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Abstract

Non-pharmaceutical interventions (NPIs) have been the key policy instrument utilized to
contain the impact of the COVID-19 pandemic. This paper disentangles the effects of NPIs
from that of the virus and looks at the specific channels through which the virus impacts
consumption. Using geo-located transaction data, we find that consumers’ behaviour
towards the virus has explanatory power for the drop in consumption in the early stages
of the pandemic. This effect disappears in the later stages of the pandemic, suggesting
that consumers have adapted their behaviour. As the COVID-19 pandemic progressed,
consumers tended to make ‘safer’ consumption decisions, by avoiding crowded places.

I. Introduction

The novel coronavirus outbreak, along with lockdown measures, that is, non-
pharmaceutical interventions (NPIs) intended to contain the spread of COVID-19, resulted
in significant and unprecedented changes in society and the economy. NPIs have been for
most countries the key policy instrument utilized to contain the impact of the COVID-19
pandemic. The NPIs involved closing (sub)sectors or placing supply restrictions on others,
reducing the opportunity for consumers to spend. To understand the potential negative
economic impact of COVID-19, it is important to understand the economic transmission
channels through which the shocks will adversely affect the economy.

Studies on the effect of COVID-19 on consumption have looked specifically at the
effects of NPIs on domestic consumption Chetty et al. (2020); Bounie et al. (2020);
Neuteboom et al. (2020); Coibion et al. (2020) and Chen, Qian and Wen (n.d.). They
find that during the first stages of the COVID-19 pandemic, consumption has been hit
directly by both the NPIs and the behavioural response function of consumers towards the
virus, that is, voluntary stay at-home-policies by economic agents. According to some,
in the absence of NPIs, self-imposed stay at-home-policies would have been at least
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as damaging to the economy (see Lin and Meissner, 2020 and Igan et al., 2020). This
evidence suggests that NPIs are only part of the story, and the behavioural reaction of
consumers towards the virus is perhaps even more important to understand the effects of
the COVID-19 pandemic on the economy.

In this study, we look more closely at the effect of NPIs and the behavioural response
of consumers on consumption, by using bank transaction data. We use a novel approach to
geo-locate physical pin transactions and compare consumption patterns in different Dutch
municipalities with the local COVID-19 outbreak. The Dutch government’s strategy
of imposing nationwide NPIs measures presents us with a unique empirical estimation
strategy. Both the incidence of the illness and its timing varied substantially across different
municipalities, while the NPIs induced homogeneous expenditure dynamics across all
municipalities in the Netherlands. We look specifically at the spatial heterogeneity of
COVID-19, as the virus has had different effects in different municipalities across the
country. While similar empirical studies have been done in other countries, for instance,
in China and France (Chen et al., n.d. and Bounie et al., 2020), the Netherlands was the
only country were NPI policy that was consistent among regions in terms of strictness and
imposition date. Therefore, we do not have to manually control for differences between
regions within the country.

This paper makes two main contributions. First, we show, in line with previous studies,
that changes in behaviour by consumers towards to virus explain a large part of the drop
in consumption during the early stages of the pandemic. An explanation put forward to
describe this effect is that, when the pandemic eases/surges, people are less willing/more
willing to comply with the imposed NPIs and therefore consumption increases/decreases
(Coibion et al., 2020). We do not find any evidence for this explanation, as our results
show that COVID-19 does not correlate with spending in sectors that were subject to
NPIs. Secondly, while a variety of studies have examined the effects of the first lockdown
on economic behaviour and evaluating the economic damage, there are no detailed studies
that look at the effects over time. In this study, we incorporate the period from the start
of the pandemic until the vaccine roll-out. We find no effect of COVID-19 on aggregate
consumption in the second COVID-19 wave, which suggests that consumers have changed
their behaviour as the pandemic progressed. We do however find an effect of COVID-19
on the substitution of offline spending towards online spending, from which we conclude
that consumers continued their consumption patterns but perhaps in a more ‘safer’ way.
This finding taps into the literature of how consumer update their beliefs and behaviour
on COVID-19 (Akesson et al., 2020). As the COVID-19 pandemic progressed, more
information became available on the infectiousness and on which (social) activities may
increase the chances of attracting the virus. Our results suggest that perhaps consumers
have adapted their consumer behaviours, avoiding physical consumption in certain sectors
that have a high chance of transmissibility of the virus, but continue to shop in sectors
that are relatively safe.

This paper is structured as follows: In section II, we review the most relevant literature
on the economic impact of the pandemic and the associated fall in consumption. In
section III, we describe the geolocation model and our methodology for estimating the
differences in consumption between municipalities. Section IV discusses the results of
the regressions. In section V, we show that the results are robust to changing the time
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frequency and cross-sectional dependence. We also explore the time lags of the dependent
variable. Finally, in section VI, we discuss our findings in light of existing research and
outline avenues for future work.

II. Literature review

Our work builds on and contributes to a rapidly evolving literature on measuring the
economic impacts of COVID-191.

In general, the literature on the economic impact of COVID-19 can be broadly
divided among four different main transmission channels through which a pandemic
can cause economic disruptions (see: Carlsson-Szlezak and Philipp, 2020a,b; Guerrieri
et al., 2020): (i) direct impact through economic agents falling ill; (ii) direct impact due
to an increase in uncertainty; (iii) direct impact through restrictions by the government
to contain the spread of the virus (NPIs); and (iv) the indirect impact through worsening
economic conditions. Below we will discuss the four different channels in more
detail.

The direct impact of infections is caused by workers who become infected by the virus
and do not show up at work, causing supply-side disruptions for producers (Guerrieri
et al., 2020). On top of that, consumers who have contracted the virus are not eligible
to leave their houses and consume, causing demand-side disruptions. This channel is, for
example, taken into account by the canonical epidemiology macro model by Eichenbaum,
Rebelo and Trabandt (2020). In their model, the prevalence of infection depends on
the degree of interaction between agents when consuming and working, as well as the
random chance of contracting the virus. Therefore, the susceptible population can lower
the chances of infection by reducing their spending activities and their labour supply
(outside of their houses).

The second channel through which the virus cause economic disruption is uncertainty
(Dardanoni, 1991; Mengel, Tsakas and Vostroknutov, 2016). A pandemic is a negative
unusual and unexpected event that disrupts the status quo; therefore, economic agents
may become more uncertain about their future earnings and hence more risk-adverse.
There is a large stand of literature on uncertainty due to sudden unexpected negative
events. In summary, the literature finds that uncertainty is damaging for short-run
growth, reducing output, investment, hiring, consumption and trade (Bloom, 2014).
Uncertainty impacts the economy in several ways: (i) real-options effects, which act to
make firms more cautious about hiring and investing, and consumers more cautious
about buying durable goods (Bernanke, 1983), (ii) risk-premium effects raise the
cost of finance (Arellano, Bai and Kehoe, 2019) and (iii) from consumers’ desire
for precautionary saving, which itself reduces consumption expenditure (Bansal and
Yaron (2000).

According to Baker et al. (2020), COVID-19 has led to massive spikes in uncertainty,
and there are no close historical parallels. They show that volatility is affected by specific
economic indicators and is sensitive to COVID-19 news. Both negative and positive

1For a good literature review see Brodeur et al. (2020), and for an overview on the economic effect of COVID-19,
see our previous work on this topic (Neuteboom et al., 2020).
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COVID-19 information is significant, though according to their study negative news has
more impact than positive news. Based on a similar approach, Altig et al. (2020) conduct an
analysis of different forward-looking uncertainty measures during the pandemic and find
that uncertainty on what is coming is an important explanatory variable for consumption
decisions. Baldwin (2020) argues that the ‘wait-and-see’ attitude by economic agents
is common during economic downturns characterized by uncertainties, as there is less
confidence in markets. Therefore consumers are less willing to engage in economic
transactions. He concludes that the intensity of the shock is determined by the underlying
epidemiological properties of the virus, behaviour, and firm decisions in the face of risk-
aversion and uncertainty. In this light, also the public response is crucial in influencing
uncertainty. Related to this is the economic literature concerning fear and anxiety (Farrés
et al., 2021 and Bounie et al., 2020). This may cause supply-side disruptions as workers
do not show up at work, afraid to contract the virus in the workplace. From a demand-side
perspective, this may cause consumers to impose voluntary stay-at-home policies (Chetty
et al., 2020). Yan et al. (2021) disentangle voluntary from policy-induced behavioural
changes related to stay-at-home time and find that a substantial share of the observed
behavioural response was voluntary. Stay-at-home orders increased the time people
spent at home by replacing voluntary actions that likely would have emerged as cases
rose.

