabolites 2022, 12, x FOR PEER REVIEW 13 of 32 
 

 

 
Figure 4. Product ion spectra of euphorbiasteroid metabolites in rats. Figure 4. Product ion spectra of euphorbiasteroid metabolites in rats.



Metabolites 2022, 12, 830 17 of 31

Metabolites M7–M11 were predicted to be dihydroxylated derivatives with HPLC
retention times at 6.06 and 7.12 min. For example, the molecular ion of M8 was detected at
m/z 585.2704 ([M + H]+) in positive ion mode, 16 mass units more than those of M1–M6,
suggesting the presence of an additional hydroxyl group (Figure 4). The fragment ions
at m/z 525.2490 and m/z 465.2271 resulted from successive CH3COOH loss of the parent
ion at m/z 585.2704, and the ion at m/z 465.2271 was further fragmented to the ion at m/z
313.1805 by the loss of C6H5CH2COOH + O, in which the ion at m/z 433.2222 resulted from
m/z 585.2704 in a similar mechanism. The fragment ions at m/z 373.2011 and m/z 313.1805
were generated by successive CH3COOH loss from the ion at m/z 433.2222. Furthermore,
the ion at m/z 313.1805 was further fragmented to form the ions at m/z 295.1698 and m/z
285.1847 by the loss of H2O and CO, respectively. Consistent with the monohydroxylated
products of euphorbiasteroid, these showed a series of product ions resulting from the
loss of CH3COOH and C6H5CH2COOH. This indicates that metabolites M7–M11 may be
produced by further hydroxylation on the basis of metabolites M1–M6.

Metabolites M12 and M13 were detected with HPLC retention times between
7.35 and 7.49 min. Taking M12 as an example (Figure 4), the molecular ion at m/z 587.2858
([M + H]+) was observed, 34 Da higher than that of euphorbiasteroid. The fragment ions at
m/z 527.2645 and m/z 467.2433 resulted from successive CH3COOH loss of the parent ion
at m/z 587.2858, and the ion at m/z 527.2645 was fragmented to the ion at m/z 357.2069
following the loss of C6H5CH2COOH + H2O + O. Furthermore, the fragment ion at m/z
297.1860 was formed via the elimination of CH3COOH from the ion at m/z 357.2069, and
the fragment ions at m/z 279.1752 and 269.1905 were produced by the loss of H2O and
CO from the ion at m/z 297.1860, respectively. The MS/MS spectra of M12 and M13 were
similar to those of M7–M11, except that the corresponding ions were each heavier by 2 Da.
Therefore, it was provisionally presumed that M12 and M13 were produced via changing
the olefin of euphorbiasteroid into dihydrodiol.

The metabolites M14 and M15 were eluted between 8.80 and 8.95 min, and showed the
protonated ion at m/z 567.2598 ([M + H]+). They were 14 Da more than euphorbiasteroid
and 2 Da less than M1–M6 (Figure 4). Taking M14 as an example, the fragment ions
at m/z 507.2377 and m/z 447.2166 resulted from successive CH3COOH loss from m/z
567.2598, while the fragment ions at m/z 371.1853 and m/z 311.1644 were formed via the
elimination of C6H5CH2COOH from the ion at m/z 507.2377 and m/z 447.2166, respectively.
Furthermore, the fragment ions at m/z 293.1538 and m/z 283.1700 also resulted from H2O
and CO loss from the ion at m/z 311.1644, respectively. In particular, the fragment ions at
m/z 283.1700 and m/z 255.1747 were generated by successive loss of CO from the ion at
m/z 311.1644, indicating the existence of an aldehyde group. Furthermore, according to the
proposed metabolic pathway of tanshinone IIA [31], the methyl group of euphorbiasteroid
might undergo similar metabolic modification, from methyl to primary alcohol, and then to
an aldehyde group. Thus, it is provisionally interpreted that M10 and M11 were produced
by transforming one methyl of euphorbiasteroid to aldehyde.