Within the strand of literature that looks at uncertainty of economic agents, the effects
of a sudden event – such as a pandemic – can shape an agent’s belief about the future and
may cause agents to change their economic behaviour. That is, underlying psychological
mechanisms shape economic anxiety in the environment of a pandemic by assessing the
role of beliefs and information about pandemic risk factor of infectious disease spread
(Akesson et al., 2020). Gallagher (2014) finds that agents have difficulty forming beliefs
about the future in the wake of infrequent major events. Therefore, belief formation
may differ substantially during the COVID pandemic as compared with an economic
shock.

Akesson et al. (2020) report a rapid increase in economic anxiety during and after
the coronavirus has reached a country. Fetzer et al. (2021) document that the average
participant overestimates both the mortality and contagiousness of the virus relative to the
percentages given by the medical literature. They show that beliefs about mortality and
contagiousness are associated with participants’ economic worries about the aggregate
economy and their personal economic situation. This is in line with the findings of
Akesson et al. (2020), who report that economic agents dramatically overestimate the
danger and infectiousness of COVID-19 relative to expert opinion. These findings on
the COVID-19 pandemic are consistent with previous studies on risk perception, which
suggest that economic agents are likely to overestimate risks that are unfamiliar, outside
of their control, inspire feelings of dread, and receive extensive media coverage (see for
an overview on risk perception: Slovic (2012)). Interestingly, Akesson et al. (2020) also
find that providing people with expert information partially corrects their beliefs about
the virus.

Several studies on how economic agents shape their beliefs and behaviour according
to new information find that economic agents are well-capable of updating their
beliefs as new information comes in (see: Armona, Fuster and Zafar, 2019; Coibion
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et al., 2020). For instance, Roth and Wohlfart (2020) find that economic agents update
their macroeconomic outlook in response to the expert forecasts extrapolate to expectations
about their personal economic circumstances, and adjust their consumption plans and stock
purchases2.

The third transmission channel contains the economic damage due to the imposition of
restrictions to prevent the spread of the virus. A large body of literature has been focusing
on the impact of NPIs. These NPIs, which include, among others, international travel
restrictions, business closures, prohibition of large-scale private and public gatherings,
and mandatory quarantines, have been adopted so as to effectively minimize or reduce the
rate at which the virus is transmitted.

Mulligan (2020) assesses the lockdown by extrapolating the welfare loss stemming
from non-working days, the fall in the labour-capital ratio resulting from the absence/lay-
off of workers, and the resulting idle capacity of workplaces. The author finds the welfare
loss to be approximately USD 7 trillion per year of shutdown. In a similar fashion,
Demirgüç-Kunt, Lokshin and Torre (2021) estimate the economic impact of the NPIs
implemented by countries in Europe and Central Asia during the initial stages of the
COVID-19 pandemic. The results suggest that the NPIs led to a decline of about 10%
in economic activity across the region. On average, countries that implemented non-
pharmaceutical interventions in the early stages of the pandemic appear to have better
short-term economic outcomes and lower cumulative mortality, compared with countries
that imposed NPIs during the later stages of the pandemic.

Various papers use high-frequency transaction data, analogous to the data we assemble
here, to analyse aggregate consumer spending under NPIs. There are a number of
empirical studies that have attempted to disentangle the direct effects of NPIs and the
behavioural response towards the virus on consumption. In general, there is consensus in
the literature that changes in behaviour by consumers towards virus explain a large part
of the drop in consumption during the early stages of the pandemic. While these studies
typically find that NPIs have had a short-term effect on consumption, the NPIs only
account for a small proportion of the observed declines (see: Chetty et al., 2020; Bounie
et al., 2020; Neuteboom et al., 2020; and Chen et al., n.d.). This claim is also supported
by a quantitative model developed in a theoretical paper of Aum, Lee and Shin (2020).
Coibion et al. (2020) use surveys to assess the macroeconomic expectations of households
in the United States. They find that it is primarily lockdowns, rather than the infections
themselves, that lead to declines in consumption spending.

Some authors argue that the direct effect of the virus and the NPIs interplay.
As the virus surges, people are more willing to comply with the NPIs than when
the virus spread slows. According to Makris and Toxvaerd (2020), people tend to
adopt social distancing practices when there is a specific incentive to do so in terms
of risk to health and financial cost. Maloney and Taskin (2020) attribute voluntary,
cooperative actions to either fear of infection or to a sense of social responsibility.
There is a broad range of literature looking at different socio-economic determinants

2Some authors combine the supply-side disruptions from both ill-fallen workers as well as workers who are
afraid of showing up at work because of the spread of the virus, see: Bonadio et al. (2020); Céspedes, Chang and
Velasco (2020) and Chudik, Pesaran and Rebucci (2020)
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of the degree of compliance with social distancing. Factors that influence compliance
with NPIs include income level, trust and social capital, public discourse, news channel
viewership, ethnic diversity, and even gender (see: Galasso et al., 2020; Chiou and
Tucker, 2020).

Individual beliefs and preferences should also be taken into consideration, as they
affect behaviour and hence compliance with NPIs. Akesson et al. (2020) find that the more
infectious COVID-19 was deemed to be, the less likely individuals were to undertake social
distancing measures. This was perhaps due to the belief that the individual will contract
COVID-19 regardless of social distancing practices, that is, a certain amount of fatigue
started to kick in. Brodeur, Grigoryeva and Kattan (2021) document the determinants of
implementation and compliance with stay-at-home orders in the United States, focusing
on trust and social capital. They find that counties in the United States exhibiting relatively
more trust decrease their mobility significantly once NPI is implemented. Interestingly,
they also show that the estimated effect on postlockdown compliance is especially large
if people tend to place trust in the media, and relatively smaller if they tend to trust in
science, medicine, or government.

The fourth and last channel that we can distinguish from the literature is the indirect
impact, or second-round effect, of worsening economic conditions. In this respect, it is
important to understand the inter-linkages between macroeconomic indicators and how
they interact on a medium-term horizon.

To understand the longer term implications and second-round effects of the pandemic,
a number of researchers have integrated canonical epidemiology models such as the
susceptible, infected, resolved model (SIR) with macroeconomic models (see: Moser
and Yared, 2020; Alvarez, Argente and Lippi, 2020; and Bognanni et al., 2020). As the
crisis progresses and uncertainty remains high, the drop of consumption and investments
lowers employment and productivity growth which has a negative impact on consumption
(Romer, 1986; Barro, 1990; Diamond, 1982).

An important channel through which these second-round effects take place is
unemployment (Pissarides, 1987; Schubert and Turnovsky, 2018). As the macroeconomic
environment worsens, businesses go bankrupt, workers get unemployed, which lowers
their average income and decreases their spending capacity. A large number of studies
document the effects on the variables of hours of work and job losses (e.g. Forsythe
et al., 2020). Notably, the authors find that the labour market declines (proxied through
reductions in job vacancies and increases in UI claims) were uniform across states, with
no notable differences across states that experienced the spread of the pandemic, or
implemented stay-at-home orders, earlier than others.

Codagnone et al. (2020) focus on the expectations of stakeholders with regards to
the postlockdown period. As outcome variables, they use expectations (e.g. economic
outlook, labour market situation, recovery), fear (e.g. scenario of new outburst, economic
depression, restriction to individual rights and freedom), and behavioural change across the
following dimensions: savings, cultural consumption, social capital, and risky behaviour.
The authors find that exposure to the COVID-19 shock and the ensuing lockdown led
to pessimistic expectations about job opportunities, greater drawdowns of savings than
before, and a deterioration in social relations, which might be instrumental in finding job
opportunities in the longer term.
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III. Data and methods

The Dutch government’s strategy of imposing nationwide NPIs measures presents us
with a unique empirical estimation strategy, as both the incidence of the illness and
its timing varied substantially across different municipalities. While the NPIs induced
homogeneous expenditure dynamics across all municipalities in the Netherlands, spatial
heterogeneity remains because the COVID-19 virus may have had different effects in
different municipalities across the country. While similar empirical studies have been
done in other countries, for instance, in China and France (Chen et al., n.d.; Bounie
et al., 2020), the Netherlands was one of the only countries that saw an NPI policy
that was consistent among regions in terms of strictness and imposition date. Therefore,
contrary to other studies so far, we do not have to manually control for these differences
between regions within the country.