The metabolites M16 and M17, which showed protonated molecular ions at m/z
583.2530 ([M + H]+) with the retention times of 8.71 and 9.49 min, were 30 Da higher than
euphorbiasteroid and 2 Da less than the dihydroxylation products of euphorbiasteroid
like M7–M11 (Figure 4). Taking M16 as an example, the fragment ions at m/z 523.2330
and m/z 463.2126 were proposed to result from successive loss of CH3COOH from the
molecular ion m/z 583.2530. In addition, the fragment ions at m/z 447.2032, m/z 387.1815,
and m/z 327.1595 were generated from the ions at m/z 583.2530, m/z 523.2330 and m/z
463.2126 through the loss of C6H5CH2COOH, respectively. The ion at m/z 327.1595 was
further fragmented into the ions at m/z 309.1498 and m/z 299.1645 via the loss of H2O and
CO, respectively. In particular, the fragment ions at m/z 281.1541, m/z 263.1438, and m/z
253.1591 were formed via the elimination of HCOOH from the ions at m/z 327.1595, m/z
309.1498, and m/z 299.1645, respectively, which indicated the existence of a carboxyl group.
The compounds might be produced by the oxidation of M14 or M15, which was consistent
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with our initial speculation. Thus, it is provisionally interpreted that M16 and M17 were
produced by oxidizing the aldehyde of M14 or M15 into carboxyl groups.

Metabolites (M18–M20) were detected between 5.96 and 6.75 min. Taking M19 as
an example (Figure 4), it showed a molecular ion at m/z 599.2505 ([M + H]+), with 16 Da
higher than the metabolites M16 and M17. The fragment ions at m/z 539.2284 and m/z
479.2076 resulted from successive CH3COOH loss from the parent ion at m/z 599.2505,
while the fragment ions at m/z 447.2024, m/z 387.1812, and m/z 327.1601 were proposed
to result from loss of C6H5CH2COOH + O from the ions at m/z 599.2505, m/z 539.2284,
and m/z 479.2076, respectively. Additionally, a battery of fragment ions at m/z 309.1494,
m/z 299.1647, m/z 281.1541, m/z 263.1436 and m/z 253.1585 were produced, which were
consistent with the fragmentation behaviors of the metabolites M16 and M17. Therefore,
these metabolites were provisionally characterized as monohydroxylated products of the
metabolites M16 and M17.

The metabolites (M21–M23) were eluted at between 4.61 and 5.77 min, giving rise to
the protonated molecules [M + H]+ at m/z 615.2451. Taking M21 as an example (Figure 4),
the fragment ion at m/z 615.2451 was fragmented into the ions at m/z 555.2226, m/z
537.2123, and m/z 477.1913 following the loss of CH3COOH, CH3COOH + H2O, and
2CH3COOH + H2O, respectively. The fragment ions at m/z 385.1654 and m/z 325.1440
were proposed to result from loss of C6H5CH2COOH + O from the ions at m/z 537.2123 and
m/z 477.1913, respectively. In particular, the MS/MS characteristic ions of the metabolite
M21 (m/z 385.1654, 325.1440, 307.1334, 297.1497, 279.1386, 261.1280, and 251.1426) were
2 Da less than those of the metabolites M16 and M17. Therefore, they were tentatively
identified as dihydroxylated products of metabolites M16 and M17.

The metabolite M24 was observed as its protonated molecular ion[M + H]+ at m/z
351.2166 with a retention time of 5.84 min, which was deductively assigned as a hydrolysis
product of euphorbiasteroid because its protonated ion was 202 Da less than that of eu-
phorbiasteroid (Figure 4). The fragment ions at m/z 333.2059, m/z 315.1951, m/z 297.1849,
and m/z 279.1746 resulted from successive H2O loss from the parent ion at m/z 351.2166.
Furthermore, a battery of fragment ions at m/z 315.1951, m/z 297.1849, m/z 279.1746, m/z
269.1898, and m/z 251.1802 were produced, which were consistent with fragmentation
behaviors of euphorbiasteroid. Therefore, the metabolite M24 was probably formed via the
loss of two CH2CO and a C6H5CHCO from the prototype compound euphorbiasteroid.
Similar findings have been reported before [32].

The metabolite M25 provided its protonated ion at m/z 511.2694 with a retention
time of 12.49 min (Figure 4). It was 42 Da less than that of euphorbiasteroid, mean-
ing that it might be a hydrolysis product of euphorbiasteroid. In the MS/MS spec-
trum, a battery of fragment ions at m/z 451.2482 [M + H-CH3COOH]+, m/z 433.2373
[M + H-CH3COOH-H2O]+, m/z 375.2171 [M + H-C6H5CH2COOH]+, and m/z 297.1858
[M + H-CH3COOH-H2O-C6H5CH2COOH]+ were observed, suggesting that the metabo-
lite M25 was produced by losing an acetyl of euphorbiasteroid.

The metabolites M26 and M27, which showed their respective positive ions at m/z
527.2661 and 527.2647 with the retention times of 7.66 and 9.14 min, were plausibly assigned
as monohydroxylated products of metabolite M25 due to their protonated ions being 16 Da
more than that of M25 (Figure 4). In the MS/MS spectrum of M27, the characteristic frag-
ment ions at m/z 467.2435 [M + H-CH3COOH]+, m/z 391.2122 [M + H-C6H5CH2COOH]+,
and m/z 331.1909 [M + H-CH3COOH-C6H5CH2COOH]+ were detected, which was in
accordance with the mass fragmentation behaviors of M25. In addition, the fragment
ions at m/z 313.1804 [M + H-CH3COOH-C6H5CH2COOH-H2O]+ and m/z 295.1706 [M +
H-CH3COOH-C6H5CH2COOH-2H2O]+ proved the existence of hydroxylation. According
to the reliable analysis above, they were provisionally characterized as monohydroxylated
products of M25.

The metabolites M28 and M29 gave rise to protonated ions at m/z 731.3280 and
731.3286, which were eluted at 5.23 and 6.97 min, respectively. They were 162 Da more
than metabolites M1–M6. Taking M28 as an example (Figure 4), the fragment ion at
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m/z 569.2768 provided reliable evidence for identifying the metabolites as glycosylation
products of euphorbiasteroid due to the loss of 162 mass units. The fragment ions at m/z
509.2549, 449.2335, 357.2074, 315.1971, 297.1868, 279.1754, and 269.1917 demonstrated that
a hydroxyl group in the metabolites M7–M11 was replaced by C6H10O5. Therefore, they
were tentatively identified as glycosylation products of euphorbiasteroid.

The metabolites M30 and M31 were observed with their protonated ions at m/z
665.2271 and 665.2267 with retention times of 2.87 and 3.19 min, which were deductively
assigned as sulfonated products of the metabolites M7–M11 because their protonated
ions were 80 Da larger than the metabolites M7–M11 (Figure 4). In the MS/MS spec-
trum of M30, the characteristic ions at m/z 605.2055 [M + H-CH3COOH]+, m/z 545.1848
[M + H-2CH3COOH]+, and m/z 393.1376 [M + H-2CH3COOH-C6H5CH2COOH-O]+ were
consistent with fragmentation characteristics of euphorbiasteroid, which provided reliable
reference for the identification of M30. Particularly, the fragment ion at m/z 313.1788 was
proposed to result from the loss of SO3 from the ion at m/z 393.1376. Moreover, a battery
of fragment ions at m/z 295.1683, m/z 277.1589, and m/z 267.1744 were also observed,
suggesting that the metabolites M30 and M31 should be sulfonated products of metabolites
M7–M11.

Finally, in order to explore whether RLMs and the microbial model could simulate
the metabolism of euphorbiasteroid in rats, the incubation of RLMs and C. elegans bio-
110930 with euphorbiasteroid were studied, respectively. The results showed that 18
and 14 metabolites identified in the above two models could match those of rats in vivo,
respectively, indicating that they could simulate the metabolism of euphorbiasteroid in vivo
to a certain extent. Considering the economic benefits and transformation efficiency, the
large-scale microbial transformation experiment was used for the subsequent preparation of
metabolite standards and the accurate characterization of the metabolite structures [33–35].

3.3. The Structure Elucidation of Transformation Products

Through large-scale microbial transformation and chemical hydrolysis experiments,
twelve transformation products (1–12) were prepared, including eleven new compounds
(1–9, 11 and 12) and one known compound (10). Compound 10 was characterized as
epoxylathyrol by comparison of the NMR and HR-ESI-MS data with the literature [36].
The structures of eleven new transformation products were characterized by ESI-MS,
HR-ESI-MS, 1D-, and 2D-NMR data (Figure 5).

Compound 1 was isolated as a white powder with an optical rotation of [α]20
D +116.10◦

(c 0.118, MeOH). The molecular formula of C32H40O9 was deduced from the [M + H]+ ion at
m/z 569.2746, and the molecular weight of compound 1 is 16 Da more than that of the pre-
cursor compound euphorbiasteroid. Analysis of the 1H and 13C NMR spectroscopic data of
1 revealed its structural similarity to euphorbiasteroid (M0, Tables 1 and 3). The only differ-
ence between these two compounds was the occurrence of an extra hydroxymethyl [δC 71.2,
δH 3.52 (d, J = 11.25 Hz, H-18a)] and δH 3.44 (d, J = 11.25 Hz, H-18b)) in compound 1, taking
the place of a methyl of euphorbiasteroid. In the HMBC spectrum of compound 1, the two
protons of hydroxymethyl at δH 3.52 and 3.44 exhibited long-range HMBC correlations with
C-9 (δC 30.2) and C-11 (δC 25.2) (Figure 6), suggesting that a hydroxyl might be substituted
at C-18 or C-19 position. In the NOESY spectrum (Figure 7), the key NOE correlations of
two hydroxymethyl protons (δH 3.52 and 3.44) with H-9 (δH 1.21) and H-11 (δH 1.65) proved
that the C-18 of compound 1 was substituted by a hydroxyl, and assigned the relative
configuration of 18-hydroxymethyl to be α-oriented. Unambiguous complete assignments
for the 1H and 13C NMR signals were made by combination of DEPT, 1H-1H COSY, HSQC,
HMBC, and NOESY spectra (Figures S1–S10). On the basis of the above evidence, the
structure of compound 1 was thus established as 18α-hydroxyl euphorbiasteroid.