Transaction data

We use real-time transaction data from ABN AMRO cardholders. ABN AMRO is the
third biggest bank in the Netherlands and has approximately 18% of the total market share
in the country3. As a consumer bank, ABN AMRO has around 3.1 million unique account
holders. This covers around 22% of the total adult (18+) population. ABN AMRO is a
broad retail bank present in all parts of the country and catering to all types of customers.
Our data are therefore largely representative of the adult population of the Netherlands in
terms of gender, age, and income. Moreover, compared with the population statistics data
provided by the statistical agency (CBS), our data are equally distributed across Dutch
provinces (see Appendix Figure A1).

Collectively, ABN AMRO account holders spend over 65 million euros on a daily
basis, with an average transaction size of 23 euros. On average, over the sample period, our
dataset comprises 2,745,651 physical pin transactions a day and around 344,753 online
transactions a day. From the ABN AMRO transactions data, we acquire point of sale (PoS)
data from pin terminals when costumers pay by card, ATM data from cash machines when
costumers draw cash, and online transactions by e-banking iDEAL transactions. In 2019,
on average, clients paid 57% by card (PoS), 24% online by iDEAL, and 19% by cash. The
PoS data include a timestamp, the amount in euros, the corresponding account number, the
counterparty description, and the counterparty account number. We find the geolocation
of every PoS transaction by using a geolocation model (see section III and Appendix B).
As explained in the section below, we use a transaction-weighted dynamic-parameter
DBSCAN (TWDP-DBSCAN) to determine the geolocation and find that, based on a
ground-truth dataset that comprises 65 million PoS transactions including geolocation,
the model correctly predicts around 95% of the geolocations. We have used a labelling
function based on keywords in the transaction description to identify the category the
transaction belongs to.

Our transaction data only incorporate accounts held by individuals and households.
We exclude corporate accounts (SMEs) by excluding transactions backed by a debit card

3See: https://www.bankinbeeld.nl/thema/betalingsverkeer/).
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issued to a corporation as a ‘company card’. The purpose of this is to ensure that we make
a correct analysis of domestic consumption that is not biased by corporate expenditure.4

Geolocation model and research design

In order to investigate the impact of the COVID-19 pandemic by municipality, we have
geo-located the pin transactions to zip codes of payment point locations.

We have for every account holder the zip code of their registered home address.
These zip codes are merged with an external dataset featuring all Dutch zip codes and
their latitudes and longitudes5 in order to obtain geolocations (expressed as latitude and
longitude). Customers’ home locations often have a clear relationship to payment point
locations, with most payment points being situated in a dense cluster around consumer
home location points. The purpose is thus to identify one cluster in these points and to
classify other transactions as outliers. Then using only the main cluster points, we proceed
by determining the payment point location.

We use transaction-weighted density-based clustering to predict POS geolocations.
Given that we want to determine dense clusters and classify all other points as outliers, a
density-based method is the most suitable approach. As the dataset is large and clustering
will need to happen for many sets of points, a less computationally expensive algorithm
is preferred, and hence DBSCAN (density-based spatial clustering of applications with
noise) was selected as the clustering algorithm for this problem.

The DBSCAN clustering algorithm6 requires two main parameters to be set. The first,
ε, is the maximum distance that two points can be from each other while still belonging to
the same cluster. The second, min samples, is the minimum number of samples required
for a group of points to become a cluster in the final results. As there are many varieties
of payment points in the data, there is no one size fits all approach. The goal with the
setting of these parameters is to find the optimal (most dense while including the most
samples) cluster for a set of home locations associated with a payment point, in order to
be able to remove points that are outliers or do not improve the location prediction. The
initial parameters are set at very ambitious levels based on the label of the payment point
and the total number of samples there are. When no cluster is found, the parameters are
widened until either a cluster has been found or the parameter limit has been reached,
and thus, hypothetically, no dense enough cluster exists in the samples to make a good
prediction for the payment point.

The distance between a customer’s home and the payment point can differ according
to the time of the day, month of the year, and total amount spent. Therefore, we
introduce heuristic transaction weighting, also called transaction-weighted dynamic-
parameter DBSCAN (TWDP-DBSCAN). These heuristics determine the weight of a
transaction, which can vary between 0 and 2. This weight is used to determine how
strongly the transaction influences the final predicted location of the payment point.

4Note that this is a drawback of the Carvalho et al. (2020) data. The study cannot distinguish the identity of the
buyer in each transaction, and therefore the data represent a mixture of final consumption expenditure by households
and corporate firms’ intermediate input purchases.

5http://geonames.org.
6https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html.
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The final location (after clustering) is calculated as follows (for latitude and longitude
separately):

location =
∑N

i=1 locationi ∗ weighti
∑N

i=1 weighti
, (1)

where N is the number of samples after clustering. Although this is based on analysis of
a smaller sample, van der Cruijsen and Knoben (2018) suggest that payment behaviours
tend to be consistent across different groups of people and thus this sample is assumed
to generalize well to the full dataset. See Appendix Figure A2 for an overview of the
algorithm used.

After the implementation of the transaction-weighted dynamic-parameter DBSCAN
(TWDP-DBSCAN), it was found that certain labels (categories) of payment points, such
as hotels, did not perform well. This can be explained by the fact that consumers usually
stay in hotels far from their home address. In order to account for the harder-to-predict
categories, payment point matching was introduced, where each prediction was assigned
a confidence based on the heuristics of the category, number of samples, and cluster size.
Payment points were then matched according to the following routine:

1. Partition the transactions by customer
2. Sort the transactions by transaction date and time
3. For each transaction, calculate the time delta between it and the customer’s previous

transaction
4. If this time delta is smaller than the threshold level, add the previous payment point

with its predicted location and confidence as a ‘match’

Finally, the lower confidence payment point locations are recalculated based on their
own location and the locations of the matched payment points using an algorithm that
takes into account the confidence of all predictions, and the time delta of all the matches.
For an overview of the validation of the model, see Appendix B.

In order the ensure that we have adequate coverage of transactions within every
municipality (i), we delete the lowest 5 percentiles of municipalities based on the ABN
AMRO clients to total inhabitants ratio from our dataset. We also delete municipalities
for which we have incomplete data, which leaves us with 332 municipalities out of 355
for the main regressions. For the online iDEAL (sepa) transactions, we locate transactions
at the home address of the ABN AMRO client, which is part of the meta data that are
provided for every ABN AMRO account holder.

Variables constructed with the geo-located transaction data

Our variable of interest is the total spending of ABN AMRO clients in euros for
municipality, where we aggregate over week. We calculate yit = vit · pit, where vit is
the volume of transactions and pit is the price of every transactions in euros. These are
physical transactions done by ABN Amro clients by phone or card at a PoS.

To investigate whether people may have changed their behaviour, due to a preference
switch towards more online goods, we also use an indicator that includes credit card

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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and iDeal (internet banking) supermarket expenditures by municipality in euros. That is,
vit · pit, where vit is the volume of online transactions for groceries and pit is the price of
every online transactions for groceries in euros.

For all main regressions, we aggregate the data by week. We pair every week with
its equivalent week number in the previous year, therefore using year-on-year data.
In addition to adjusting for seasonal patterns, we also manually adjust for calendar
effects.