Compound 2 was isolated as a white powder with [α]20
D +74.89◦ (c 0.150, MeOH). The

molecular formula was assigned as C32H40O9 based on its HR-ESI-MS data that displayed
an [M + H]+ ion at m/z 569.2747. Similar to compound 1, the molecular weight of 2 was
16 mass units more than that of euphorbiasteroid and shared the same molecular formula.
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The 1H and 13C NMR data of compound 2 were quite close to those of euphorbiasteroid
(Tables 1 and 3), except for the absence of an aromatic proton. In the 1H NMR spectrum
of 1, two groups of aromatic protons (each two protons) supported the presence of a
p-substituted benzyl ring. Two groups of carbon resonances (each two carbons) at δC
130.6 and 115.4 as well as the 13C chemical shift of C-4′ proved the above deduction, and
attributed a hydroxyl substitution at C-4′ (Figures S11–S20). On the basis of the above
evidence, the structure of compound 2 was established as 4′-hydroxyl euphorbiasteroid.
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Figure 5. The structures of euphorbiasteroid and its transformation products.

Compound 3, a white powder, had an optical rotation of [α]20
D +63.97◦ (c 0.130, MeOH).

Its molecular formula was deduced to be C32H40O9 from the [M + H]+ ion at m/z 569.2746
in HRESIMS. Compound 3 was proposed to be a hydroxylated product of euphorbiasteroid
due to its molecular weight being 16 mass units more than that of euphorbiasteroid. When
comparing its 1H and 13C NMR data with those of euphorbiasteroid (Tables 1 and 3), it
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was revealed that the two compounds shared a great similarity. In the NMR spectra, the
appearance of an extra oxygenated methylene unit [δH 4.28 (d, J = 12.38 Hz, H-20a) and
δH 4.42 (d, J = 12.38 Hz, H-20b); δC 58.1], in place of the methyl signals for C-20 (δH 1.82;
δC 12.3) in euphorbiasteroid, suggested that one hydroxyl was incorporated to 3 at C-20
position. Key HMBC correlations of two protons of the hydroxymethyl (δH 4.28 and 4.42)
with C-14 (δC 198.4) and C-12 (δC 147.6) attached a hydroxyl to C-20 (Figure 6). Assignments
of the 1H and 13C NMR signals were achieved by a combination of DEPT, 1H-1H COSY,
HSQC, and HMBC experiments (Figures S21–S30). Thus, the structure of compound 3 was
identified as 20-hydroxyl euphorbiasteroid.
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Compound 4 was obtained as a white powder with [α]20
D +70.00◦ (c 0.125, MeOH).

The protonated ion [M + H]+ at m/z 569.2756 (calcd for C32H41O9, 569.2745) in HRESIMS
assigned the molecular formula to be C32H40O9 The 1H and 13C NMR data of 4 closely
matched those of euphorbiasteroid (Tables 1 and 3) The only difference was the appearance
of the signals for an oxygenated methine (δH 5.10, δC 72.8) in 4, rather than the C-7′

methylene signals (δH 3.58, δC 41.5). Thus, it was speculated that compound 4 was a C-7′

hydroxylated product of euphorbiasteroid. In addition, relative to euphorbiasteroid, the
chemical shifts of C-1′ and C-8′ of compound 4 were downfield shifted significantly from
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δC 133.8 to δC 138.4, and from δC 170.9 to δC 173.7, respectively, while the resonances of
C-2′ and C-6′ was upfield shifted from δC 129.4 to δC 126.5. The key HMBC correlations
from H-7′ at δH 5.10 to C-1′, C-2′, C-6′ and C-8′ (Figure 6) further proved that a hydroxyl
was substituted at C-7′ position. The stereo configuration of 7′-OH failed to be determined
due to a lack of substantial NOE correlation (Figures S31–S40). Therefore, compound 4 was
assigned as 7′-hydroxyl euphorbiasteroid.
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Compound 5 was isolated as a white powder with the optical rotation [α]20
D +112.65◦

(c 0.108, MeOH). The molecular formula was inferred as C32H40O9 due to the appearance
of an [M + H]+ ion at m/z 569.2754 in the HR-ESI-MS spectrum. In the 1H and 13C NMR
spectra of 5 (Tables 1 and 3), compared to euphorbiasteroid, it was observed to have one
additional oxygenated quaternary carbon at δC 154.7, replacing an aromatic methine of the
benzyl ring. Additionally, the 1H NMR spectrum exhibited four aromatic proton signals
for an AA′BB′ coupling system at δH 6.90, 7.18, 6.88, and 7.11. The above information, in
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combination with key HMBC correlations from H2-7′ (δH 3.70 and 3.55) to C-2′ (δC 154.7)
and C-6′ (δC 131.1), supported that a hydroxyl was substituted at the C-2′ of the benzyl
ring. Unambiguously complete assignments for the 1H and 13C NMR signals were made
by a combination of DEPT, 1H-1H COSY, HSQC, and HMBC spectra (Figures S41–S50).
Thus, compound 5 was identified as 2′-hydroxyl euphorbiasteroid.

The molecular formula of compound 6 was deduced to be C32H40O10 from the HR-
ESI-MS [M + H]+ ion m/z 585.2704 (calcd for C32H41O10, 585.2694). Its molecular weight
was 16 mass units more than that of compound 5, implying that compound 6 might be a
dihydroxylated product of euphorbiasteroid. The 1H and 13C NMR data closely resembled
those of 5 (Figures S51–S60). The only difference was that compound 6 had an extra hydrox-
ymethyl (δH 3.48, 3.38; δC 70.9), instead of a methyl (δH 1.20; δC 28.9) of 5. In the HMBC
spectrum (Figure 6), key long-range correlations from two hydroxymethylene protons at
δH 3.48 and 3.38 to C-9 (δC 31.1) and C-11 (δC 26.2) revealed that a hydroxyl was linked to
C-18 or C-19 position. The observation of NOE correlations (Figure 7) from the hydrox-
ymethylene protons at δH 3.48 and 3.38 to H-9 (δH 1.33) and H-11 (δH 1.78) unambiguously
attributed the hydroxymethylene as C-18, and determined the relative configuration of 18-
CH2OH to be α-oriented. Therefore, the chemical structure of compound 6 was identified
as 18α, 2′-dihydroxyl euphorbiasteroid.

Compound 7 was obtained as a white powder with an optical rotation [α]20
D +60.00◦

(c 0.170, MeOH). Its molecular formula was deduced as C32H42O10 due to the [M + H]+ ion
at m/z 587.2851 (calcd for C32H43O10, 587.2878) in HR-ESI-MS. Interestingly, the molecular
weight of 7 was 34 mass units more than that of euphorbiasteroid, and had one less degree
of unsaturation, suggesting that there was a possible missing double bond or ring as well
as two hydroxyl substituents. The 1H and 13C NMR spectroscopic data (Tables 2 and 3)
showed that compound 7 shared most of its featured functionalities and had the same
diterpene skeleton as euphorbiasteroid, but had a great difference in the phenylacetyl
moiety. Only three aromatic proton signals occurred at δH 5.54, 7.54, and 6.07 in the 1H
NMR spectrum, and four aromatic carbon resonances were observed at δC 150.2, 115.5,
125.5, and 138.1 in the 13C NMR spectrum. Detailed interpretation of the NMR spectroscopic
data indicated that two additional oxygenated aliphatic methines [δH 4.26 (d, J = 7.49 Hz),
3.76 (m); δC 73.5, 72.9] in compound 7 replaced two aromatic methines [δH 7.30 (m), 7.25
(overlap); δC 128.5, 129.4] of euphorbiasteroid. The 1H-1H COSY correlations of H-2′ (δH
5.54)/H-3′ (δH 7.54)/H-4′ (δH 6.07)/H-5′ (δH 4.26)/H-6′ (δH 3.76) in combination with
the key HMBC long-range correlations from H2-7′ (δH 2.67, 2.54) to C-2′ (δC 115.5) and
C-6′ (δC 72.9) (Figure 6) evidenced that the C-5′ and C-6′ double bond of phenyl ring was
hydrogenated and subsequently substituted by two hydroxyls, which was in agreement
with the molecular weight and degrees of unsaturation of 7 as mentioned above. The stereo
configurations of 5′-OH and 6′-OH failed to be determined due to a lack of substantial
NOE correlations in the NOESY spectrum of compound 7 (Figures S61–S70). Based on the
above analysis, the chemical structure of compound 7 was identified as 5′,6′-dihydroxyl
dihydroeuphorbiasteroid.