Other variables

COVID-19 data: We report the number of new hospitalized COVID-19 cases each
day, for each municipality, using publicly available data from the National Institute for
Public Health and the Environment7. The National Institute for Public Health and the
Environment provides the cumulative number of hospitalized COVID-19 cases on a
daily basis by municipality. This file contains data on the residency of the individual
who is hospitalized. For example, if a COVID-19 patient is admitted to a hospital
in Amsterdam, but lives in Rotterdam, the new hospitalized COVID-19 patient will
be included in the number of hospitalized COVID-19 patients in the municipality of
Rotterdam. We prefer the number of hospitalized cases over the confirmed COVID-19
infections as over time the testing capacity has been scaled up. If we would use the
total COVID-19 infections measured by the number of positive test outcomes, we would
drastically underestimate the real number of COVID-19 patients in the early months of
the pandemic, as during these months testing capacity was still insufficient. We use the
7-day moving average of new daily COVID-19 patients who have been admitted to the
hospital.

Stringency index: We make use of the Oxford COVID-19 Government Response
Tracker from the Blavatnik School of Government and the University of Oxford (Thomas
Hale and Goldszmidt, 2021). Specifically, we look at the stringency index. This tracker
collects information on several different common policy responses that governments have
taken to respond to the pandemic, using nine sub-indicators: school closing, workplace
closing, cancellation of public events, restrictions on gatherings, public transport closing,
stay-at-home requirements, restrictions on internal movement, internal travel controls,
and public info campaigns. The data from the nine indicators are aggregated into a set
of four common indices, reporting a number between 1 and 100 to reflect the level of
government action. While not all sub-indicators in the stringency index do necessarily
hamper consumption, it is the best proxy we have of the NPI policy.8

Local unemployment: We compiled data from the Dutch UWV (Employee Insurance
Agency), an autonomous administrative authority that implements employee insurances
and social benefits. We use the weekly figure of the unemployment benefits statistics,
based on the number of unemployment benefits registered in the UWV administration for
that week by municipality. Similar to the variable of interest, the spending data, we use
the year-on-year differences in local unemployment rates.

7https://www.rivm.nl/.
8See: https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19 for more infor-

mation.
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Empirical strategy

To measure whether the severity of the COVID-19 outbreak at the local (municipality)
level has a significant impact on transactions, we use a variant of the fixed effects
(FE) panel regression, put forward by Allison, Williams and Moral-Benito (2017). FE
estimation is performed by time demeaning the data. Demeaning deals with unobservable
factors because it takes out any component that is constant over time and entity. The
problem with a traditional FE model is however that they have the core assumption of
strict exogeneity:

E(εis|xit, αi) = 0, for all s, t = 1 . . . , T . (2)

This assumption is violated in case of reverse causality. In our case, the level of
expenditure of consumers may impact COVID-19 as well; as people go out shopping
and meet each other, the virus may spread more rapidly and therefore we cannot exclude
reverse causality. The assumption of strict exogeneity in the FE model forbids current
values of εis to be correlated with past, present, and future values of xit. However,
if yit affects xit+1, thus if reverse causality is present, εit in a regular FE model is
necessarily correlated with xit+1. By violating one of the core assumptions of the FE
model, the presence of reverse causality thus introduces bias to estimates from the model
(Leszczensky and Wolbring, 2022).

In order to address this issue, we use the ML-SEM specification introduced by
Allison et al. (2017). This is a cross-lagged panel model with FE, including lags
of both the dependent and the independent variables in the specification. They show
that the maximum likelihood (ML) method suggested by Moral-Benito (2013) can be
implemented in a structural equation modelling (SEM) framework, hence calling it the
ML-SEM method.

We use the following equation:

yit = αi + β1x′
i,t−1 + β2y′

i,t−1 + β3y′
i,t−2 + εit, (3)

where yit is the observation for the ith cross-section unit at time t for every i = (1, 2, . . . , n)

and t = (1, 2, . . . , m). αi represents the combined time-invariant effects of all time-
invariant unobserved variables, thus being a unit-specific FE. The ML-SEM model,
however, does not treat αi as a fixed parameter but as a latent variable that is
allowed to correlate with xit and yit at all points in time. In other words, the ML-
SEM provides FE estimates for time-varying covariates (see also Allison et al., 2017),
while initial values of Y and X are treated as strictly exogenous. x′

i,t−1 is a 1 × k (include
constants) of observed lagged independent variables, including our variable of interest,
new hospitalized COVID-19 cases. εit are the individual-specific (idiosyncratic) errors
that are distributed independently of xit and αi. By including FE αi, we are controlling
for the average differences across municipalities in any unobservable predictors, which
allows us to eliminate the omitted variable bias. This also eliminates any variability
between municipalities, for example, the size of the municipality and whether it is urban
or rural area. Spatial autocorrelation is also accounted for by including an autoregressive
parameter of the order two in the model specification (i.e. β2y′

i,t−1 and β3y′
i,t−2).
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Another issue that may arise is that the unobserved factors αi could be correlated
with xit, and therefore errors are correlated contemporaneously across municipalities.
Pesaran (2006) shows that by including the cross-sectional averages in the regression
the differential effects of unobserved common factors are eliminated. We therefore run
all the main regression in two stages to eliminate any cross-sectional dependence in the
robustness checks section (see section V).

We run the regression for two distinctive periods: the first COVID-19 wave and
corresponding NPIs, ranging from the first of January until the beginning of June
and the second COVID-19 wave and corresponding NPIs, ranging from September to
mid-March. We deliberately leave the summer period (July and August) out of the
regressions, as the number of COVID-19 cases becomes really low during this period (see
Appendix Figure A3). Because FE models rely on within-group action, we need repeated
observations for each group, and a reasonable amount of variation of our key variable
of interest (COVID-19) within each group. As the number of hospitalized COVID-19
cases is almost zero in July and August, the variation between the municipalities is too
small for the FE model to pick it up. To make sure we do not delude our results by
measuring the lack of variability in the data, we leave these months out. We have chosen
mid-March as the cut-off date as the vaccination pace starts to increase rapidly from that
date onward, which may skew the results as we want to measure the behavioural response
of consumers to the virus. In mid-March, around 11% of the population have had their first
doses. See Appendix C for a timeline of the NPIs introduced in the Netherlands during
the COVID-19 pandemic.

IV. Results

Stylized facts

Appendix Figure A4 plots the year-on-year physical pin transactions and the stringency
index during the first COVID-19 wave for two municipalities with a relatively small
population size; Veendam and Bernheze. Veendam had almost no COVID-19 cases, and
although the pin transaction data show an initial spike just before the imposition of
the NPIs and a small drop afterwards, it recovers almost immediately to normal levels
of expenditure. This is contrary to the municipality of Bernheze, where the drop in pin
transactions is very pronounced (50% at its lowest level), and moves alongside the number
of new confirmed COVID-19 cases. Notice that for both municipalities the pattern of the
consumption recovery mimics the hospitalized COVID-19 cases represented by the blue
line. While NPIs were not lifted before half May, consumption already started to recover
already in April. This observation shows that during the first phase of the COVID-19
pandemic, pin transactions correlate with the outbreak severity, even though the NPIs
were still in place. This is consistent with the aforementioned literature on the relationship
between COVID-19 and consumption.

During the second COVID-19 wave and the renewed NPIs, the relationship is less
clear. Appendix Figure A5 shows the same comparison between Veendam and Bernheze,
but then for the second COVID-19 wave taking place in late 2020. From this figure,
no clear relationship between the number of COVID-19 cases and consumption is seen.
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TABLE 1

First COVID-19 wave - dependent variable: transactionsit

Regressors (1) (2) (3) (4)

COVID-19it−1 −0.1092*** −0.0861*** −0.1012*** −0.0898***
(0.0405) (0.0313) (0.0419) (0.0336)

Transactionsit−1 0.5994*** 0.6024***
(0.0104) (0.0105)

Transactionsit−2 0.0994*** 0.0998***
(0.0054) (0.0056)

Unempit−1 −0.2599*** −0.0790
(0.0671) (0.0529)

N 332 332 332 319
T 30 30 30 30
FE Both Both Both Both
R2 0.0010 0.3800 0.0031 0.3840

Notes: Standard errors clustered by municipality in parentheses.
∗∗∗P < 0.01; ∗∗P < 0.05; ∗P < 0.1.

On the other hand, the sharp drop in transactions, which is noticeable around mid-
December, does coincide with the timing of the imposition of the NPIs (also see Appendix
Figure A3).