Compound 8, a yellowish powder with [α]20
D +90.83◦ (c 0.123, MeOH), had the same

molecular formula C32H42O10 and degrees of unsaturation as compound 7 due to the
[M + H]+ ion peak at m/z 587.2873 (calcd for C32H43O10, 587.2878) in its HR-ESI-MS
spectrum. The 1H and 13C NMR spectra (Tables 2 and 3) demonstrated almost the same
spectroscopic features as those of compound 7, including a diterpenoid skeleton, two
acetyl moieties, and a hydrogenated and dihydroxylated phenyl acetyl moiety [δH 5.66 (s),
3.72 (brs), 4.25 (brd., 5.56), 6.07, 6.15 (d, J = 10.14 Hz), 3.69, and 2.55; δC 151.0, 117.6, 72.3,
72.2, 137.1, 130.732.4, and 165.8], suggesting that compounds 7 and 8 might be isomers.
Detailed analysis of the 1H and 13C NMR spectroscopic data revealed that compound 8
had a different hydrogenated and dihydroxylated position. In 2D NMR spectra, the 1H-1H
COSY correlations of H-2′ (δH 5.66)/H-3′ (δH 3.72)/H-4′ (δH 4.25)/H-5′ (δH 6.07)/H-6′ (δH
6.15) implied that the C-3′ and C-4′ double bond of phenyl ring was hydrogenated and
subsequently substituted by two hydroxyls, respectively. The above deduction was further
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proved by key HMBC correlations of H2-7′ (δH 3.69, 2.55) with the aromatic C-2′ (δC 117.6)
and C-6′ (δC 130.7), and of H-4′ [δH 5.66 (brd., J = 5.56 Hz) with C-6′ (Figures S71–S80). Thus,
the structure of compound 8 was identified as 3′,4′-dihydroxyl dihydroeuphorbiasteroid.
The stereo configurations of 3′-OH and 4′-OH failed to be determined due to a lack of
substantial NOE correlations.

Compound 9 was isolated as a white powder with an optical rotation of [α]20
D +77.78◦

(c 0.123, MeOH). The HREI-MS exhibited the [M + H]+ ion at m/z 583.2330 (calcd. 583.2543),
corresponding to the molecular formula C32H38O10. The molecular weight of 9 was 30 mass
units more than that of the substrate euphorbiasteroid, implying that compound 9 might be
a carboxylated product. Compared to the substrate euphorbiasteroid, the 1H and 13C NMR
spectra (Tables 2 and 3) exhibited an additional carboxyl signal (δC 179.8), but an absence
of the signals for CH3-18 (δH 1.20; δC 28.9). Additionally, the chemical shift of C-19 was
significantly shifted to high field by 6.4 ppm. These data implied that compound 9 might be
a C-18 carboxylated product of euhporbiasteroid. This deduction was substantially proved
by key HMBC correlations (Figure 6) from CH3-19 (δH 1.44), H-9 (δH 1.90), and H-11 (δH
2.44) to the carboxyl carbon (δC 179.8) (Figure S81–S90). Thus, the structure of compound 9
was thus identified as 18α-carboxyl euphorbiasteroid.

Compound 11 was isolated as a white powder with [α]20
D +117.01◦ (c 0.146, MeOH). Its

HR-ESI-MS spectrum gave a hydrogen adduct ion at m/z 511.2694, assigning the molecular
formula of 11 as C30H38O7. The 1H and 13C NMR spectra of 11 exhibited quite similar
spectroscopic features to those of M0, including four methyls [δH 0.81 (d, J = 6.69 Hz),
1.21 (s), 1.25 (s), 1.78 (s); δC 14.2, 29.0, 16.3, 12.2], one double bond [δH 7.32 (overlap), δC
150.8, 135.1], one ketone carbonyl (δC 199.3), one acetoxyl [δH 2.08 (3H, s), δC 171.0, 21.1],
one oxygenated methine (δH 5.46; δC 82.8), and one oxygenated quaternary carbon (δC 88.7),
and one characteristic three-membered epoxyl motif (δH 2.41 and 2.27, δC 58.9 and 55.4),
with the exception of the disappearance of one acetoxyl in 11 (Tables 2 and 3). The downfield
shifted carbon signals at C-1 (∆δ +2.0)/C-4 (∆δ +1.7)/C-5 (∆δ +0.8)/C-14 (∆δ +2.4) and
the upfield shifted C-15 (∆δ -3.0) suggested that the acetoxyl at C-15 was replaced by one
hydroxyl. Furthermore, the key HMBC correlations from the protons at δH 5.92 (H-5) and
5.46 (H-3) to C-15 (δC 88.7) further supported the above deduction (Figure 6). Interpretation
of the NOESY spectrum revealed that compound 11 shared the same relative configurations
as those of M0 (Figure 7). Therefore, the structure of compound 11 was identified as
15-deacetyl euphorbiasteroid (Figures S94–S103).