Regression results

Table 1 shows the regression results for the panel regression of equation (3) for the
first COVID-19 wave. The dependent variable (yit) is the year-on-year change in total
volume of transactions by municipality i by week t, scaled by the number of ABN Amro
clients in municipality i. The key explanatory variable is the new number of hospitalized
COVID-19 cases by week t for municipality i, scaled by the number of inhabitants of
municipality i. We cluster standard errors at municipality level. Regression (1) includes
both municipality and time fixed effects. Given that in the Netherlands the strictness and
timing of the NPIs were identical for all municipalities, this effect is captured by time
fixed effects.

We find a statistically significant negative coefficient for the COVID variable under
a 1% confidence interval. For every new hospitalized COVID-19 per 1000 citizens,
transactions drop by 0.11% on average. During the peak of the first COVID-19 wave,
around 23 new cases were admitted to the hospital daily in Amsterdam. On a population
of around 870.000 people, that would result in a drop of total pin transactions of 2% in
a week.9 In regression (2) in Table 1 we add two lags of the dependent variable (yit).
Including lagged dependent variables can reduce the occurrence of autocorrelation arising
from model misspecification. The result is robust to the addition of the lags, as the variable

9For our fixed effect regression (1), the value of R2 is relatively low. This is contrary to the findings of Chen
et al. (n.d.) and Goolsbee and Syverson (2020), who report a relative large R2. This is mainly because of differences
in specifications. Both of those studies use dummy variables to single out specific subgroups of panel data, and
therefore they measure the effects between two different groups over time. In contrast, we look at the fit of all
municipalities over time. Moreover, they transform the data into logged values, whereas we prefer to use a linear
model and to keep the number of transformations to the data as minimal as possible.
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of interest – the number of hospitalized COVID-19 cases – is still significant under a 1%
interval level. However, β̂covid has become slightly smaller.10

Table 1 regression (3) and (4) include the local unemployment measure. Another
possible explanation for the effect of the COVID-19 variable that is picked up in
regression (1) and (2) is that the local virus outbreak adds to the negative sentiment
and uncertainty, even resulting in unemployment (Baker et al., 2020, Altig et al., 2020).
The unemployment variable in Table 1 regression (3) and (4) therefore may capture the
macroeconomic effect of loss of income due to lay-offs. This variable is also significant
and shows for every new unemployed worker per 1000 citizens, transactions drop by about
0.25% on average. However, these results are not robust to the inclusion of the additional
lags of the dependent variable (see regression (4)). The autocorrelation of the dependent
variables absorbs the significance of unemployment. Regression (4) in Table 1 suggests
that the heterogeneity of unemployment between municipalities is not an explanatory
variable for the heterogeneity in consumption between municipalities. In regression (4),
we find a statistically significant negative coefficient for the COVID variable under a 1%
confidence interval.

To summarize, during the first COVID-19 wave, we observe that the conditional
expectation of consumption is negatively related to the number of hospitalized COVID
cases. This effect cannot be explained by differences in unemployment by municipality.
This result entails that municipalities that saw a large COVID-19 outbreak also faced a
larger drop in local consumption, relatively to municipalities that had little COVID-19
hospitalized cases. This effect can also be partly induced by the fact that consumers living
in highly affected areas moved their consumption to municipalities that saw relatively low
infection rates, that is, those municipalities benefited.

Non-compliance with NPIs

The findings in the previous section may result from another cofounding effect, which is
non-compliance or lack of ‘enforcement’ of the NPIs (see Appendix C for an overview
of the restrictions that were in place during the first and second COVID-19 wave. See
Appendix D for an overview of the institutions responsible for imposing restrictions,
information provision on COVID-19, and enforcement). Gianmarco et al. (2020) found
that varying social compliance or non-compliance with such NPIs has variously facilitated
or constrained government action, and compliance has generally decreased over time.
In our research, we take the assumption that the NPIs – as they were implemented
nationwide – are similar across municipalities. While this should be true theoretically, in
practice some municipalities may be stricter in enforcing the national government rules
than others, depending on how severe the local COVID-19 outbreak is. Also, depending
on the local COVID-19 cases, citizens of municipality i may show different degrees of
(non)compliance with the NPIs. To test this assumption, we look at the expenditures in
sectors that were subject to NPIs and were either forced to fully close or continue with
very limited capacity. We use a subset of transactions that took place in sectors that were

10We have tested the model with the inclusion of more lags, but after the t−2 the included lags are not significant
under a 10% confidence interval.
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TABLE 2

First COVID-19 wave - dependent variable: transactions in sectors subject to NPIs

Regressors (1) (2) (3)

COVID-19 casesit−1 −0.2133 −0.2362 0.0399
(0.2018) (0.1655) (0.1342)

Transactions NPIsit−1 0.4874*** 0.6444***
(0.0180) (0.0161)

Transactions NPIsit−2 0.0596*** 0.0494***
(0.0056) (0.0047)

Stringencyit−1 −0.7348***
(0.0372)

N 331 331 331
T 30 30 30
FE Both Both Entity
R2 0.0002 0.1382 0.4211

Note: Standard errors clustered by municipality in parentheses.
∗∗∗P < 0.01; ∗∗P < 0.05; ∗P < 0.1.

restricted by the government’s imposed lockdown measures, to construct the variable of
interest (see Appendix Table A1). For instance, restaurants were only permitted to provide
takeaway goods and are therefore included in the list of sectors that were subject to NPIs.
We hypothesize that non-compliance will be bigger in sectors that are subject to NPIs, and
if non-compliance is an important explanatory factor, then the local COVID-19 outbreak
should negatively correlate with transactions in sectors subject to NPIs.

Appendix Figure A6 shows that the transactions in sectors that we subject to NPIs
closely correlate with the measure for NPIs strictness, the stringency index. The regressions
in Table 2 show that the variance in COVID-19 cases among municipalities does not
explain transactions in sectors subject to NPIs. In other words, the COVID-19 variable has
no statistically significant relationship with the spending in sectors that were subject to
NPIs. In regression (2) of Table 2, it is shown that the lagged variables of the transactions
are significant. Unsurprisingly, regression (3) shows that the stringency index is an
extremely good predictor of the drop in transactions in sectors subject to NPIs, with a
coefficient of -0,7. This entails that for every unit increase in NPI strictness on a scale of
0-100, the value of consumer transactions fell by 0.7% in sectors that were restricted by
NPIs. While non-compliance with NPIs may explain spending differences over time, that
is, a larger spending drop in the first lockdown versus the second lockdown, according to
our analysis, it does not explain the difference between municipalities.

Consumer response during the second COVID-19 wave

So far, we find that the negative relationship between heterogeneity in COVID-19 cases
and local spending by municipality cannot be contributed to non-compliance with NPIs.
Table 3 shows the regression results for the panel regression of equation (3) for the
second COVID-19 wave. Table 3 regression (1) shows that the number of hospitalized
COVID-19 cases is not significant. This suggests that, during the second COVID-19 wave,
the behavioural response of consumers had no additional effect on physical spending.
What is striking is that unemployment is significant in regressions (3) and (4), and
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TABLE 3

Second COVID-19 wave - dependent variable: transactionsit

Regressors (1) (2) (3) (4)

COVID-19it−1 −0.0010 −0.0245 0.0020 −0.0221
(0.0391) (0.0373) (0.0403) (0.0385)

Transactionsit−1 0.1025*** 0.1012***
(0.0110) (0.0117)

Transactionsit−2 0.2488*** 0.2489***
(0.0107) (0.0111)

Unempit−1 −0.0797*** −0.0505**
(0.0287) (0.0267)

N 332 332 332 319
T 30 30 30 30
FE Both Both Both Both
R2 4.246e− 05 0.1210 0.0010 0.1210

Note: Standard errors clustered by municipality in parentheses.
∗∗∗P < 0.01; ∗∗P < 0.05; ∗P < 0.1.

hence during the second COVID-19 wave robust to the introduction of the lags of the
dependent variable. These results show that municipalities that saw larger increases in
unemployment also saw a larger drop in transactions. For every new unemployed worker
per 1000 citizens, transactions drop by about 0.05% on average (regression (3)).

Our results show that local unemployment had a significant relationship with physical
spending during the second COVID-19 wave. This is in line with previous research
that focused on the consumption decisions of households that experience unemployment
(Gruber, 1994).

Contrary to the finding of Chetty et al. (2020), Bounie et al. (2020) and Chen
et al. (n.d.)) we find that during the second COVID-19 wave, heterogeneity in spending
between municipalities is better explained by labour market conditions than the number
of COVID-19 hospitalizations. Given that during the second COVID-19 wave, the
hospitalized COVID-19 cases coefficient is not significant also suggests that the main
channel through which the virus impacts consumption is not infections by definition. If
such a transmission channel would be credible and constant over time, we would have
seen significant results for both COVID-19 waves, as the number of infectious people
surged.

Changing consumer behaviour

We find that heterogeneity in COVID-19 hospitalizations does not explain the
heterogeneity in total spending behaviour by municipalities during the second wave.
From our results, we cannot infer why consumers react differently in the second COVID-
19 versus the first COVID-19 wave. In line with the (growing) literature in this field (Fetzer
et al., 2021; Roth and Wohlfart, 2020; see Akesson et al., 2020 and Gallagher, 2014),
the most probable explanation is that people have updated their beliefs or changed their
behaviour accordingly, as more information on COVID-19 became available. Akesson
et al. (2020) show that initially individuals dramatically overestimate the dangerousness
and infectiousness of COVID-19 relative to expert opinion. This may have caused an
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overly strong reaction on consumption, as consumers voluntary stayed at home (Yan
et al., 2021 and Andersen et al., 2020). When people are provided with information,
this corrects their beliefs about the virus. As the COVID-19 pandemic progressed, more
information became available on the infectiousness and on which (social) activities may
increase the chances of attracting the virus. Therefore, consumers may have adapted their
consumer behaviours, avoiding physical consumption in certain sectors that have a high
chance of transmissibility of the virus, but continue to shop in sectors that are relatively
safe.

We investigate this hypothesis further by looking at online supermarket expenditures
during the second COVID-19 wave. Given that supermarkets are generally crowded places
and a potential source of COVID-19 contamination, we hypothesize that consumers would
want to avoid these places more if they live in a municipality that experiences a larger
COVID-19 outbreak. Hence, they will be more inclined to order groceries online and get
them delivered to their home address. Moreover, what improves our empirical strategy
is the fact that total supermarket expenditure was not impacted by the NPIs, as during
both COVID-19 waves, supermarkets, convenience stores, and other ‘vital’ food retailers
were allowed to stay open and faced no capacity limits. Supermarkets are also likely to
be situated closely to consumers, which minimizes any disturbing spatial effects that may
occur.

While the total spending on groceries (and hence online groceries) have increased
substantially during the COVID-19 crisis, we measure in our FE specification whether
differences in the COVID-19 outbreak by municipality explain the differences in online
grocery expenditure with our fixed effects regression.

The dependent variable (yit) is the year-on-year change in total online supermarket
spending by municipality i by week t, scaled by the number of ABN Amro clients in
municipality i. We run the regression on the second COVID-19 wave (see Table 4). As
the coefficient is positive, the results show that if there is one additional hospitalized
COVID-19 case in a municipality per 1000 inhabitants, the online spending on groceries
increases by over 2% on average. Regression (2) shows that this conclusion is robust
to the addition of lagged variables to the dependent variable. Regressions (3) and (4)
include the stringency index and therefore exclude time effects. The stringency index
is also significant and shows that as the strictness of the NPIs increases, the amount of
spending on online groceries also increases. It is interesting that when the stringency
index is included in the regression, the coefficient of the COVID-19 cases increases
substantially. Obviously, these two parameters interact with each other: the stringency
index moves along with the number of infections (see Appendix Figure A3. As the
stringency indicator is high, there were more soft restrictions such as wearing face masks
and forced disinfection of hands at the entrance. This results in Table 4 regression (4),
showing that whether people decided to buy their groceries online depends on both the
NPIs and the severity of the local COVID-19 outbreak11.

These results suggest that, in line with the results of Bounie et al. (2020), a local
outbreak leads to a substitution from physical expenditures to online. Therefore, consumers

11We have also run the same regression on the first COVID-19 wave, and it shows the same results as during the
second COVID-19 wave. We do not include this table because of space limitations
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TABLE 4

Second COVID-19 wave – dependent variable: online groceries transactionsit

Regressors (1) (2) (3) (4)

COVID-19it−1 2.0814** 2.0246** 6.9379*** 7.1766***
(0.9014) (0.9018) (0.9289) (0.9277)

Transactionsit−1 0.0247** 0.0616***
(0.0112) (0.0115)

Transactionsit−2 0.0166 0.0231**
(0.0113) (0.0107)

Stringencyit−1 5.3330*** 4.6276**
(0.5565) (0.05705)

N 274 274 274 274
T 30 30 30 30
FE Both Both Entity Entity
R2 0.0007 0.0016 0.0243 0.0286

Note: Standard errors clustered by municipality in parentheses.
∗∗∗P < 0.01; ∗∗P < 0.05; ∗P < 0.1.

do change their behaviour as the virus surged during the second wave, by switching
between physical and safer online expenditures. During the second COVID-19 wave,
consumers, instead of refraining fully from physical consumption, made more ‘safer’
decisions on how to consume. Obviously, from our results, we cannot infer why consumers
do this, as we have no qualitative data on their decision-making progress or beliefs. This
substitution effect that we find in the data diminishes the overall impact of the COVID-19
shock on aggregate consumption expenditure.

V. Robustness checks

Cross-sectional dependence

In the main regression Table 1, the standard errors are clustered by municipality level.
However, the unobserved factors αi could be correlated with xit and therefore errors
are correlated contemporaneously across municipalities. Pesaran (2006) shows that
by including the cross-sectional averages in the regression, the differential effects of
unobserved common factors are eliminated.12 We therefore run the main regression from
Table 1 in two stages to eliminate any cross-sectional dependence:

First-stage regressions:

yit = β1μ
y
t + β2μ

x
t + ey

it

xit = β1μ
y
t + β2μ

x
t + ex

it, (4)

12This approach is favoured above the principal components approach brought forward by Coakley, Fuertes and
Smith (2002) because we want to avoid inconsistent results in the situation where the unobserved factors and the
included regressors are correlated. Moreover, the approach by Pesaran (2006) allows us to use ordinary least squares
(OLS) when we specify an auxiliary regression where the observed regressors are augmented by cross-sectional
(weighted) averages of the dependent variable (yit) and observable variables xit and possibly other control variables
xi and xt (see also Kapetanios and Pesaran, 2007).
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TABLE 5

Dependent variable: residuals for percentage change in transactions year on year

Regressor (1)

Residual COVID-19 cases −1.5224***
(0.1093)

N 332
T 30
FE None
R2 0.0030

Note: Standard errors in parentheses.
∗∗∗P < 0.01; ∗∗P < 0.05; ∗P < 0.1.

where μ
y
t and μx

t are the cross-sectional averages of yit and xit respectively over time t. ey
it

and ex
it capture the residuals of equation (4).

Second-stage regression:
ey

it = ex
it + wit. (5)

Under the assumptions explained in Pesaran (2006), for any fixed n in αi these residuals
provide consistent estimates of εit in the multifactor model and could be used as ‘observed
data’ to obtain estimates of the factors αi. The factor estimates can then be used directly as
(generated) regressors in regression equation (5). Effectively, in the second stage, we try
to explain the variance of yit with the variance of xit, thereby eliminating all the other FE.

Table 5 shows the results of the two-stage regression (see equation (5)). The result is
significant at the 1% level. The interpretation of the beta coefficient is not straightforward
because it is the beta coefficient of the residual of the original regression. The sign of the
coefficient is as anticipated: the number of hospitalized COVID-19 cases has a negative
effect on year-on-year average transactions. If we include time-variant control variables (xt)
in the first stage of regression (equation 4) and estimate (xit) in the second stage, the variable
is still statistically significant and the beta coefficient does not change. This suggests that
the set of control variables xt has no correlation with the variable of interest (xit).

Time frequency

In this section, we validate the geolocation model used to geo-locate transaction data.
Table 6 and 7 show the same regressions as in section IV, but on a daily frequency. For
the aggregations by day, in order to control for seasonality trends, we pair every day with
its equivalent day in the previous year and calculate the year-on-year differences.