The HR-ESI-MS spectrum of compound 12 gave a hydrogen adduct ion [M + H]+ m/z
731.3280 (calcd for C38H50O14, 731.3273), assigning the molecular formula as C38H50O14. Its
molecular weight was 162 Da more than that of the substrate euphorbiasteroid, implying
that compound 12 might be a hexosylated product of euphorbiasteroid. The 1H and 13C
NMR spectroscopic data of compound 12 were very similar to those of the substrate euphor-
biasteroid, and the major difference was the presence of an additional glucosyl unit [δH 4.81
and 3.49–3.89 (6H); δC 101.4, 75.9, 75.9, 73.5, 69.6, 61.8] in the structure of 12 (Tables 2 and 3).
The substitution position of glucosyl was unambiguously determined to be the C-2′ of the
phenyl ring due to key HMBC correlations from the anomeric proton (δH 4.81) of glucosyl
and H2-7′ (δH 3.67, 3.64) to C-2′ (δC 155.3) (Figure 6). The 13C chemical shifts of glucosyl
and the large coupling constant of the anomeric proton (JH-1 ′ ′/H-2 ′ ′ = 6.77 Hz) attributed the
glucosyl to be β-D-glucose. Assignment of the 1H and 13C NMR signals was achieved by
a combination of DEPT, 1H-1H COSY, and HSQC experiments (Figure S104–S113). Based
on this evidence, the structure of compound 12 was determined to be euphorbiasteroid
2′-O-β-D-glucopyranoside.

3.4. Comparison of Metabolite Formation In Vitro and In Vivo

Various results of metabolite formation were discovered in the three approaches used
in this study. Rat plasma, urine, and feces samples were generally rich in metabolites, with
27, 20, and 29 metabolites, respectively. In vitro incubation of RLMs produced the same
18 phase I metabolites as the metabolites in rats, just less in number and amount. In vitro
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co-incubation of C. elegans bio-110930 with euphorbiasteroid yielded 14 metabolites, 12 of
which were further prepared by large scale microbial transformation and confirmed to be
the same metabolites as those in rats by comparison of their HPLC retention times and
MS/MS fragments (Figure 8), On the basis of analysis of 1D and 2D NMR spectroscopic
data, 12 metabolites were identified as 18α-hydroxyl euphorbiasteroid (M1), 4′-hydroxyl
euphorbiasteroid (M2), 20-hydroxyl euphorbiasteroid (M3), 7′-hydroxyl euphorbiasteroid
(M4), 2′-hydroxyl euphorbiasteroid (M5), 18α,2′-dihydroxyl euphorbiasteroid (M8), 5′,6′-
dihydroxyl dihydroeuphorbiasteroid (M12), 3′,4′-dihydroxyl dihydroeuphorbiasteroid
(M13), 18α-carboxyl euphorbiasteroid (M16), epoxylathyrol (M24), 15-deacetyl euphorbias-
teroid (M25), and euphorbiasteroid 2′-O-β-D-glucopyranoside (M29).
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3.5. Proposed Metabolic Pathways of Euphorbiasteroid In Vivo

Based on the metabolites identified in rats (plasma, urine, and feces), RLMs and fungus
mycelium (Table 4), metabolic pathways of euphorbiasteroid can be proposed.

According to the above discoveries in the metabolism of euphorbiasteroid, the hydrox-
ylation of euphorbiasteroid was the major metabolic pathway (Figure 9), including mono-
hydroxylated euphorbiasteroid (M1–M6) and dihydroxylated euphorbiasteroid (M7–M11),
which undergo further metabolism to form dihydrodiol (M12–M13).
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Figure 9. The proposed metabolic pathway of euphorbiasteroid in rats (I).