The daily variance is captured by the error term εit. As we only have unemployment
data on a weekly frequency, this regression excludes the unemployment variable. The
regression results are similar to the weekly aggregates. The COVID-19 variable is
significant during the first COVID-19 wave and not during the second wave.

Time lags

We also investigate the sensitivity of time lags by performing inter-temporal shifting.
Figure 1 shows the P-value on the explanatory variable hospitalized COVID-19 cases,
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TABLE 6

First COVID-19 wave – dependent variable: transactionsit

Frequency: daily (7-days rolling average)

Regressors (1) (2) (3) (4)

COVID-19it−1 −0.1324*** −0.1550*** −0.1172*** −0.1443***
(0.0462) (0.0382) (0.0496) (0.0444)

Transit−1 0.4757*** 0.3817***
(0.0051) (0.0052)

Transit−2 0.2330*** 0.1807***
(0.0054) (0.0057)

Stringencyit−1 −0.0690*** −0.0021
(0.0031) (0.0028)

N 332 332 332 332
T 157 157 157 157
FE Both Both Entity Entity
R2 0.0002 0.3354 0.0247 0.2232

Note: Standard errors clustered by municipality in parentheses.
∗∗∗P < 0.01; ∗∗P < 0.05; ∗P < 0.1.

TABLE 7

Second COVID-19 wave – dependent variable: transactionsit

Frequency: daily (7-days rolling average)

Regressors (1) (2) (3) (4)

COVID-19it−1 0.05437 −0.0188 −0.0154 −0.0339
(0.0344) (0.0274) (0.0378) (0.0317)

Transit−1 0.4398*** 0.4150***
(0.0044) (0.0046)

Transit−2 0.1450*** 0.07547***
(0.0043) (0.0043)

Stringencyit−1 −1.5898*** −0.8399***
(0.0072) (0.0076)

N 332 332 332 332
T 192 192 192 192
FE Both Both Entity Entity
R2 3.943e− 05 0.3690 0.4421 0.6078

Note: Standard errors clustered by municipality in parentheses.
∗∗∗P < 0.01; ∗∗P < 0.05; ∗P < 0.1.

Figure 1. Inter-temporal shifting of the P-value of the explanatory variable (xit): the new number of
hospitalized COVID-19 cases. The horizontal axis t indicates the time in weeks and the vertical axis shows
the P-value of the explanatory variable
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Figure 2. Inter-temporal shifting of the beta coefficient of the explanatory variable (xit): the new number of
hospitalized COVID-19 cases. The horizontal axis t indicates the time in weeks and the vertical axis shows
the beta coefficient of the explanatory variable

shifted over time. The figure shows that the P-value is significant both at t and t−1,
suggesting that the current COVID-19 cases and the COVID-19 cases from a week
ago are both explanatory of the drop in transactions during the first COVID-19 wave.
The explanatory variable (xit) is not statistically significant when the time is shifted
further backwards or forwards. The beta coefficient in figure 2 has the highest negative
explanatory power when t−1. This suggests that the expenditure variable yt is quite
sensitive to the timing of the independent variable xt−1.

VI. Conclusion and discussion

By geo-locating transactions by municipality, we find that, during the first COVID-19
wave, the number of new hospitalized COVID-19 cases in a municipality has a strong and
statistically significant negative correlation with the change in physical transactions by
consumers. This suggests that people living in badly affected areas altered their economic
behaviour differently from people living in little affected areas. This supports the claim by
Chetty et al. (2020), Bounie et al. (2020), Chen et al. (n.d.), who all find similar results.

An important caveat to our finding is that while we use the ML-SEM specification to
circumvent reverse causality and control for unobserved factors that could be correlated
with our explanatory variable in the robustness checks, our methodological design does
not allow us to infer causality.

In our paper, we try to disentangle the different mechanisms that might be at play
during the first COVID-19 wave, to understand how the virus interacts with local spending.
We argue that it is unlikely that the interaction of the virus and spending is caused by
non-compliance of NPIs. To test this assumption, we look at the expenditures in sectors
that were subject to NPIs, but we do not find a significant relation between the number
of hospitalized COVID-19 cases and the expenditure in sectors subject to NPIs. This
suggests that, at least during the first stage of the pandemic, the consumer reaction
function towards the virus, that is, self-imposed stay-at-home policies, is the most likely
mechanism through which the virus interacts with consumption expenditure.

We also find that the consumer reaction function towards the virus is not constant over
time, as our results show that the relationship between the local COVID-19 outbreak and
transactions does not appear during the second wave. This seems to suggest that people
may have adopted their behaviour. Perhaps a certain amount of fatigue with the NPIs rules
came into play, or, alternatively, as more information on the COVID-19 virus became
available, consumers could adapt their behaviour in such a way that it did not impact their

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.



22 Bulletin

aggregate consumption. When looking at online and offline supermarket expenditures, we
see that municipalities that saw a large number of COVID-19 hospitalized cases during the
second wave, also saw a larger increase in online grocery shopping. When the COVID-
19 pandemic progressed, more information became available on the infectiousness and
effective measures to mitigate the transmission of the virus (Falcone and Sapienza, 2020).
Our result suggests that consumers have adopted their behaviour, in such a way that
they may have found different (safer) channels to continue their consumption patterns.
This view is consistent with earlier research by Akesson et al. (2020) on how individuals
update their beliefs towards COVID-19 when new information comes in. The results that
we find may also be related to the influence of framing of news on public perceptions
and economic expectations in times of high uncertainty (Chong and Druckman, 2007).
How the mechanisms works, however, that is, how consumers exactly update their
belief system about COVID-19 on the basis of news, information, or public perception
and how this translate into consumer decisions, is still unknown to us and cannot be
derived from our data. Further research that combines transaction data with survey
data – ensuring a constant panel over time – could shed more light on the underlying
mechanisms.

As we find no significant correlation between COVID-19 and consumption during
the second wave, this also reduces the credibility of the theory that ill-fallen consumers
have a significant impact on total consumption. While some theoretical models are built
around this assumption that infected consumers and workers stay at home and refrain from
spending and producing (Eichenbaum et al., 2020), we cannot support this assumption
with our findings. That said, Appendix Figure A3 shows that the peak of hospitalization
during the first wave was higher than during the second, possibly, therefore ill-fallen
consumers/workers may only start to take effect on consumption after a certain percentage
of the population has been infected.

Related to this, nonlinearities could be at play. Perhaps a very high level of local
infections does trigger a behavioural effect, also during the second COVID-19 wave,
which is currently not picked up by our model. Baqaee and Farhi (2020) consider possible
nonlinearities in response to the pandemic in a multi-sectoral model. They demonstrate
how these shocks are amplified or mitigated by nonlinearities, and quantify their effects
using disaggregated data from the United States. A similar method could be used to look
at nonlinearities between consumption and COVID-19 on a local level.

We do find a negative significant relationship between unemployment and consumption
during the second COVID-19 wave. This is in line with previous research that focused on
the consumption decisions of households that experience unemployment (Gruber, 1994).
Although the Netherlands has generous unemployment insurance benefits, which is
smoothing consumption, the benefit is at most 70% of the last wage, which still entails a
significant drop in income. Also, not everyone is eligible for unemployment benefits, self-
employed, flexworkers, or workers with insufficient earnings or length of employment
are disqualified. An increase in the unemployment rate contains new information on
future income streams. Our finding that unemployment negatively impacts spending on a
local level is as predicted by economic theory, and consistent with the permanent income
hypothesis where households adjusted their consumption downward accordingly (Campos
and Reggio, 2015) and Codagnone et al., 2020).
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By having a better understanding of how the different mechanisms that impact
consumption expenditure interplay, policymakers can make better informed decisions
in relation to the strictness of the NPIs, that is, balancing the negative economic
impact of NPIs versus limiting the spread of the virus. Our results show that as the
pandemic progresses, consumers display different behaviour. Unemployment becomes
a more important factor in understanding consumer decisions in the later stages of the
pandemic, and in order to level regional disparities, policymakers can address labour
market disparities by working together with local councils.

Measuring physical transactions is not a perfect substitute for economic activity. The
drop in physical transactions can be partly offset by an increase in online transactions. Our
regression results show that the incidence of COVID-19 has a large positive correlation
with online grocery spending. Further research could investigate to what extent online
consumption substitutes the reduction in offline consumption. Also relevant in this respect
is the reallocation from spending at local businesses to online retail businesses. The local
community does not necessarily profit from an increase in online consumption at the
expense of offline consumption, because many of the online retailers may not be located
within the same municipality. Moreover, while we look at the compliance with NPIs by
taking a sub-set of spending data in sectors that (partially) had to close, this is not a perfect
measure of compliance with NPIs either. Other NPIs, such as face masks, restrictions on
large gatherings, working-from-home, etc., were not tested for in our regressions.

Moreover, this study was done specifically using Dutch transaction data, whereas
the reaction function of consumers towards the virus may be different among different
cultures and countries. Individual beliefs and social preferences should also be taken into
consideration, as they affect behaviour. Previous literature has found that the trust that
the population has in healthcare system and/or the governments’ response towards the
pandemic differs by region and country (Brodeur et al., 2021). These institutional and
cultural aspects may lead to different conclusions in other countries.

It would be interesting to further look at the impact of the loss of income on consumer
expenditure, especially in light of the generous support packages by the government.
Cajner et al. (2020) and Ganong, Noel and Vavra (2020) argue that income losses were
relatively modest because relatively few high-income individuals lost their jobs and
lower-income households who experienced job losses had their loss in income offset
by unemployment benefits. This also holds to some extent for the Netherlands, where
the COVID-19 crisis support packages provided financial support to around 2.9 million
workers (out of a labour force of about 9 million).13. Further research into the dynamics of
the labour market and consumer spending at the local level in relation to the COVID-19
outbreak is needed to understand its full economic impact.

Although vaccination programmes are widely rolled out, and many (mainly developed)
countries have almost fully relaxed the NPIs, the COVID-19 pandemic has not ended yet.
New strains of the virus and/or low efficacy rates for the vaccines can still prolong the pan-
demic. Our study incorporates a medium-term horizon, including two distinctive COVID-
19 waves. But new waves could take a different shape or occur under different macroeco-
nomic conditions, and therefore the conclusion from this study may again change as well.

13https://www.tweedekamer.nl/debat_en_vergadering/plenaire_vergaderingen/details?date=24-06-2020
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Appendix A: Figures and Tables

Figure A1. Number of ABN AMRO clients in different provinces of the Netherlands compared with the
official population statistics of the Netherlands

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.



How did consumers react to the COVID-19 pandemic over time? 25

Figure A2. Transaction-weighted dynamic-parameter DBSCAN
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Figure A3. Year-on-year transactions by ABN Amro clients (euros), new hospitalized COVID-19 cases, and
the proxy of the NPIs measured by the stringency index

Figure A4. Pin transactions in Bernheze and Veendam during the first COVID-19 wave, 7-day rolling average

Figure A5. Pin transactions in Bernheze and Veendam during the second COVID-19 wave, 7-day rolling
average
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Figure A6. Average year-on-year change in expenditures in sectors that were subject to NPIs, 7-day rolling
average

TABLE A1

Categories of consumer spending that were target to NPIs

Consumer categories

Restaurants
Wellness
Casinos
Cinemas
Concert halls
Museums
Theme parks
Bars
Dining
Fastfood
Hairdressers
Solariums
Spas
Other entertainment

Appendix B

Table B1 describes the test sets that were used for the final testing, the size of the
datasets, and how the label (location) was obtained. The ground-truth dataset for validation
was a dataset from 2015 from a company collecting PoS locations. As there is no training
with unsupervised learning (clustering), there is no need to split the dataset into training
and testing samples, and the full dataset can be used for final tests. Also, both test sets
went through the same preprocessing function where payment points with less than 10 or
more than 50,000 transactions were removed and transactions with a value under 0.5 euros
or over 5,000 euros were removed. This is done to remove non-significant transactions
and outliers.

The results of the 2015 test data can be found in Table B2. In this table, MHE represents
the Mean Haversine Error, CA is the City Accuracy, and PA is the Province Accuracy.
Also, the run time of each model is included. The algorithm was run with all transactions,
but only the results for the smaller subset reported in B1 are reported as these are the only
payment points that have an available ground-truth location.

As the method has been developed primarily with exploratory data analysis on the
2015 dataset (as specific geolocations of payment points were available), a good method of

© 2022 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.



28 Bulletin

TABLE B1

The two test sets used for evaluation

Data Year Trans PoS Clients

Ground-truth 2015 64M 54,700 2.7M
Descriptive 2020 393M 1.88M 3.24M

TABLE B2

Results 2015 test set (N = 64,000,000)

Model MHE CA PA Runtime

Baseline 4,213M 34.88% 85.05% 4minutes
DBSCAN 981M 71.03% 91.71% 39minutes
DBSCAN match 981M 71.03% 91.71% 94minutes

TABLE B3

Results on 2020 test set (N = 393,000,000)

Model MHE CA PA Runtime

Baseline N.A.* 33.66% 85.0% 8 minutes
DBSCAN N.A.* 67.63% 94.56% 30 minutes
DBSCAN match N.A.* 67.61% 94.55% 104 minutes

* Not Available because the test set only contains cities, not exact locations. Cities are as large as 220km, and so
would yield a very imprecise estimate.

validation is to test the method on more recent data without changing the implementation
or heuristics. The results, for the first 5 months of transactions of 2020, are presented
in Table B3. On this much larger, diverse, and high-quality sample, it is found that the
baseline and TWDP-DBSCAN (with or without matching) results are similar to the 2015
results. This shows that the method is built in a robust way and generalizes well over
time, as the samples are 5 years apart and no modifications to the method have been made
prior to testing.14 This methodology predicts the correct province with 95% accuracy, the
correct municipality with 86% accuracy, and the correct city with 67% accuracy.

Appendix C

On 12 March, the Dutch government announced an ‘intelligent lockdown’. Effectively,
the next day, all events (concerts, sports) and all meetings with more than 100 people were
forbidden. Bars, restaurants, and other public places or venues where people gather had to
close as well. The timing and severity of the measures were generally comparable to most
of northern Europe (such as Germany and Norway), but less restrictive than in southern
Europe, where the virus spread more rapidly (such as Italy, France, and Spain). Similar

14The validation data used are from 2015 and only represent a limited sub-sample of all payment points. They
thus only contain small numbers of observations for certain labels and areas. This means that the validation set is
biased towards certain labels and areas in the Netherlands. Therefore, we have manually created more validation
data where we extracted the geolocation from the transaction description. By matching this to our geolocation
algorithm, we found a 97% overlap.
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to other European countries, the Netherlands largely reopened again in the summer. As
the number of hospitalized cases picked up during the autumn of 2020, on 14 October, a
partial lockdown came into effect. As this did not help to bring down the COVID-19 cases
sufficiently, from 15 December 2020, a hard lockdown was imposed, with strict NPIs.
All non-essential shops were closed and a curfew was imposed. As the vaccination pace
picked up in the first months of 2021, measures were slowly being relieved. On 28 April,
shops and outdoor seating areas at restaurants and cafes were allowed to reopen and the
curfew was lifted. On 19 May, most of the NPIs were relaxed.

Appendix D

The National Institute for Public Health and the Environment (Rijksinstituut voor
Volksgezondheid en Milieu) is coordinating the response against the COVID-19 pandemic.
The NPIs were organized by The Minister of Health. Also, the information on restrictions
was distributed by the national government, as it was put on the website and broadcasted
on national television. Enforcement of the restrictions is organized by the municipalities.
The Public Health Act gives extensive powers to the mayor of the central municipality
of the so-called safety regions (Veiligheidsregio’s). These powers include the authority
to hospitalize a person for isolation without delay, to quarantine individuals, to check
grounds, buildings, means of transport, or goods for the presence of contamination and,
if necessary, disinfecting them; to close buildings or areas or parts thereof. Besides the
Public Health Act, there is Dutch Safety Regions Act (Wet veiligheidsregio’s). On the
basis of this act, the mayor of the central municipality can take several public order
measures in the whole region to fight or prevent disasters. By municipal bye-laws, the
mayors of the central municipality can impose penalties.
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