The second pathway involves the methyl oxidation of euphorbiasteroid, from methyl
to primary alcohol, then to aldehyde group (M14–M15), and finally to carboxyl group
(M16–M17) (Figure 10). In addition, the metabolites (M16–M17) were further hydrox-
ylated to form monohydroxylated products (M18–M20) and diehydroxylated products
(M21–M23).
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The third pathway involves hydrolysis of ester groups to form epoxylathyrol (M24)
and 15-deacetyl euphorbiasteroid (M25), followed by hydroxylation to produce metabolites
M26–M27, as shown in Figure 11.
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Figure 11. The proposed metabolic pathway of euphorbiasteroid in rats (III).

Finally, phase II metabolism was the predominant pathway in rat feces samples, where
several metabolites were formed by glycosylation and sulfonation (Figure 12). Overall,
hydroxylation, oxidation, hydrolysis, sulfonation, and glycosylation are the main metabolic
pathways of euphorbiasteroid in rats.
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3.6. Cytotoxicity of Euphorbiasteroid and Its Metabolites

Euphorbiasteroid and its metabolites were tested for their cytotoxicity on human
cell lines SH-SY5Y, LO2, AC-16, and HK-2 by the CCK-8 assay. The results (Table 5)
indicated that euphorbiasteroid showed no cytotoxicity against four human cell lines with
IC50 values of more than 50 µM. Among metabolites, the C-20 hydroxylated product M3
(20-hydroxyl euphorbiasteroid) and two hydrolysis products M24 (epoxylathyrol) and
M25 (15-deacetyl euphorbiasteroid) showed significant cytotoxicity against four human
cell lines with IC50 values from 3.60 µM to 40.74 µM. Therefore, considering the high
content of euphorbiasteroid in Euphorbiae semen, it was speculated that the metabolites from
hydroxylation and hydrolysis might be the potential toxic constituents of Euphorbiae semen.
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Table 5. The cytotoxicities of euphorbiasteroid and its metabolites on four strains of human cells.

Compound
IC50 (µM)

SH-SY5Y LO2 AC-16 HK-2

M0 54.95 ± 1.20 >100 97.72 ± 2.13 >100
M3 39.63 ± 0.43 37.41 ± 0.41 17.86 ± 0.19 22.65 ± 0.25

M24 40.74 ± 0.44 38.9 ± 0.42 21.73 ± 0.24 26.49 ± 0.29
M25 33.27 ± 0.36 30.13 ± 0.33 3.60 ± 0.04 16.11 ± 0.18

4. Conclusions

In the present study, euphorbiasteroid metabolites generated in vivo (rat plasma, urine
and feces) and in vitro (RLMs and C. elegans bio-110930 model) were characterized through
UPLC-Q/TOF-MS. According to the molecular ions and the MS/MS fragments, a total of 31
metabolites were identified, including 27 phase I and 4 phase II metabolites. Additionally,
the structures of twelve metabolites were exactly confirmed by comparing their HPLC re-
tention times and MS/MS fragments with those of the prepared reference standards, whose
structures were exactly determined based on 1D and 2D NMR analysis. The twelve identi-
fied metabolites were 18α-hydroxyl euphorbiasteroid (M1), 4′-hydroxyl euphorbiasteroid
(M2), 20-hydroxyl euphorbiasteroid (M3), 7′-hydroxyl euphorbiasteroid (M4), 2′-hydroxyl
euphorbiasteroid (M5), 18α,2′-dihydroxyl euphorbiasteroid (M8), 5′,6′-dihydroxyl dihy-
droeuphorbiasteroid (M12), 3′,4′-dihydroxyl dihydroeuphorbiasteroid (M13), 18-carboxyl
euphorbiasteroid (M16), epoxylathyrol (M24), 15-deacetyl euphorbiasteroid (M25), and
euphorbiasteroid 2′-O-β-D-glucopyranoside (M29). These results showed that the major-
ity of phase I metabolites were generated by hydroxylation and hydrolysis, followed by
oxidation and hydroxylation. Glycosylation and sulfonation played significant roles in
the formation of phase II metabolites. Moreover, RLMs and C. elegans bio-110930 could be
suitable models to simulate and prepare phase I metabolites of euphorbiasteroid. Thus,
an overall description of metabolites of euphorbiasteroid from rats, RLMs and C. elegans
bio-110930 has been provided. Three metabolites M3, M24, and M25 exhibited potent
cytotoxicity against four human cell lines. Furthermore, our study provides valuable infor-
mation for predicting in vivo human metabolites and important clues for further clarifying
the mechanism of drug toxicity of euphorbiasteroid and its metabolites. The method can
also be applied to the study of other herbal components, providing new ideas in the field
of metabolic studies of traditional Chinese medicine.
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